搜档网
当前位置:搜档网 › 基于MATLAB的信号分析

基于MATLAB的信号分析

基于MATLAB的信号分析
基于MATLAB的信号分析

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)'); (2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x);

>> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)'); 因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]); (3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔: t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕') >> t=-0.1:0.0001:0.1; x=cos(100*t)+cos(3000*t); >> plot(t,x);title('杨婕婕朱艺星'); >> xlabel('x=cos(100*t)+cos(3000*t)');

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论 (3) 1.1课题背景及意义 (3) 1.2国内外研究现状 (3) 1.3本课题的研究内容和方法 (4) 1.3.1 研究内容 (4) 1.3.2 开发环境 (4) 2 语音信号处理的总体方案 (4) 2.1 系统基本概述 (4) 2.2 系统基本要求与目的 (4) 2.3 系统框架及实现 (5) 2.3.1 语音信号的采样 (5) 2.3.2 语音信号的频谱分析 (5) 2.3.3 音乐信号的抽取 (5) 2.3.4 音乐信号的AM调制 (5) 2.3.5 AM调制音乐信号的同步解调 (5) 2.4系统设计流程图 (6) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6)

3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (7) 3.4切比雪夫滤波器 (7) 3.5数字滤波器设计原理 (8) 4 语音信号实例处理设计 (8) 4.1语音信号的采集 (8) 4.3.1高频调制与低频调制 (10) 4.3.2切比雪夫滤波 (11) 4.3.3 FIR滤波 (11) 5 总结 (12) 参考文献 (13) 语音信号的处理与分析 【摘要】语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 【关键词】Matlab 语音信号傅里叶变换低通滤波器

信号(MATLAB)实验指导书

《信号与系统》实验指导书 张建奇骆崇编写 浙江工业大学之江学院信息工程分院 2012年2月

目录 实验一MATLAB的基本使用 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容与要求 (8) 四、实验报告 (9) 实验二时域波形的MATLAB实现 (10) 一、实验目的 (10) 二、预习要求 (10) 三、实验原理 (10) 四、实验内容与要求 (18) 五、实验报告 (19) 实验三用MATLAB对系统时域分析 (20) 一、实验目的 (20) 二、预习要求 (20) 三、实验原理 (20) 四、实验内容与要求 (29)

实验一MATLAB的基本使用 一、实验目的 1、了解和掌握MATLAB的基本操作 2、了解MATLAB的库函数 3、会用MATLAB进行简单的操作。 二、实验原理 1、界面操作 MATLAB是“MATrix LABoratory”的缩写(矩阵实验室),它是由美国Mathworks公司于1984年正式推出的一种科学计算软件,由于其强大的功能,在欧美的一些大学里MATLAB已经成为许多诸如数字信号处理、自动控制理论等高级教程的主要工具软件,同时也成为理工科学生,必须掌握的一项基本技能。 当需要运行程序时,只需选择桌面上(或开始)中的MATLAB6.5应用程序图标即可 通常情况下,MATLAB的工作环境主要由一下几个窗口组成: 命令窗口(Command Window)

工作区间浏览器(Workspace) 历史命令窗口(Command History) 图形窗口(Figure) 文本编辑窗口(Editor) 当前路径窗口(Current Directory) MATLAB的命令窗与命令操作 当用户使用命令窗口进行工作时,在命令窗口中可以直接输入相应的命令,系统将自动显示信息。 例如在命令输入提示符“>>”后输入指令: >>t=[1,2,3;4,5,6;7,8,9]; 按回车键(Enter)后,系统即可完成对变量t的赋值。 MATALB提供了非常方便的在线帮助命令(help),它可提供各个函数的用法指南,包括格式、参数说明、注意事项及相关函数等内容。 2、图形窗 MATLAB图形窗(Figure)主要用于显示用户所绘制的图形。 通常,只要执行了任意一种绘图命令,图形窗就会自动产生。

信号与系统 MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: :学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标围。 实验程序: (1))()(t t f δ= t=-1:0.01:3 %设定时间变量t 的围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (2))()(t t f ε= t=-1:0.01:3 %设定时间变量t 的围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (3)at e t f =)( a=1时:

t=-5:0.01:5 %设定时间变量t 的围及步长 f=exp(t) %调用指数函数exp () plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的围 a=2时: t=-5:0.01:5 f=exp(2*t) % 调用指数函数exp () plot(t,f) title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f) title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f = t=-5:0.01:5 f=rectpuls(t,2) % 用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω= ω=1时: t=-20:0.01:20 f=sin(t)./t % 调用正弦函数sin (),并用sin (t )./t 实现抽 样函数 plot(t,f)

实验1 用MATLAB进行信号频谱分析(推荐文档)

实验1 用MATLAB 进行信号频谱分析 一、实验目的 ㈠ 初步掌握MATLAB 产生常用离散时间信号的编程方法。 ㈡ 学习编写简单的FFT 算法程序,对离散信号进行幅频谱分析。 ㈢ 观察离散时间信号频谱的特点。 二、实验原理 ㈠ 常用的离散时间信号 在 MATLAB 语言主要是研究离散信号的。常用的离散信号有: 1.单位取样序列 ???≠==000 1)(n n n δ 2.单位阶跃序列 ?? ?<≥=0 01 )(n n n u 3.实指数序列 R a n a n x n ∈?=;)( 4.复指数序列 n e n x n j ?=+)(0)(ωσ 5.正(余)弦序列 )c o s ()(0θω+=n n x n ? 6.周期序列 n N n x n x ?+=)()( ㈡ 离散信号的产生 离散信号的图形显示使用stem 指令。 在 MATLAB 中的信号处理工具箱中,主要提供的信号是离散信号。

由于MATLAB 对下标的约定为从1开始递增,例如x=[5,4,3,2,1,0],表示x(1)=5,x(2)=4,X(3)=3… 因此要表示一个下标不由1开始的数组x(n),一般应采用两个矢量,如 n=[-3,-2,-1,0,l ,2,3,4,5]; x=[1,-l ,3,2,0,4,5,2,1]; 这表示了一个含9个采样点的矢量:X(n)={x(-3),x(-2),x(-1),x(0),x(1),x(2),x(3),x(4),x(5)}。 1.单位取样序列 ?? ?≠==δ0 001)(n n n 这一函数实现的方法有二: 方法一:可利用MATLAB 的zeros 函数。 x=zeros(1,N); %建立一个一行N 列的全零数组 x(1)=1; %对X (1)赋1 方法二:可借助于关系操作符实现 n=1:N; x=[n==1]; %n 等于1时逻辑关系式结果为真,x=1;n 不等于1时为假,x=0 如要产生 ?????≤<<=≤≤=-δ2 0210 100)(10)(n n n n n n n n n n n n 则可采用MATLAB 实现: n=n1:n2; x=[(n-n0)==0];%n=n0时逻辑关系式结果为真,x=1;n ≠n0时为

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

matlab信号处理学习总结

常用函数 1 图形化信号处理工具,fdatool(滤波器设计),fvtool(图形化滤波器参数查看)sptool (信号处理),fvtool(b,a),wintool窗函数设计.或者使用工具箱 filter design设计。当使用离散的福利叶变换方法分析频域中的信号时,傅里叶变换时可能引起漏谱,因此 需要采用平滑窗, 2数字滤波器和采样频率的关系。 如果一个数字滤波器的采样率为 FS,那么这个滤波器的分析带宽为Fs/2。也就是说这 个滤波器只可以分析[0,Fs/2]的信号.举个例字: 有两个信号,S1频率为20KHz,S2频率为40KHz,要通过数字方法滤除S2。 你的滤波器的采样率至少要为Fs=80HKz,否则就分析不到 S2了,更不可能将它滤掉 了!(当然根据采样定理,你的采样率 F0也必须大于80HK,,Fs和 F0之间没关系不大,可以任取,只要满足上述关系就行。) 3 两组数据的相关性分析 r=corrcoef(x,y) 4 expm 求矩阵的整体的 exp 4 离散快速傅里叶 fft信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。Ft为连续傅里叶变换。反傅里叶 ifft 5 ztrans(),Z变换是把离散的数字信号从时域转为频率 6 laplace()拉普拉斯变换是把连续的的信号从时域转为频域 7 sound(x)会在音响里产生 x所对应的声音 8 norm求范数,det行列式,rank求秩 9 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s; 数字频率w:每个采样点间隔之间的弧度,单位rad。 Ω=2pi*f; w = Ω*T 10 RMS求法 Rms = sqrt(sum(P.^2))或者norm(x)/sqrt(length(x) var方差的开方是std标准差,RMS应该是norm(x)/sqrt(length(x))吧. 求矩阵的RMS:std(A(:)) 11 ftshift 作用:将零频点移到频谱的中间 12 filtfilt零相位滤波, 采用两次滤波消除系统的非线性相位, y = filtfilt(b,a,x);注意x的长度必须是滤波器阶数的3倍以上,滤波器的 阶数由max(length(b)-1,length(a)-1)确定。 13 [h,t]=impz(b,a,n,fs),计算滤波器的冲激响应 h为n点冲击响应向量 [h,x]=freqz(b,a,n,fs)计算频响,有fs时,x为频率f,无fs,x为w角频率, 常用于查看滤波器的频率特性 14 zplane(z,p) 画图零极点分布图 15 beta=unwarp(alpha) 相位会在穿越+-180发生回绕,可将回绕的 16 stepz 求数字滤波器的阶跃响应 [h,t] = stepz(b,a,n,fs) fvtool(b1,a1,b2,a2,...bn,an) fvtool(Hd1,Hd2,...) h = fvtool(...) 15 IIR数字滤波器设计方法 1 先根据已知带同参数求出最佳滤波器阶数和截止频率 [n,Wn] = buttord(Wp,Ws,Rp,Rs);

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2 sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');

(2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x); >> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');

因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]);

(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕')

MATLAB实验报告

实验一 名称:连续时间信号分析 姓名:王嘉琦 学号:201300800636 班级:通信二班 一、实验目的 (一)掌握使用Matlab 表示连续时间信号 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉常用信号的波形和特性 (二)掌握使用Matlab 进行连续时间信号的相关运算 1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换 2、学会运用Matlab 进行连续时间信号微分、积分运算 3、学会运用Matlab 进行连续时间信号相加、相乘运算 4、学会运用Matlab 进行连续时间信号卷积运算 二、实验条件 Matlab 三、实验内容 1、利用Matlab 命令画出下列连续信号的波形图。 (1))4/3t (2cos π+ 代码: k=2;w=3;phi=pi/4; t=0:0.01:3; ft=k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('余弦信号')

(2) )t (u )e 2(t -- 代码: k=-1;a=-1; t=0:0.01:3; ft=2-k*exp(a*t); plot(t,ft),grid on axis([0,3,2,3]) title('指数信号')

(3))]2()(u )][t (cos 1[--+t u t π 代码: k=1;w=pi;phi=0; t=0:0.01:2; ft=1+k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,0,2]) title('余弦信号')

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

基于matlab的信号分析与处理

基于m a t l a b的信号分 析与处理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期: 2014年1月

目录4

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信

信号分析与处理MATLAB仿真程序

一正弦信号 w=pi/6; ns1=0;nf1=48; n1=[ns1:nf1]; x1=sin(w*n1); subplot(1,1,1); stem(n1,x1); axis([0,50,-1.2,1.2]); xlabel('n');ylabel('x');title('正弦信号'); grid on; 二周期信号 x=[1 1 0 -1 -1 1 0 0]; xn1=x'*ones(1,8); xn1=xn1(:); xn1=xn1'; n1=0:length(xn1)-1; subplot(1,1,1); stem(n1,xn1); axis([0,42,-1.5,1.5]); xlabel('n');ylabel('xn');title('周期信号'); grid on; 三高斯随机信号 n1=30; xn1=randn(1,n1); subplot(1,1,1); stem(xn1); axis([0,32,-4,4]); xlabel('n');ylabel('xn');title('高斯随机信号'); grid on; 四正选信号求特征值: >> clear w=pi/6; ns1=0;nf1=48; >> n1=[ns1:nf1]; >> xn1=sin(w*n1); >> x=mean(xn1); >> y=var(xn1); >> x x = -1.0931e-017 >> y y = 0.5000 五周期信号特征值计算: >> clear >> x=[1 1 0 -1 -1 1 0 0]; xn1=x'*ones(1,8);

xn1=xn1(:); xn1=xn1'; n1=0:length(xn1)-1; >> u=mean(xn1); >> v=var(xn1); >> u u = 0.1250 >> v v = 0.6190 六高斯随机信号特征值计算: >> clear >> n1=30; xn1=randn(1,n1); >> m=mean(xn1); >> v=var(xn1); >> m m = -0.1349 >> v v = 1.3187 七信号运算 w=pi/6; ns1=0;nf1=48;n1=[ns1:nf1]; xn1=sin(w*n1); x=[1 1 0 -1 -1 1 0 0]; xn2=x'*ones(1,8); xn2=xn2(:); xn2=xn2'; ns2=0;nf2=length(xn2)-1;n2=0:nf2;ny=0:max(nf1,nf2); y1=zeros(1,length(ny));y2=y1; y1(find(ny<=nf1))=xn1;y2(find(ny<=nf2))=xn2; ya=y1+y2;ys=y1-y2; subplot(3,2,1);stem(n1,xn1); xlabel('n');ylabel('xn');title('正弦信号');grid on; subplot(3,2,2);stem(ny,y1); xlabel('n');ylabel('xn');title('修正后的正弦信号');grid on; subplot(3,2,3);stem(n2,xn2); xlabel('n');ylabel('xn');title('周期信号');grid on; subplot(3,2,4);stem(ny,y2); xlabel('n');ylabel('xn');title('修正后的周期信号');grid on;

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

基于matlab的信号分析与处理

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期:2014年1月

目录 摘要 (Ⅰ) 1 设计目的和要求 (1) 2 设计原理 (2) 3 设计内容 (3) 3.1 程序源代码 (4) 3.2 调试分析与过程描述 (7) 3.3 结果分析 (12) 总结 (13) 致谢 (14) 参考文献 (15)

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通,低通,带通滤波器,得到滤波器的幅频及相频特性。

相关主题