搜档网
当前位置:搜档网 › 应用随机过程教学大纲

应用随机过程教学大纲

应用随机过程教学大纲
应用随机过程教学大纲

遵义师范学院课程教学大纲

应用随机过程教学大纲

(试行)

课程编号:280020 适用专业:统计学

学时数:48 学分数: 2.5

执笔人:黄建文审核人:

系别:数学教研室:统计学教研室

编印日期:二〇一五年七月

课程名称:应用随机过程

课程编码:

学分:2.5

总学时:48

课堂教学学时:32

实践学时:16

适用专业:统计学

先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学)

一、课程的性质与目标:

(一)该课程的性质

《应用随机过程》课程是普通高等学校统计学专业必修课程。它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。

(二)该课程的教学目标

(1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。

(2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。着重基本思想及方法的培养和应用。

(3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。

二、教学进程安排

课外学习时数原则上按课堂教学时数1:1安排。

三、教学内容与要求 第一章 预备知识 【教学目标】

通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

【教学内容和要求】

随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。

【课外阅读资料】

《应用随机过程》,林元烈编,清华大学出版社。 【作业】

1.已知连续型随机变量X 的分布函数为0,0()arcsin ,011,1x F x A x x x ≤?

?

=<

(1)求常数A ;(2)求(1/2)P X ≤<;(3)求X 的概率密度函数()f x . 2. 已知二维连续型随机变量(,)X Y 的联合概率密度函数为

,

0(,)0,

y e x y f x y -?<<=?

?其它

(1)求概率(1)P X Y +≤;

(2)分别求出(,)X Y 关于X Y 、的边缘密度函数()()X Y f x f y 、 ,并判断,X Y 是否独立。

3.已知一母鸡所下蛋的个数X 服从参数为λ的泊松分布,即X 的分布律为

(),0,1,2,!

k e P X k k k λ

λ-==

=,而每个鸡蛋能够孵化成小鸡的概率为p .证明:

这只母鸡后代(小鸡)的个数Y 服从参数为p λ的泊松分布,即

()

()(),0,1,2

!

r p p P Y r e r r λλ-===.

4.玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1.顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下的概率。(结果保留3个有效数字)

5. 已知连续型随机变量X 的概率密度函数为

22(),01

()3

0,x

x x f x ?+<

其它, (1) 求概率(01/2)P X <<;(2)求1

(

)E X

. 完成方式:独立

第二章 随机过程的基本概念和基本类型 【教学目标】

通过本章学习,使学生理解随机过程的定义,了解随机过程的例子,理解并掌握随机过程的有限维分布函数族和数字特征,了解随机过程的分类方式及分类,掌握几种典型的随机过程,及其基本性质。

【教学内容和要求】

本章主要内容包括随机过程的基本概念和例子;随机过程的有限维分布函数族和数字特征;随机过程的分类和几种典型随机过程及其性质的介绍。其中随机过程的概念,有限维分布族,柯尔莫哥洛夫存在定理是本章的重点和难点。

【课外阅读资料】

《应用随机过程》,林元烈编,清华大学出版社。

【作业】

1.设{(),}X t t T ∈是一、二阶矩存在的随机过程.试证明它是宽平稳的当且仅当[()]E X s 与[()()]E X s X s t +都不依赖于s.

2.设12,Z Z 是独立同分布的随机变量,服从均值为0,λ为实数,方差为2σ的正态分布.求过程{(),}X t t T ∈,其中12()cos sin X t Z t Z t λλ=+的均值函数和方差函数.它是宽平稳的吗?

3.试证,若01,,

Z Z 为独立同分布随机变量,定义01n n X Z Z Z =++

+,则

{,0}n X n ≥是独立增量过程.

4.已知随机过程{(),}X t t T ∈的均值函数()X t μ和协方差函数12(,)x t t γ,设

()t ?是一个非随机的函数,试求随机过程{()()()}Y t X t t ?=+的均值函数和协方差函数.

完成方式:独立 第三章 Poisson 过程 【教学目标】

通过本章的学习,使学生了解计数过程,理解掌握Possion 过程的定义与基本性质,了解泊松过程的实际背景,熟悉它的若干推广及应用。

【教学内容和要求】

本章主要讲解Possion 过程的定义及性质,与Possion 过程相联系的若干分布, Possion 过程的若干推广和应用。其中Possion 过程理解、应用是本章的重点;Possion 过程两个定义的等价性是本章的难点。

【课外阅读资料】

《应用随机过程》,林元烈编,清华大学出版社。 【作业】

1.设N 1(t )和N 2( t )分别是强度为λ1和λ2的相互独立的齐次泊松过程, 1) 证明 X (t )=N 1(t ) +N 2(t ), t >0, 是强度为λ1+λ2的泊松过程. 2) 证明 X (t )=N 1(t ) -N 2(t ),t >0,不是泊松过程.

2.(){,0}X t t ≥是具有参数为λ的泊松过程,S 是相邻事件发生的时间间隔。证明:1212{}{}P S s s S s P S s >+>=>.

3.(){,0}X t t ≥是具有参数为λ的泊松过程,n W 是第n 个事件发生的时间,证明:

()1 n n EW λ

=()2

2 n n

DW λ=

4.{N ( t ),t≥0}是强度为λ的泊松过程,ξn ,n=1,2, …相互独立且同为参数为

p 的(0-1)分布,证明()

1()N t n n X t ξ==∑是参数为λp 的泊松过程过程.

完成方式:独立 第四章 更新过程 【教学目标】

通过本章的学习,使学生掌握更新过程的定义与基本性质、更新函数、更新方程,熟悉更新定理及其应用,了解更新过程的若干推广及应用。

【教学内容和要求】

本章主要内容包括更新过程定义及若干分布,更新方程、更新定理及更新理论的应用,更新过程的若干推广。其中更新过程理解及应用是本章的重点;更新定理及应用是本章的难点。

【课外阅读资料】

《应用随机过程》,林元烈编,清华大学出版社。 【作业】

1.判断下列命题是否正确 (1)();n N t n T t (2)();n N t n T t ≤?≥ (3)().n N t n T t >?<

2.对于Poisson 过程,验证定理4.1.

3.设{1}1/3,{2}2/3,i i P X P X ====计算{(1)},{

(P N k P N k ==和

{(1)},{(2)},{(3)}.P N k P N k P N k ===

完成方式:独立

第五章 Markov 链 【教学目标】

本章是本课程的重点,通过教学要使学生掌握离散时间Markov 链的基本概念,熟练掌握转移概率、状态分类与性质,极限分布和平稳分布,熟悉马尔可夫链的应用,了解连续时间的Markov 链的定义及应用。

【教学内容和要求】

本章主要内容包括离散时间Markov 链的定义、例子及应用,转移概率及其计算,C-K 方程,Markov 链状态的分类及性质,常返性的判断,Markov 链的极限情况和平稳Markov 链的有关性质,连续时间Markov 链及性质。其中Markov

链的定义,转移概率及其渐近性质是本章的重点;常返性的判别及性质,()n ij p 的

渐近性质与平稳分布是本章的难点。

【课外阅读资料】

《应用随机过程》,林元烈编,清华大学出版社。 【作业】

1.假设一个修鞋匠有四把椅子, 其中一把椅子为修鞋时顾客使用, 另外三把椅

子共顾客等待使用. 当三把椅子全都被使用时, 新到的顾客将会去其他地方寻找服务. 假设该修鞋匠服务每一位顾客恰好都是10分钟. 完成方式:独立

2.考虑一个三状态的Markov 链{X n }, 其转移概率矩阵为:

01001,2001P p q r ??

??=??

????

其中p , q , r >0, p+q+r =1. 这一Markov 链从状态1出发, 一旦进入状态0

或2就被吸收了. 求:

(1) 过程从状态1出发被状态0吸收的概率; (2) 需要多长时间过程会进入吸收状态. 完成方式:独立

3.某市场上只有A, B, C 三种啤酒. A 种啤酒改变广告方式后经市场调查发现: 买啤酒的顾客每两个月平均转移率如下:

0.8

0.1

0.1

0.20.7

0.1

0.3

0.2

0.5A A

A B

A C

B A B B

B C C A C B C C

→→→→→→→→→

设A, B, C 三种啤酒的目前市场份额为25%, 40%, 35%, 求半年后A 种啤酒

的市场份额. 完成方式:独立

第六章 鞅 【教学目标】

通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

【教学内容和要求】

基本概念,鞅的停时定理,停时定理、Doob 极大不等式、停时定理的应用—关于期权值的界,一致可积性,鞅收敛定理,连续鞅。理解鞅的基本概念(包括上鞅和下鞅);掌握停时的概念、Doob 极大不等式、鞅的停时定理及其应用——期权值的界;了解一致可积性;理解鞅收敛定理;掌握连续鞅的定义积相关性质。

【课外阅读资料】

《应用随机过程》,林元烈编,清华大学出版社。 【作业】

1.考虑一个掷骰子的试验.设甲乙两人同时掷骰子,以X 记甲掷出的点数,Y 表示甲乙二人掷出的点数之和,给出不同Y 值下的所有E(X|Y)(y)值.

完成方式:独立 2.设12,,

X X 是独立同分布随机变量,令()()i tX m t E e =,固定t 并假定

()m t <∞,令010,n n S S X X ==+

+,0.n ?>证明{(),}n tS n n M m t e -=是关于

12,,

X X 的鞅.

完成方式:独立 3.令01,,

X X 表示分支过程各代的个体数,01,X =任意一个个体生育后代

的分布有均值μ.证明{}n n n M X μ-=是一个关于01,,

X X 的鞅.

完成方式:独立

四、学习过程记录和考核要求

1.本课程考试采用开卷方式,总成绩包括卷面成绩和平时成绩。其中,卷面成绩占50%,平时成绩占50%。平时成绩由任课老师根据每个学生的课后作业、考勤情况综合评定。

2.本门课程共有5次课后作业,需及时批改并记录成绩。

3.本门课程每周上1.5次课(3学时),记录委员负责记录迟到、早退、缺课、请假出勤情况并及时向全班同学通报。

五、该课程的考核标准

(一)考核方式:考查、笔试

(二)考核基本内容:

(三)试卷题型:试题分填空、单项选择、判断和解答(解答题含计算、应用与证明)四种题型,小题总数控制在20-22个,总分100分。

(四)成绩评定:平时成绩占50%,期末考试成绩占50%。

六、主要参考书

1.林元烈、《应用随机过程》、清华大学出版社、2002

2.王梓坤、《随机过程通论(上,下卷)》、北京师范大学出版社、1996

遵义师范学院

××专业(方向)《XXXX》课程实验教学大纲

课程名称:(宋体小四号1.5倍行距不加粗)

课程编码:(宋体小四号1.5倍行距不加粗)

学分:(宋体小四号1.5倍行距不加粗)

学时:(宋体小四号1.5倍行距不加粗)

适用专业(专业类):(宋体小四号 1.5倍行距)

一、课程教学目标

内容(宋体小四号 1.5倍行距不加粗)

写明本课程在课程体系中的地位、作用。表述学生知识、技能和能力要求达到的具体目标。

二、实验项目与学时分配

三、课程的基本内容

内容(宋体小四号 1.5倍行距不加粗)

应明确每个实验项目要求学生应掌握的理论知识,应训练的基本操作及要求学会使用的仪器设备等内容。

实验一:(名称)XXXX

1.实验要求与目的:

2.实验内容:

实验二:(名称)XXXX

1.实验要求与目的:

2.实验内容:

……

四、考核标准

(一)考核方式:(内容宋体小四号 1.5倍行距不加粗)。明确写出期末考核方式(考试、考查,考试考查均需说明是否为笔试、笔试+技能、技能或实践作业等)

(二)考核基本内容:

(内容宋体小四号 1.5倍行距)明确写出考核的基本知识、基本能力点、操作等。

五、课程参考书、指导书

内容(宋体小四号 1.5倍行距不加粗)

注明:作者、书名、出版社、出版年

1.……

2.……

……

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

《应用随机过程》教学大纲

《应用随机过程》课程教学大纲 课程代码:090541007 课程英文名称:Applications Stochastic Processes 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:应用统计学 大纲编写(修订)时间:2017.6 一、大纲使用说明 (一)课程的地位及教学目标 随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。 (二)知识、能力及技能方面的基本要求 1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。 2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。 3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。 (三)实施说明 本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。在制订过 程中参考了其他学校相关专业应用随机过程教学大纲。 本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解 释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。本课程内容分概率论与数理统计两部分,在教学中应充分注意两者之间的联系,重视基本概念,讲清统计思想。 (四)对先修课的要求 本课的先修课程:数学分析,高等代数,概率论。 (五)对习题课的要求 由于本课程内容多学时少,习题课在大纲中未作安排,建议教师授课过程中灵活掌 握;对于学生作业中存在的问题,建议通过课前和课后答疑解决。通过习题课归纳总结章节知识解决重点难点内容。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生解决实际问题的能力。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩20-30%;期末成绩70-80%; 平时成绩构成:出勤,测验,作业。其中测验为开卷,随堂测验。

应用随机过程教学大纲

遵义师范学院课程教学大纲 应用随机过程教学大纲 (试行) 课程编号:280020 适用专业:统计学 学时数:48 学分数:____________ 2.5_______ 执笔人:黄建文审核人:_____________________ 系别:数学教研室:统计学教研室

编印日期:二?一五年七月 课程名称:应用随机过程 课程编码: 学分:2.5 总学时:48 课堂教学学时:32 实践学时:16 适用专业:统计学先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学) 一、课程的性质与目标: (一)该课程的性质 《应用随机过程》课程是普通高等学校统计学专业必修课程。它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。 (二)该课程的教学目标 (1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。 (2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。着重基本思想及方法的培养和应用。 (3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。 二、教学进程安排

三、教学内容与要求 第一章预备知识 【教学目标】 通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。 【教学内容和要求】 随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机 变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。 【课外阅读资料】 《应用随机过程》,林元烈编,清华大学出版社。 【作业】 0, x W0 1. 已知连续型随机变量X的分布函数为F(x) = *Aarcsinx, 0

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

应用随机过程复习资料

1 [()()][()()]()E X t X s D X t X s t s λ-=-=- 由于(0)0X =故 ()[()][()(0)]X m t E X t E X t X t λ==-= 2()[()][()(0)]X t D X t D X t X t σλ==-= 2 2 22(,)[()()]{()[()()()]}[()(0)][()()][()][()(0)][()()][()]{[()]}()()(1) X R s t E X s X t E X s X t X s X s E X s X X t X s E X s E X s X E X t X s D X s E X s s t s s s st s s t λλλλλλλλ==-+=--+=--++=-++=+=+ (,)(,)()()X X X X B s t R s t m s m t s λ=-= ()()[]exp{(1)}iuX t iu X g u E e t e λ==- 2 定理3.2 设{(),0}X t t ≥是具有参数λ的泊松分布, {,1}n T n ≥是对应的时间间隔序列,则随机变量n T 是独立同 分布的均值为1λ的指数分布 Proof:注意到1{}T t >发生当且仅当泊松过程在区间[0,]t 内没有事件发生,因而1{}{()0}t P T t P X t e λ->=== 即111(){}1{}1t T F t P T t P T t e λ-=≤=->=- 所以1T 是服从均值为1λ的指数分布.利用泊松过程的独立、 平稳增量性质,有 21{|}{()()0}{()(0)0}t P T t T s P X t s X s P X t X e λ->==+-==-== 即222(){}1{}1t T F t P T t P T t e λ-=≤=->=- 对任意的1n ≥和121,,,...,0n t s s s -≥有 21111{|,...,}{()(0)0}t n n P T t T s T s P X t X e λ--->===-== 即(){}1n t T n F t P T t e λ-=≤=- 所以对任一n T 其分布是均值为1 λ的指数分布. 所以1,0 (){}0,0n t T n e t F t P T t t λ-?-≥=≤=?

(完整版)应用随机过程期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为), 0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 M

《概率论与随机过程》课程自学内容小结

大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C ==? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞ ==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2 ==k X D k σ, 则0∈>?,有

应用随机过程教学大纲

《应用随机过程A》课程教学大纲 课程编号: L335001 课程类别:专业限选课适用专业:统计学专业 学分数:3学分学时数: 48学时 应修(先修)课程:数学分析、概率统计、微分方程、高等代数 一、本课程的地位和作用 应用随机过程是数学与应用数学专业的专业限选课程,是统计学专业的专业课程之一。随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。随着科学技术的发展,它已广泛地应用于通信、控制、生物、地质、经济、管理、能源、气象等许多领域,国内外许多高等工科院校在研究生中设此课程,大量工程技术人员对随机分析的方法也越来越重视。通过本课程的学习,使学生初步具备应用随机过程的理论和方法来分析问题和解决问题的能力。 二、本课程的教学目标 使学生掌握随机过程的基本知识,通过系统学习,学生的概率理论数学模型解决随机问题的能力得到更加进一步的提高,特别在经济应用上,通过本课程的学习,可以让数学专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程内容和基本要求 ?”记号标记既(用“*”记号标记难点内容,用“?”记号标记重点内容,用“* 是重点又是难点的内容。) 第一章预备知识 1.教学基本要求 (1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。 (2)掌握条件概率, 条件期望和独立性的概念和相关性质。 (3)了解概率中收敛性的概念和相互关系。 2.教学内容 (1)概率空间 (2)▽随机变量和分布函数

(3)▽*数字特征、矩母函数和特征函数 (4)▽*条件概率、条件期望和独立性 (5)收敛性 第二章随机过程的基本概念和类型 1.教学基本要求 (1)掌握随机过程的定义。 (2)了解有限维分布族和Kolmogorov定理。 (3)掌握独立增量过程和独立平稳增量过程概念。 2.教学内容 (1)基本概念 (2)▽*有限维分布和Kolmogorov定理 (3)▽随机过程的基本类型 第三章 Poisson过程 1.教学基本要求 (1)了解计数过程的概念。 (2)掌握泊松过程两种定义的等价性。 (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布。(4)了解泊松过程的推广。 2.教学内容 (1)▽ Poisson过程 (2)▽* 与Poisson过程相联系的若干分布 (3)* Poisson过程推广 第四章更新过程 1.教学基本要求 (1)掌握更新过程的定义和基本性质。 (2)掌握更新函数、更新方程。 (3)了解更新定理及其应用,更新过程的若干推广。 (4)了解更新过程的若干推广。 2.教学内容

随机过程及其应用-清华大学

4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那? 对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是 k t t -所以乘客总的等待时间为∑=-=) (0)()(t N k k t t t S 使用条件期望来处理平均等待))(|)(())((n t N t E E t S E == 对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下, n t t t ,...,,21形成了独立均匀分布的顺序统计量。不过就他们的和n t t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以 2))((2)2)(())((2 2)())(|)((2 0t t N E t t t N E t E E nt nt nt t E nt n t N t E E n k k λ= ===- =-==∑=从而有 4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。定义风险率)(t λ如下) (1) ()(t F t f t -= λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。定义随机过程 )(t N 如下}),,..,max(:{#)(01t X X X X n t N n n n ≤>=- 这里A #表示集合A 中的元素个数。如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

——学学期应用随机过程试卷(修正版)

安徽大学2010—2011学年第二学期 《 应用随机过程 》考试试卷(A 卷) (闭卷 时间120分钟) 一、填空题(每小题4分,共24分) 1、设X 是概率空间() ,,F P Ω上的一个随机变量,且EX 存在, C 是F 的子σ-域,定义()E X C 如下:()1 ________________ ; ()2 ________________________________________ ; 2、 在全数学期望公式()EX E E X C ??=??中,取X =____,C = ____,即得连续型(广义)全概率公式___________________; 3、设(){},0N t t ≥是强度为λ的Poisson 过程,则()N t 具有_____、 _____增量,且0t ?>,0h >充分小,有:()(){}()0P N t h N t +-== ________,()(){}()1P N t h N t +-==_____________; 4、设(){},0N t t ≥是强度为λ的Poisson 过程,{},1n X n ≥、{},1n S n ≥分别为其时间间隔序列和等待时间序列,则12,,,,n X X X 独立同参数为λ的指数分布, n S ~ ______, ()11N t X =~ _______, ()()12,,,n N t n S S S d =_____________________________________; 5、设(){},0W t t ≥为一维标准Brown 运动,则0t ?>,()W t ~____, 且与Brown 运动有关的三个随机过程____________、_____ ______________、______________都是鞅(过程); 6、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 __________________________________________________. 二、证明分析题(共15分,选做一题) 1、设X 是概率空间(),,F P Ω度函数()f x 满足:(),0x R f x ?∈>.设g 是严格递增的可微函数, 并满足:()lim y g y →-∞=-∞,()lim y g y →∞ =∞,定义随机变量()Y g X =;设()h y 是满足()1h y dy +∞-∞=?的任一非负函数.我们希望改变概率测

随机过程教学大纲

《随机过程》教学大纲 课程编码:1511104303 课程名称:随机过程 学时/学分:48/3 先修课程:《数学分析》、《概率论与数理统计》 适用专业:数学与应用数学 开课教研室:信息与计算科学教研室 一、课程性质与任务 1.课程性质:随机过程是概率论与数理统计的后继课程,是数学与应用数学专业的专业选修课。随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。随机过程论在理论与应用两方面都发展迅速,学习、了解这门学科对概率统计及数学其他分支如信息与计算科学、自然学科、工程技术乃至经济管理等方面的学者及科技工作者都是重要而且有益的。本课程开设在第6学期。 2.课程任务:通过本课程的学习,学生应能较好地理解随机数学的基本思想,掌握几个常用过程,如泊松过程、马尔可夫链、生灭过程、更新过程、鞅的基本概念,基本理论及分析方法。提高学生的数学素质,加强学生运用随机过程的思想方法开展科研工作和解决实际问题的能力。 二、课程教学基本要求 《随机过程》要求在熟练掌握概率论的基础上深刻理解随机过程的基本思想,理解随机过程是概率论的动态部分的含义;掌握随机过程的分类方法及常见的随机过程(如Poisson 过程、更新过程、Markov链和鞅等)的各种性质、推广形式及简单应用。 本课程的成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60分为及格。 三、课程教学内容 第一章 准备知识 1.教学基本要求 复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识;复习随机变量的数学期望、方差、矩、协方差与协方差阵、相关系数的定义及计算;掌握条件数学期望的求法,全期望

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

《随机过程》课程教学大纲

《随机过程》课程教学大纲 课程编号:100005 英文名称:Stochastic Processes 一、课程说明 1. 课程类别 理工科学位基础课程 2. 适应专业及课程性质 理、工、经、管类各专业,必修 文、法类各专业,选修 3.课程目的 随机过程是概率论的一个重要分支,研究的是依赖于一个变动参量的一族随机变量的性质和规律性,是理工科研究生的一门重要基础课。本课程的教学目的是: (1)使学生掌握随机过程的基本概念、基本理论和基本方法; (2)初步具有运用随机过程知识分析和解决实际问题的能力。 4. 学分与学时 学分2,学时40 5. 建议先修课程 微积分、线性代数、概率论与数理统计。 6. 推荐教材或参考书目 推荐教材: (1)《随机过程及其应用》(第三版). 刘次华主编. 高等教育出版社. 2004年 (2)《随机过程及其应用》(第一版). 陆大铨主编. 清华大学出版社. 1986年 参考书目: (1)《概率论与数理统计》(第三版). 盛骤,谢式千,潘承毅主编. 高等教育出版社. 2004年(2)《随机过程论》(第一版). 胡迪鹤著. 武汉大学出版社. 2000年 7. 教学方法与手段 (1)教学方法:启发式 (2)教学手段:多媒体演示、演讲与板书相结合 8. 考核及成绩评定 考核方式:考试 成绩评定:考试课(1)平时成绩占20%,形式有:考勤、课堂测验、作业完成情况 (2)考试成绩占80%,形式有:笔试(闭卷) 9. 课外自学要求 (1)课前预习; (2)课后复习; (3)完成教材上每章后的适量习题。 二、课程教学基本内容及要求 第一章预备知识 基本内容: (1)概率空间、随机变量及其分布; (2)随机变量的数字特征、特征函数和母函数; (3)n维正态分布; (4)条件期望。

应用随机过程课程设计-综述

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:通信系统中的随机过程 院系:电子与信息技术研究院 班级:通信工程一班 设计者: 学号: 指导教师:田波平 设计时间: 2009-12-20 哈尔滨工业大学

摘要 通信系统中用于表示信息的信号不可能是单一的确定的,而是具有不确定性和随机性的。这种具有不确定性,随机性的信号即称为随机信号。 同时通信系统中存在各种干扰和噪声,这些干扰和噪声的波形更具有随机性,是不可预测的。我们称其为随机干扰,或者随机噪声。尽管随机信号和随机噪声都是不可预测的,随机的,,但是它们具有一定的统计规律性。研究随机信号和随机噪声统计规律性的数学工具是随机过程理论,随机过程是随机信号和随机噪声的数学模型。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其实现(样函数),是时间函数,所有实现构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。 我们可以对通过研究随机过程的统计特性的探究,来研究随机过程通过线性系统的分析。 关键字:随机过程、通信系统、线性系统

1.通信中研究随机过程的重要性 通信就是互通信息。从这个意义上说,通信在远古时代就已经存在。人之间的对话是通信,用手势表达情绪也可以算通信。以后用烽火传递战事情报是通信,快马与驿站传送文件也是通信。但是现在的通信一般指的是电信,国际上称为远程通信(telecommunication),即通过电信号或者光信号传送信息。图1是通信系统模型。从信息论的角度来说,通信的过程就是不确定度减小的过程。而不确定性就是过程的随机性,所以从这个角度来说通信过程的研究可以归结到对于随机过程特性的研究过程。 图1 通信系统模型 从图中可以看到,通信系统中用于表示信息的信号不可能是单一的确定的,而是具有不确定性和随机性的。这种具有不确定性,随机性的信号即称为随机信号。 同时通信系统中存在各种干扰和噪声,这些干扰和噪声的波形更具有随机性,是不可预测的。我们称其为随机干扰,或者随机噪声。尽管随机信号和随机噪声都是不可预测的,随机的,,但是它们具有一定的统计规律性。研究随机信号和随机噪声统计规律性的数学工具是随机过程理论,随机过程是随机信号和随机噪声的数学模型。 随机过程整个学科的理论基础,最早是由柯尔莫哥洛夫和杜布奠定的。这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。随机过程一般理论的研究通常认为开始于20世纪30年代。1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。 随机过程的概念很广泛,因而随机过程的研究几乎包括概率论的全部。虽然不能给出一个有用而又狭窄的定义,但是概率论工作者在使用随机过程这个术语时,通常想到的是其随机变量具有某种有意义的相互关系的随机过程,例如,独

华工应用随机过程试卷及参考答案

华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷) (闭卷时间 120 分钟) 院/系年级 __专业姓名学号 1、设X 是概率空间(Ω,F ,P )且 EX 存在, C 是 F 的子σ-域,定义E (XC )如下:(1)_______________ ; (2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为 λ 的 Poisson 过程,则 N (t )具有_____、 _____增量,且?t >0,h >0充分小,有:P ({N (t + h )? N (t ) = 0})= ________,P ({N (t + h )? N (t ) =1})=_____________; 3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则?t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程); 4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。 二、证明分析题(共 12 分,选做一题) 1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有

指数分布,即:P({X ≤ a}) =1?e?λa ,a >0,其中λ是正常数。设λ是 另一个正常数,定义:Z = λλe?(λ?λ)X ,由下式定义:P(A)=∫A ZdP,?A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函 数:P({X ≤ a}),a>0; 2、设X0~U (0,1),X n+1~U (1?X n,1),n≥1,域流{F n,n≥ 0}满足: F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ?∏ k n=1 1 X?k X ?1 k ,n ≥1, 试证:{Y n ,n ≥ 0}关于域流{F n,n ≥ 0}是鞅! 三、计算证明题(共60 分) 1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

相关主题