搜档网
当前位置:搜档网 › 蛋白质工程的基本原理蛋白质工程的研究与进展

蛋白质工程的基本原理蛋白质工程的研究与进展

蛋白质工程的基本原理蛋白质工程的研究与进展
蛋白质工程的基本原理蛋白质工程的研究与进展

蛋白质工程的基本原理蛋白质工程的研究与进展

蛋白质工程的研究与进展摘要: 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。蛋白质工程开创了按照人类意愿改造、创造符合人类需要的蛋白质的新时期。它所取得的进展向人们展示出诱人的前景。

关键词:蛋白质工程;研究;进展;蛋白质工程汇集了当代分子生物学等学科的一些前沿领域的最新成就,它把核酸与蛋白质结合、蛋白质空间结构与生物功能结合起来研究。蛋白质工程将蛋白质与酶的研究推进到崭新的时代,为蛋白质和酶在工业、农业和医药方面的应用开拓了诱人的前景。

1、蛋白质工程 1.1蛋白质工程的定义所谓蛋白质工程,就是利用基因工程手段,包括基因的定点突变和基因表达对蛋白质进行改造,以期获得性质和功能更加完善的蛋白质分子。

1.2蛋白质工程的由来蛋白质工程是在基因工程冲击下应运而生的。基因工程的研究与开发是以遗传基因,即脱氧核糖核酸为内容的。这种生物大分子的研究与开发诱发了另一个生物大分子蛋白质的研究与开发。这就是蛋白质工程的由来。它是以蛋白质的结构及其功能为基础,通过基因修饰和基因合成对现存蛋白质加以改造,组建成新型蛋白质的现代生物技术。这种新型蛋白质必须是更符合

人类的需要。因此,有学者称,蛋白质工程是第二代基因工程。其基本实施目标是运用基因工程的DNA重组技术,将克隆后的基因编码加以改造,或者人工组装成新的基因,再将上述基因通过载体引入挑选的宿主系统内进行表达,从而产生符合人类设计需要的“突变型”蛋白质分子。这种蛋白质分子只有表达了人类需要的性状,才算是实现了蛋白质工程的目标。

1.3蛋白质工程的原理由于基因工程的发展,人们已经可以运用基因重组等理论和方法去设计并制造出预想的各种性能的蛋白质。这种改变蛋白质的操作可以在蛋白质水平上,也可以在基因水平上。如基因水平的改变,是在功能基因开发的基础上,对编码蛋白质的基因进行改造,小到可改变一个核苷酸,大到可以加入或消除某一结构的编码序列。蛋白质水平的改变则主要是对制造出的蛋白质进行加工、修饰,如磷酸化、糖基化等。蛋白质的化学修饰条件剧烈,无专一性,而基因操作则比较方便,在实施基因操作时,必须预先知道是哪个氨基酸或哪几个氨基酸影响着蛋白质的性状。就现代生物技术发展水平看,大量新蛋白质通过检测,来确定改变的蛋白质是否具有预期的性状,技术上已是可行的。

1.4蛋白质工程的基本途径目前,在蛋白质工程中最常采用的技术是定点诱变技术,即在特定的位点改变基因上核苷酸的种类,从而达到改变蛋白质性状的目的。蛋白质工程发展至当代,利用专一改

变基因中某个或某些特定核苷酸的技术,可以产生具有工业上和医药上所需性状的蛋白质。一般来讲对蛋白质所作的改造包括增强酶蛋白的催化能力、稳定性、专一性以及改善酶蛋白质的反应条件等几个方面,已为其大规模的应用创造了条件。其基本途径如下:预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的核糖核苷酸序列(RNA)→找到相对应的脱氧核糖核苷酸序列(DNA) 2、蛋白质工程的研究蛋白质工程修饰、改造的蛋白质为数不算多,但进展较快。随着基因组测序的国际 ___的快速进展,也带来并已出现了蛋白质高速发展的新阶段。

2.1在医药方面许多蛋白质工程的目标是设法提高蛋白质的稳定性。在酶反应器中可**酶的半衰期或增强其热稳定性,也可以延**疗用蛋白质的贮存寿命或重要氨基酸抗氧化失活的能力。在这个领域已取得了一些重要研究成果。用蛋白质工程来改造特殊蛋白质为制造特效抗癌药物开辟了新途径。如人的β-干扰素和白细胞-2是两种抗癌作用的蛋白质。但在它们的分子结构中,有一个不成对的基因,是游离的,因而很不稳定,会使蛋白质失去活性。当通过蛋白质工程修饰这种不稳定的结构就可以提高这两种抗癌物质的生物活性。美国的Cetus公司成功地修饰了这两种治疗癌瘤的蛋白质,大大提高了它们的稳定性,已用于临床试验并取得了良好的效果。具有抗癌作用的蛋白质工程产品免疫球蛋白质是一种高效治癌药物,它能成为征服癌症的“生物导弹”,即具有对准目标杀死特

定癌细胞而不伤害正常细胞的特效。近年来,澳大利亚医学科学研究所的一个微生物研究课题组经过多年的研究后发现了激发基因开始或停止产生癌细胞的蛋白质。这种蛋白质在癌细胞生长过程中对癌基因起着开通或关闭的作用。这个发现,对于通过蛋白质工程研制鉴别与控制多种类型的血液癌、固体癌的蛋白质有很好的作用,并为诊断和治疗癌症提供了新的方法。目前,应用蛋白质工程研究开发抗癌及抗艾滋病等重大疑难病症等方面,均取得了重大进展。另据实验,蛋白质工程还可以改变α1抗胰蛋白(ATT)。运用此工程技术在ATT的Met358和Ser359之间切开后,可以与嗜中性白细胞弹性蛋白酶迅速结合而引发抑制作用。在病理学的氧化条件下可导致Met358变成蛋氨酸硫氧化物使ATT不可能与弹性蛋白酶的弹性位点相结合。通过位点直接诱变,Met358被Val代替就成为抗氧化疗法的AAT突变体。含AAT突变体的血浆静脉替代疗法已经用于AAT产物基因缺陷疾病患者的治疗,并已取得明显疗效。

2.2在农业方面蛋白质工程正在成为改造农业,大幅度提高粮食产量的新途径。如植物光合作用是利用白光能将二氧化碳转化成贮成能量淀粉,在植物叶片中普遍存在着一种重要的起催化作用的酶,它能固定住二氧化碳,这种酶叫核酮糖-1.5-二磷酸羧化酶。而这种酶具有双重性:它既能固定二氧化碳,又会使二氧化碳在光照条件下通过光呼吸作用损失一半,即光合效率只有50%。现在。

这种酶的三维结构已经搞清楚了。参与研究的工作人员认为,可以通过蛋白质工程改造这种酶,控制其不利于人需要的一面,从而大大提高其光合作用效率,增加粮食产量。近年来,美国坎布里奇的雷普里根公司的科研人员立题,以蛋白质工程作为设计优良微生物农药的新思路,他们实施对微生物蛋白质结构进行修改,仅此一举,使微生物农药的杀虫率提高了10倍。

2.3在工业方面蛋白质工程在工业上的应用取得的成果亦是很多。现以改变酶的动力学特性研制出高效除污酶为例说明其应用价值。酶的动力学基本规律为:酶(E)-底物(S)=酶-底物复合物(ES)=酶(E)+产物(P)在这个反应过程中有4个速率常数:E-S=ES=E+P在稳态阶段,ES形成速率与分解速率相等,这个速率就是Km(Michaelis常数)。在数值上,Km等于达到最大速率一半时的底物浓度。Vmax常在反应的初始阶段测定,反应进行中产物浓度将增加,K4则不可忽视,高浓度的底物会抑制酶活性。在底物低浓度时,酶的Km是关键的参数。如在枯草杆菌蛋白酶的活性位点内有一个Met残基,作为去污剂的一种组分,该酶要置于氧化条件下使用。利用位点直接诱变,用其他19种氨基酸的任何一种取代这个Met,这些突变酶在活性方面大不相同,除了CYS代替Met的突变酶外,其他突变酶的活性都下降,而Km值提高。含不可氧化氨基酸(如Cer,Ala或Len)的突变酶在1mol/LH2O中不失活,

而Net和CYS酶则迅速失活。研究者正是根据突变酶的动力学特性来确定枯草蛋白酶在去污剂中的应用,以提高其除污效率,加强去污作用。

美国、日本等国家的科学工作者利用蛋白质工程研制生物元件来取代“硅芯片”,研制生物计算机,开发生物传感器的蛋白质都取得了重大进展。还有利用蛋白质(酶)生产模仿羊毛、蚕丝、蜘蛛丝,其强度高、质量轻,均是蛋白质工程取得的应用性研究成果。

3、酶工程的进展当前,蛋白质工程是发展较好、较快的分子工程。这是因为在进行蛋白质分子设计后,已可应用高效的基因工程来进行蛋白的合成。最早的蛋白工程是福什特(Forsht)等在1982—1985年间对酪氨酰—t—RNA合成酶的分子改造工作。他根据XRD(X射线衍射)实测该酶与底物结合部位结构,用定位突变技术改变与底物结合的氨基酸残基,并用动力学方法测量所得变体酶的活性,深入探讨了酶与底物的作用机制。佩里(Perry)1984年通过将溶菌酶中Ile(3)改成Cys(3),并进一步氧化生成 Cys(3)-Cys (97)二硫键,使酶热稳定性提高,显著改进了这种食品工业用酶的应用价值。1987年福什特通过将枯草杆菌蛋白酶分子表面的Asp (99)和Glu(156)改成Lys,而导致了活性中心His(64)质子pKa从7下降到6,使酶在pH=6时的活力提高10倍。工业用酶最佳pH的改变预示可带来巨大经济效益。蛋白工程还可对酶的催化活

性、底物专一性、抗氧化性、热变性、碱变性等加以改变。由此可以看出蛋白工程的威力及其光辉前景。上述各例是通过对关键氨基酸残基的置换与增删进行蛋白工程的一类方法。另一类是以某个典型的折叠进行“从头设计”的方法。1988年杜邦公司宣布,成功设计并合成了由四段反平行α—螺旋组成为73个氨基残基的成果。这显示,按人们预期要求,通过从头设计以折叠成新蛋白的目标已是可望又可及了。预测结构的模型法,在奠定分子生物学基础时起过重大作用。蛋白的一级结构,包含着关于高级结构的信息这一点已日益明确。结合模型法,通过分子工程来预测高级结构,已成为人们所瞩目的问题了。

蛋白质工程汇集了当代分子生物学等学科的一些前沿领域的最新成就,它把核酸与蛋白质结合、蛋白质空间结构与生物功能结合起来研究。蛋白质工程将蛋白质与酶的研究推进到崭新的时代,为蛋白质和酶在工业、农业和医药方面的应用开拓了诱人的前景。蛋白质工程开创了按照人类意愿改造、创造符合人类需要的蛋白质的新时期。

___ [1] 穆小民,吴显荣. 酶的开发利用与酶工程[J]生物技术, 1995,(04). [2] 陈红霞. 酶工程研究及应用[J]化学工程师,

xx,(09). [3] 陈红霞. 酶工程在医药工业中的应用[J]化学与生物工程, xx,(10). [4] 卢继传,李建新.未来 ___的支柱——生物技

术[M].**:**出版社,1992. [5] 张海银,叶言山.蛋白质工程[J].生物学通报,1995(1):21-22. [6] 林学颜,张玲.现代细胞与分子生物学[M].**:科学出版社,1999.万海清.生命科学概论[M].**:化学工业出版社,2001.

模板,内容仅供参考

蛋白质组学的应用研究进展

蛋白质组学的应用研究进展 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1. 兰州大学第二医院,兰州 730030 ;2. 兰州大学第二医院急救中心,兰州730030) 摘要:蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成 及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词:蛋白质组学双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics (1. Lanzhou University Second Hospital,Lanzhou 730030 ;2. Department of Emergency,Lanzhou University Second Hospital,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large-scale, high-throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented.

蛋白质结构与功能的研究进展

《生物化学》课程论文 姓名:曹SS 学号:11310300SS 专业:SS教育 成绩: SS学院生命科学学院 2015年 1 月 1 日

文献综述 蛋白质结构与功能的研究进展 学生:曹SS 指导老师:杜SS 【摘要】人类基因组计划即将完成。虽然基因组的序列作为信息库拥有大量的、重要的生物信息资源,但并不是基因本身,而是基因组所编码的蛋白质才能够直接参与和指导绝大多数的生物学过程。毫无疑问,只有阐明蛋白质的作用机理,才能够真正理解基因的功能。蛋白质结构与功能关系的揭示将有助于人类对于如生殖、发育、疾病等生命活动的基本机理的了解。同时,将对于人类疾病的防治和药物的发明具有重要的指导意义。 【关键词】蛋白质;结构;功能 1.引言 在人类进人21世纪新纪元之际,生命科学也迎来一个崭新的时代,即“后基因组时代(Post一genome era)”。在这一时代中,生命科学的中心任务是揭示基因组及其所包含的全部基因的功能,并在此基础上阐明遗传、发育、进化、功能调控等基本生物学问题,以及进一步解决与医学、环境保护、农业密切相关的问题。由于基因的功能最终总是通过其表达产物—蛋白质来实现的,因此,要了解基因组全部功能活动,最终也必须回到蛋白质分子上来。现已知道,以蛋白质为主体的生物大分子的功能主要决定于它们的三维结构,所以也有人认为当代生物学研究已经进人了“结构基因组时代(structural genomics era)”。目前,我们还不可能只用基因组DNA的一维序列去确定生命活动的机理(mechanism)和途径(path-way),也难以仅用基因的信息去解释疾病发生与发展的分子机理。显然,在人类基因组之后的时代,在有关生命活动整合知识的指导下,以蛋白质及其复合物、组装体为主体的生物大分子的精细三维结构及其在分子、亚细胞、细胞和整体水平上的生物学功能的研究是生命科学的重大前沿课题,也是当前生物学领域中最具有挑战性的任务之一,在后基因组时代生物学发展中处于战略性的关键地位。因此,在从现在到今后的5到15年中,我国在重点基础研究发展的战略性规划中,不失时机地组织精干的结构生物学研究队伍,开展对重要功能基因表达产物—蛋白质及其复合物、组装体的结构与功能的研究具有重要的科学意义,是推动我国生物学研究在21世纪生物学领域占据一席之地的必要措施[1]。 另外,以蛋白质为主体的生物大分子及其复合物和组装体三维结构与功能关系研究是生

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

蛋白质组学的应用研究进展_尹稳

?综述与专论? 2014年第1期 生物技术通报 BIOTECHNOLOGY BULLETIN 随着基因组计划的完成,生命科学研究开始进入以基因组学、蛋白质组学、营养组学、代谢组学等“组学”为研究标志的后基因组时代。蛋白质组(proteome)一词最早是由澳大利亚科学家Wilkins 和Williams 于1994年提出[1],1995年7月最早见诸于Electrophoresis 杂志[2],意指一个细胞或组织中由基因组表达的全部蛋白质。蛋白质组学(proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织、体液中的所有蛋白质组成、功能及其蛋白之间的相互作用的学科。 虽然基因决定蛋白质的水平,mRNA 只包含了转录水平的调控,其表达水平并不能代表细胞内活 收稿日期:2013-09-05基金项目:甘肃省科技计划基金资助项目(0708NKCA129),兰州大学第二医院医学研究基金项目(YJ2010-08)作者简介:尹稳,女,硕士,研究方向:蛋白质组学;E -mail :yinwen0508@https://www.sodocs.net/doc/7116361618.html, 通讯作者:伏旭,男,硕士,研究方向:生物化学与分子生物学;E -mail :fuxu0910@https://www.sodocs.net/doc/7116361618.html, 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1.兰州大学第二医院,兰州 730030;2.兰州大学第二医院急救中心,兰州 730030) 摘 要: 蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词: 蛋白质组学 双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics Yin Wen 1 Fu Xu 2 Li Ping 1 (1. Lanzhou University Second Hospital ,Lanzhou 730030;2. Department of Emergency ,Lanzhou University Second Hospital ,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large -scale, high -throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented. Key words: Proteomics Two -dimensional gel electrophoresis Mass spectrometry Bio -informactics Application status 性蛋白的水平[3],且转录水平的分析不能反应翻译后对蛋白质的功能和活性起至关重要作用的蛋白修饰过程[4],如酰基化、泛素化、磷酸化或糖基化等。而蛋白质组学除了能够提供定量的数据以外,还能提供包括蛋白定位和修饰的定性信息。只有通过对生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,才能对生命的复杂活动具有深入而又全面的认识。近年来,蛋白质组学技术取得了长足的发展,随着新技术的不断涌现,其应用范围也不断扩大。本文对蛋白质组学相关技术及其在各研究领域的应用进行了简要的归纳和评述,并对蛋白质组学的发展趋势和应用前景

蛋白质工程的现状发展及展望

蛋白质工程的现状发展及展望 摘要: 蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词: 蛋白质工程;定点诱变; 定向进化 20世纪70年代以来, 对蛋白质的分子改造渐渐进入研究领域, 通过对蛋白质分子进行突变, 得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1.理性进化 理性进化主要是利用定点诱变技术, 通过在已知DNA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。Markus Roth通过同源性比对和定点突变技术, 对EcoR DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键, Caho通过定点突变研究, 发现将五个氨基酸残基置换之后的酶, 由6- 16 : 0- ACP脱氢酶变成9- 18 : 0- ACP脱氢酶。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacillus stear other mophilus分离出来的嗜热菌蛋白酶突变, 得到的突变体稳定性提高了8倍, 100 在变性剂存在的情况下还能发挥作用,但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构, 从而造成很大的影响, 所以在定点突变的基础上又出现了许多新的技术, 用于改造蛋白质分子。[1] 2.非理性进化 非理性蛋白质进化, 又称定向进化或者体外分子进化,在实验室中模拟自然进化过程, 利用分子生物学手段在分子水平增加分子多样性, 结合高通量筛选技术, 使在自然界中需要千百万年才能完成的进化过程大大缩短,在短期内得到理想的变异。这种方法不用事先了解蛋白质结构、催化位点等性质, 而是人为地制造进化条件, 在体外对酶的编码基因进行改造, 定向筛选, 获得具有预期特征的改良酶, 在一定程度上弥补了定点诱变技术的不足, 具有很大的实际应用价值。一个比较成功应用定向进化的例子是对红色荧光蛋白的改造。绿色荧光蛋白由于

椰子蛋白质的功能特性研究进展

椰子蛋白质的功能特性研究进展 【摘要】椰子蛋白质功能特性不仅与蛋白质的氨基酸组成、分子大小及结构形态等固有的物理属性有关,而且还与其他蛋白质相互作用的食物组分以及所处的环境情况 或加工条件有关。本文主要从椰子蛋白质在溶解性、乳化性、起泡性、黏度等方面,分析了pH、离子强度、温度等常见加工条件对这些功能特性的影响。试图为椰子蛋白质的进一步开发利用提供理论指导。 【关键词】椰子蛋白功能特性影响因素进展 蛋白质的功能特性是指食品体系在加工、贮藏、制备和消费过程中蛋白质对食品产生需要特征的那些物理化学性质。蛋白质的功能特性主要包括吸水性、湿润性、膨胀性、粘着性、分散性、溶解度、粘度、胶凝性、乳化性,起泡性等。由于食品的感官品质是由各种食品原料复杂的相互作用产生的(例如蛋糕的风味、质地、颜色和形态等性质是由原料的热胶凝性,起泡、吸水作用、乳化作用、粘弹性和褐变等多种功能性组合的结果),因而这些功能特性不仅与蛋白质的氨基酸组成、分子大小及结构形态等固有的物理属性有关,而且还与其他蛋白质相互作用的食物组分,如水、离子、碳水化合物、脂质及所处的环境情况或加工条件,如温度、

pH值、电离强度等有关。 椰子蛋白质(coconut protein)为木本油料种子蛋白,单个椰子中蛋白质含量较少4%~8%(湿基),但世界椰子的产量很大,因而椰子蛋白是来源丰富的植物蛋白质。椰子蛋白含18种氨基酸,必需氨基酸配比合理,L-精氨酸含量较高(14.8g/100g蛋白),前期的研究表明椰子蛋白具有降血脂、降低胆固醇、抑制高血脂症等保健功能。因而,椰子蛋白质是来源丰富、营养价值较高、保健功能较好的优质蛋白质,开发潜力巨大。从上世纪40年代开始,就有科员人员对椰子蛋白的功能特性进行研究。1930年美国科学家Sj?gren和Spychalski从椰子蛋白质中分离出一种分子量约208 kDa的球蛋白,并命名为cocosin。Molina等(1976)曾利用酶解-冷冻真空干燥技术制备了一种不含纤维的椰子浓缩蛋白(coconut protein concentration,CPC),并对其分子量、溶解性、乳化性、起泡性、凝胶性等功能特性进行了分析。郑亚军等(2009)曾从脱脂椰肉中制备椰子分离蛋白(coconut protein isolate,CPI),然后分析了pH、温度、离子强度等因素对椰子分离蛋白溶解性、乳化性、黏度、起泡性、水合性质的影响。Angelia(2012)则从椰子总蛋白质中分离出椰子球蛋白(cocosin),并分析了其氨基酸组成、溶解性、乳化性和起泡性及其在巴斯杀菌、加热等常见加工处理方式中的稳定性。本文将对椰子蛋白各种功能特性的研究进展进行

蛋白质工程及其应用研究进展

蛋白质工程及其应用研究进展 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。 关键词:蛋白质工程特点;研究内容;实际应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。为获得的新蛋白具备有意义的新性质或新功

蛋白质工程的主要研究方法和进展

蛋白质工程的主要研究方法和进展 李 强 施碧红* 罗晓蕾 左祖祯 邢佩佩 刘 璐 (福建师范大学生命科学学院,福建福州 350108) 摘 要:蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词:蛋白质工程;定点诱变;定向进化 中图分类号 Q816 文献标识码 A 文章编号 1007-7731(2009)05-47-02 Advances in The Techni q ues of P rotein Engineering L i Q iang et al (Co llege o f L ife Sc iences,Fu jian N or m a lU n i versity,Fuzhou350108,Chi na) Ab strac t:P ro tein eng ineer i ng is a techn i que used to i m prove prote i n m o l ecular In th i s paper,seve ra l m ethods and t he ir pr i nci p les and their advantag es f o r m olecu lar m odifica ti on have been rev ie w ed K ey words:P rote i n eng i neer i ng;site-d i rected m utag enesis;d irected evoluti on 20世纪70年代以来,对蛋白质的分子改造渐渐进入研究领域,通过对蛋白质分子进行突变,得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1 理性进化 理性进化主要是利用定点诱变技术,通过在已知D NA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。M arkus Rot h通过同源性比对和定点突变技术,对E c o R DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍[1]。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键,Cahoo 通过定点突变研究,发现将五个氨基酸残基置换之后的酶,由 6-16:0-ACP脱氢酶变成 9-18:0-ACP脱氢酶[2]。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacill us stear other m oph il us分离出来的嗜热菌蛋白酶突变,得到的突变体稳定性提高了8倍,100在变性剂存在的情况下还能发挥作用[3],但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构,从而造成很大的影响[4],所以在定点突变的基础上又出现了许多新的技术,用于改造蛋白质分子。 2 非理性进化 非理性蛋白质进化,又称定向进化或者体外分子进化,在实验室中模拟自然进化过程,利用分子生物学手段在分子水平增加分子多样性,结合高通量筛选技术,使在自然界中需要千百万年才能完成的进化过程大大缩短,在短期内得到理想的变异。这种方法不用事先了解蛋白质结构、催化位点等性质,而是人为地制造进化条件,在体外对酶的编码基因进行改造,定向筛选,获得具有预期特征的改良酶,在一定程度上弥补了定点诱变技术的不足,具有很大的实际应用价值。一个比较成功应用定向进化的例子是对红色荧光蛋白的改造。绿色荧光蛋白由于本身独特的发光性质,被应用到细胞生物学当中,作为体内原位跟踪蛋白质的一个极其有效的工具。D i sc oso m a红色荧光蛋白(Ds R ed)在荧光共振能量转移技术(fl uoresce nce resonance e ner gy tr ansfer)中可以和绿色荧光蛋白一起作用,作为研究两种蛋白质相互作用的有效工具,但是野生型的D s Red由于显色速率较慢,而且稳定性较差,B r oo ke B evi s建立随机突变文库,在103-105个转化子中筛选到了大大提高显色效率的突变体,使显色效率提高了10-15倍[5-6]。 易错PCR是利用DNA聚合酶不具有3!-5!校对功能的性质,在PCR扩增待进化酶基因的反应中,使用低保真度的聚合酶,改变四种d NTP的比例,加入锰离子并增加镁离子的浓度,使DNA聚合酶以较低的比率向目的基因中随机引入突变,并构建突变库。M oor e等对鼠伤寒沙门菌Sal m onella t yph m i uri u m产生的门冬氨酰二肽酶(asp art yld i pepti dase)进行改良,经两次易错PCR引入随机突变,并结合D NA改组和正向选择筛选,得到的pepEm3074突变株,其酶活力比野生菌提高47倍[7]。 D NA改组(DNA shuffli ng)技术克服了随机突变的随机性较大的限制,能够直接将多条基因的有利突变直接重组到一起,它的原理是使用D N ase?酶切或超声波断裂多条具有一定同源关系的蛋白编码基因,这些小片段随机出现部分片段的重叠,产生的片段在不加引物的情况下进行几轮PCR,通过随机的自身引导或在组装PCR过程中重 47 安徽农学通报,Anhu iAgri Sci Bu ll 2009,15(5) 作者简介:李强(1983-),男,辽宁抚顺人,硕士研究生,研究方向:分子遗传育种。*通讯作者 收稿日期:2009-01-15

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.sodocs.net/doc/7116361618.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

蛋白质结构解析研究进展作业

《蛋白质结构解析研究进展》 一、蛋白质结构分类 人类对于进化的认识及蛋白质结构相似性比较的研究使蛋白质结构分类成为可能,而且近年来取得的研究进展表明,大部分蛋白质可以成功的分入到适当数目的家族中。目前国际上流行的蛋白质结构分类数据库基本上采取两种不同的思路,一种是数据库中储存所有结构两两比较的结果;第二种思路是致力于构建非常正式的分类体系。由于所有分类方法反映了各研究小组在探究这个重要领域的不同角度,所以这些方法是同等有效的。目前,被广泛应用的四种分类标准是:手工构造的层次分类数据库SCOP,全自动分类的MMDB和FSSP,和半手工半自动的CATH。 蛋白质结构自动分类问题可以被纳入机器学习的范畴,通过提取分析蛋白质结构的关键特征,构造算法来学习蕴含于大量已知结构和分类的数据中的专家经验知识,来实现对未知蛋白质结构的分类预测。目前,对蛋白质结构的不同层次分类,结果比较好的机器学习方法是:神经网络多层感知器、支持向量机和隐马尔可夫模型。支持向量机应用于分类问题最终归结于求解一个最优化问题。上世纪90 年代中期,隐马尔可夫模型与其他机器学习技术结合,高效地用于多重比对、数据挖掘和分类、结构分析和模式发现。多层感知器即误差反向传播神经网络,它是在各种人工神经网络模型中,在机器学习中应用最多且最成功的采用BP学习算法的分类器。 二、蛋白质结构的确定 蛋白质三维空间结构测定方法主要包括X射线晶体学分析、核磁共振波谱学技术和三维电镜重构,这三种方法都可以完整独立地在原子分辨水平上测定出蛋白质的三维空间结构。蛋白质数据库PDB中80%的蛋白质结构是由X射线衍射分析得到的,约15%的蛋白质结构是由核磁共振波谱学这种新的结构测定方法得到。 1、X射线晶体学

MCPIP 1蛋白质结构、功能的研究进展

MCPIP 1蛋白质结构、功能的研究进展 摘要 ZC3H12A是免疫系统中的一个重要基因,其编码的蛋白质ZC3H12A/MCPIP 1在免疫相关疾病,尤其是自身免疫病和炎症反应中发挥重要的抑制效应。ZC3H12A的表达能够被多种炎症相关细胞因子所诱导。近来的研究报道,MCPIP 1具有转录因子、RNA酶、去泛素化酶等作用,其在调控基因转录、mRNA降解、多聚泛素链的去除、细胞凋亡、细胞自噬、炎症抑制、细胞分化、血管生成等方面都有重要作用。基因敲除小鼠患有严重的高免疫球蛋白血症、淋巴结肿大、浆细胞和记忆细胞的积聚及自身抗体的大量产生等免疫功能紊乱疾病。 本文较为系统地阐述了ZC3H12A基因的克隆、MCPIP 1蛋白的结构及功能,从时间的维度观其主要研究历程,以及对免疫系统的重要影响。大体上浅析了MCPIP 1从其发现至今的探索情况。 【关键词】ZC3H12A Zc3h12a MCPIP 1 RNA酶凋亡去泛素化酶

1 简介 ZC3H12A/MCPIP是一种锌指蛋白。它的全名是具有CCCH锌指结构域的蛋白质12A(Zinc finger CCCH domain-containing protein 12A),简称ZC3H12A[1],又称MCP-1诱导蛋白(MCP1-induced protein,MCPIP 1)[2]。MPCIP的编码基因是ZC3H12A,它属于ZC3H12基因家族,该家族中共有4个成员,分别编号为ZC3H12A、ZC3H12B、ZC3H12C、ZC3H12D[1]。此家族保守性很强,在很多物种(包括果蝇、秀丽线虫、小鼠和大鼠等)中都有发现其同源序列[1]。MCPIP 1最初被发现于经MCP-1处理的人外周血单核细胞中[2],而后又在经IL-1β刺激的人单核细胞来源的巨噬细胞中被发现[3]。在TNF、MCP-1、IL-1β或LPS等细胞因子的作用下,该基因的转录水平被显著激活[1, 2, 3, 4, 5, 6]。同时,具有CCCH锌指结构的蛋白质在巨噬细胞相关的器官(如胸腺、脾脏、肺、小肠和脂肪组织等)中表达水平很高[6]。对于Zc3h12a基因敲除小鼠的表型分析表明[4, 7],该基因的缺陷与自身免疫疾病的发生相关,在炎症相关的生理和病理过程中具有重要意义。 克隆发现 该基因的发现 单核细胞趋化蛋白质1(monocyte chemoattractant protein-1,MCP-1),它能够招募并激活单核/巨噬细胞,是使单核/巨噬细胞迁移的主要趋化因子。MCP-1与靶细胞膜上的CCR2结合,启动了一系列的信号通路,导致单核/巨噬细胞向MCP1高浓度处趋化性迁移[8,9]。用MCP-1刺激人外周血单核细胞后,提取细胞内的总mRNA。将测序结果与基因注释数据库中的数据进行序列比对后发现了一些未被注释的基因。其中表达差异最显著的一个基因是目前未知功能的基因,在EST数据库中查找到了与之相对应的序列,同时在GeneBank 数据库中查找到了对应的人cDNA克隆。(GeneBank序列号AW206332)研究者将它命名为人MCP1诱导蛋白(MCP-induced protein,MCPIP 1)[2]。 对蛋白质序列分析发现,MCPIP 1有599个氨基酸,分子质量约为65.8kD,有两个脯氨酸富集区,一个核定位序列,和一个CCCH锌指结构域[2]。而后发现其序列中还存在一个PIN结构域[4]和一个泛素结合结构域[7]。由于该蛋白质具有CCCH锌指结构域,因而被命名为具有CCCH锌指结构域的蛋白质12a(ZC3H12A)[1]。序列比对发现,人MCPIP 1与小鼠中的同源蛋白质的氨基酸组成有82%的相似度,cDNA的核苷酸序列组成有80%的相似度[2]。 该基因家族的发现

蛋白质工程的基本原理蛋白质工程的研究与进展

蛋白质工程的基本原理蛋白质工程的研究与进展 蛋白质工程的研究与进展摘要: 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。蛋白质工程开创了按照人类意愿改造、创造符合人类需要的蛋白质的新时期。它所取得的进展向人们展示出诱人的前景。 关键词:蛋白质工程;研究;进展;蛋白质工程汇集了当代分子生物学等学科的一些前沿领域的最新成就,它把核酸与蛋白质结合、蛋白质空间结构与生物功能结合起来研究。蛋白质工程将蛋白质与酶的研究推进到崭新的时代,为蛋白质和酶在工业、农业和医药方面的应用开拓了诱人的前景。 1、蛋白质工程 1.1蛋白质工程的定义所谓蛋白质工程,就是利用基因工程手段,包括基因的定点突变和基因表达对蛋白质进行改造,以期获得性质和功能更加完善的蛋白质分子。 1.2蛋白质工程的由来蛋白质工程是在基因工程冲击下应运而生的。基因工程的研究与开发是以遗传基因,即脱氧核糖核酸为内容的。这种生物大分子的研究与开发诱发了另一个生物大分子蛋白质的研究与开发。这就是蛋白质工程的由来。它是以蛋白质的结构及其功能为基础,通过基因修饰和基因合成对现存蛋白质加以改造,组建成新型蛋白质的现代生物技术。这种新型蛋白质必须是更符合

人类的需要。因此,有学者称,蛋白质工程是第二代基因工程。其基本实施目标是运用基因工程的DNA重组技术,将克隆后的基因编码加以改造,或者人工组装成新的基因,再将上述基因通过载体引入挑选的宿主系统内进行表达,从而产生符合人类设计需要的“突变型”蛋白质分子。这种蛋白质分子只有表达了人类需要的性状,才算是实现了蛋白质工程的目标。 1.3蛋白质工程的原理由于基因工程的发展,人们已经可以运用基因重组等理论和方法去设计并制造出预想的各种性能的蛋白质。这种改变蛋白质的操作可以在蛋白质水平上,也可以在基因水平上。如基因水平的改变,是在功能基因开发的基础上,对编码蛋白质的基因进行改造,小到可改变一个核苷酸,大到可以加入或消除某一结构的编码序列。蛋白质水平的改变则主要是对制造出的蛋白质进行加工、修饰,如磷酸化、糖基化等。蛋白质的化学修饰条件剧烈,无专一性,而基因操作则比较方便,在实施基因操作时,必须预先知道是哪个氨基酸或哪几个氨基酸影响着蛋白质的性状。就现代生物技术发展水平看,大量新蛋白质通过检测,来确定改变的蛋白质是否具有预期的性状,技术上已是可行的。 1.4蛋白质工程的基本途径目前,在蛋白质工程中最常采用的技术是定点诱变技术,即在特定的位点改变基因上核苷酸的种类,从而达到改变蛋白质性状的目的。蛋白质工程发展至当代,利用专一改

食品蛋白质功能研究进展

食品蛋白质功能研究进展 摘要:食品蛋白质功能是指在食品加工,保藏,制备和消费期间影响蛋白质在食品体系中的性能的那些蛋白质的物理和化学性质。对国内外关于食品蛋白质功能研究进行了综述,为未来研究食品蛋白质功能性质的应用提供参考。 关键词:食品蛋白质功能,物理性质,化学性质,研究进展 前言: 食品的感官品质是由各种食品原料复杂的相互作用产生的。例如蛋糕的风味、质地、颜色和形态等性质,是由原料的热胶凝性,起泡、吸水作用、乳化作用、粘弹性和褐变等多种功能性组合的结果。因此,一种蛋白质作为蛋糕或其他类似产品的配料使用时,必须具有多种功能特性。动物蛋白,例如乳(酪蛋白)、蛋和肉蛋白等,是几种蛋白质的混合物,它们有着较宽范围的物理和化学性质,及多种功能特性,例如蛋清具有持水性、胶凝性、粘合性、乳化性、起泡性和热凝结等作用,现已广泛地用作许多食品的配料,蛋清的这些功能来自复杂的蛋白质组成及它们之间的相互作用,这些蛋白质成分包括卵清蛋白、伴清蛋白、卵粘蛋白、溶菌酶和其他清蛋白。然而植物蛋白(例如大豆和其他豆类及油料种子蛋白等);和乳清蛋白等其他蛋白质,虽然它们也是由多种类型的蛋白质组成,但是它们的功能特性不如动物蛋白,目前只是在有限量的普通食品中使用,因为并没有完全了解,哪些蛋白质的分子决定了蛋白质在食品中所具有的各种期望的功能性质,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1、蛋白质的功能性质 蛋白质的功能性质,通常是指蛋白质的水化性、戳着性、胶凝作用、乳化性、发性等。 (1)蛋白质的水化性蛋白质的水化取决子蛋白质与水的相互作用,包括水的吸收 与保留、湿润性、溶胀、戳着性、分散性、溶解度和强度等。 蛋白质的水化是通过蛋白质的败键和氨基酸侧链与水分子间的相互作用而实现的,见 图(1) 大多数的食品是蛋白质水化的固态体系,蛋白质中水的存在及存在方式直接影响着食骏的质构和口感。干燥的蛋白质原料并不能直接加工,须先将其水化。干燥蛋白质遇

蛋白质组学的研究进展及应用

《蛋白质工程》 (课程论文)题目名称:蛋白质组学技术的研究进展及应用 所在学院:生命科学与技术学院 专业(班级):生技131班 学生姓名:梁健 授课教师:韩晓菲

蛋白质组学技术的研究进展及应用 生技131班梁健13772025 摘要:随着人类基因组计划全部测序的初步完成,研究重点转到对基因功能的研究上。蛋白质作为基因功能的主要体现者,对其表达模式和功能的研究成为热点,出现了蛋白质组学。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。关键词:蛋白质组学;进展;应用 蛋白质组学(proteomics)是产生于20世纪90年代中期的一门新兴学科,以 细胞内全部蛋白质的存在及其活动方式为研究对象,是后基因组时代生命科学研究的核心内容。蛋白质组学的产生与发展经历了一个漫长的过程,在这个过程中,研究者不断修正蛋白质组学的发展方向和推进蛋白质组学相关支撑技术的快速 发展,进而拓展蛋白质组学在整个生命科学和生物医学研究中的应用,成为后基因组时代重要的研究新领域,并成功地应用到基础研究及医学研究等各个领域,推进其迅速发展。 1 蛋白质组学的概念及研究内容 1.1蛋白质组学的概念 蛋白质组(proteome)源于protein和genome两词的杂合,最早是由澳大利亚 的WILKINS等于1995年提出,其定义为“一种基因组所表达的全部蛋白质”。早期相对狭义的蛋白质组的概念是指在某一特定的时间和空间条件下,1个细胞的基因组所表达的蛋白质数目的总和。随着研究的深入,人们提出了广义的蛋白质组的概念,用来描述1个细胞、组织、器官或1个物种的生命个体,在其不同的生存及发育条件下所表达的各种蛋白数目的总和。所以蛋白质组所含的蛋白数目及其表达量是随着时间和空间的不同而不断发生变化的。蛋白质组学最有价值的优势是它可以观察在特定的时间下一个完整的蛋白质组或蛋白亚型在某种生理 或病理状态中,发生的相应的变化。 1.2 研究内容 根据研究内容的不同,蛋白质组学可分为差异蛋白质组学(或称表达蛋白质 组学)、结构蛋白质组学和功能蛋白质组学,其中差异蛋白质组学在蛋白质组学 研究中十分常用且应用广泛。差异蛋白质组学主要是研究比较在2种或多种不同条件下蛋白质组表达的差异变化。结构蛋白质组学主要是蛋白质表达模式的研究,包括蛋白质氨基酸序列分析及空间结构的解析。蛋白质表达模式的研究是蛋白质组学研究的基础内容,主要研究特定条件下某一细胞或组织的所有蛋白质的表征问题。功能蛋白质组学主要是蛋白质功能模式的研究,包括蛋白质的功能和蛋白

相关主题