搜档网
当前位置:搜档网 › 中国太阳能硅片线切割设备国产化的现状和趋势(20200831060022)

中国太阳能硅片线切割设备国产化的现状和趋势(20200831060022)

中国太阳能硅片线切割设备国产化的现状和趋势(20200831060022)
中国太阳能硅片线切割设备国产化的现状和趋势(20200831060022)

硅片切割设备的现状和发展趋势

一、光伏产业链

作为硅片上游生产的关键技术,切割的质量与规模直接影响到整个产业链的后续生产,切割过程中需要用到刃料(创业板新大新材的产品)、研磨液、切割机床设备等。

硅片加工工艺流程一般经过晶体生长、切断、外径滚磨、平边、切片、倒角、研磨、腐蚀、抛光、清洗、包装等阶段。近年来光伏发电和半导体行业的迅速发展对硅片的加工提出了更高的要求(图1.1): 一方面为了降低制造成本,硅片趋向大直径化。另一方面要求硅片有极高的平面度精度和极小的表面粗糙度。所有这些要求极大的提高了硅片的加工

难度,由于硅材料具有脆、硬等特点,直径增大造成加工中的翘曲变形,加工精度不易保证。厚度增大、芯片厚度减薄造成了材料磨削量大、效率下降等。

图1.1晶片发展趋势

硅片切片作为硅片加工工艺流程的关键工序,其加工效率和加工质量直接关系到整个硅片生产的全局。对于切片工艺技术的原则要求是:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。

目前,硅片切片有两种加工方法:1、内圆切割;2、自由磨粒的多丝切割,大连连城的产品属于后者。

内圆切割是传统的加工方法(图 1.2a),材料的利用率仅为40%?50%左右;同时,由于结构限制,内圆切割无法加工200mn以上的大中直径硅片。

图1.2内圆切割与多丝切割原理示意图

多丝切割技术是近年来崛起的一项新型硅片切割技术,它通过金属丝带动碳化硅研磨料进行研磨加工来切割硅片(图 1.2b )。和传统的内圆切割相比,多丝切割具有切割效率高、材料损耗小、成本降低(例如日进NWS6X型6”多丝切割加工07年较内圆切割每片省15元)、硅片表面质量高、可切割大尺寸材料、方便后续加工等特点(见表1.1)o

表1.1 :内圆切割与多丝切割的对比

多线切割的基本原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而将硅棒等硬脆材料一次同时切割为数千片薄片的一种切割加工方法。多线切割由于其更高效、更小切割损失以及更高精度的优势,对于切割贵重、超硬材料有着巨大的优势。

作为一种先进的切割技术,多丝切割已经逐渐取代传统的内圆切割成为目前硅片切片加工的主要切割方式,目前,瑞士HCT公司,Meyert Burger(梅耶博格)公司,日本Takatori (高鸟)等少数着名制造厂商先后掌握了该项关键技术,并推出了相应的多丝切割机床产品,尤其是大尺寸的切割设备。

在2003年以前,多线切割主要满足于半导体行业的需求,切割技术主要掌握在欧、美、日、台等国家和地区,国内半导体业务以封装业务为主,上游的晶圆切割技术远远落后于发达国家和地区,相关的设备制造研发也难有进展。

2003 年随着太阳能光伏行业的爆发式增长,国内民营企业的硅片切割业务迅速发展起来。大量引进了瑞士和日本产的先进的数控多线切割设备。国内设备制造企业也看到了这个巨大的商机,纷纷投入资金和人力物力进行技术研发。但大多数都是仍以仿制为主。

2009 年开始有一些厂家开始尝试将在其他行业比如蓝宝石切割使用的金钢线切割技术引入到硅片切割领域来。

目前全球的多线切割设备主要为瑞士的HCT Meyer Burger(梅耶博格)和日本的NTC

所统治。瑞士的HCT梅耶博格最早在上世纪80年代就推出了线切割机,主要为半导体行业所用。

HCT简介:

HCT在1983年推出第一台线切割机后14年里才累计卖出了100台设备,在随后的6 年里又累计卖出了150台。太阳能光伏市场在2003年启动以后,HCT针对市场需要在2005 年推出了世

界上最大的太阳能硅片线切割机B5o而HCT在2006年里一年的销售量就突破

了100台。HCT在2007年被美国的应用材料收购。

HCT在2000年进入中国市场,主要的客户来自半导体行业的包括北京有研、济宁港湾、宁波晶元等。HCT在太阳能行业应用的主流机型是B5,双工作台4个导轮满载可以一次切割硅棒长达到2米,非常适合大规模生产。国内主要用户包括LDK保定英利、成都天威新能源、浙江昱辉、江阴海润等公司。

针对市场新的需求和变化,在2009年推出了新机型MaxEdge B6主要特点是将原有的一个线网拆分为 2 个独立控制的线网,这样有助于使用更细的切割线从而提高出片率降低生产成本。但是目前该设备还处于推广阶段,工艺还有待进一步成熟。

梅耶博格简介:

成立于1953年,早期主要生产研发外圆和内圆切割机。在 1 980年启动线切割技术的研究,1991 年正式推出了第一台线切割机DS260。2000年推出了针对太阳能光伏市场需求的双工作台4导轮的DS262机型,该机型理论上切割负载可以达到2米,但实际上根据国内客户的使用情况反馈,DS262并不是一个非常成功的机型,一般切割负载在 1.2米左右

比较合适,切割硅片的合格率相比较低。

根据市场的变化,梅耶博格在2004年推出了小型机DS265该机型只有一个工作台可以同时切割2个300毫米长的硅棒。和NTC MWM442D型非常的类似。该设备在国内使用的客户较少,客户反映设备稳定性不够,维护费用过高。

梅耶博格在2005年推出了最为成功的单工作台的新机型DS264该机型可以切割一根棒长达820 毫米的硅棒,针对多晶硅片市场比例迅速的提高情况下,非常好的满足了市场新的需求。国内主要用户包括浙江昱辉、常州天合、镇江辉煌/环太、LDK江苏林洋、无

锡高佳等。在2009年又针对市场的变化推出了DS264的升级型DS271,切割单根负载可以增加到1020毫米。目前该机型国内主要有镇江辉煌和无锡高佳在使用,切割效果和DS264 差不多。

NTC简介:

1984 年由富山机械和日平工业和并成立NTC。

上世纪90年代推出了针对半导体行业的MW系列线切割机

2008 年被小松收购,改名为Komatsu NTC

NTC最为畅销的机型是MWM442D由于其投资小、维护费用低、适合使用细直径切割钢丝,深受国内很多新进入切片领域小公司的欢迎。在2003年后受光伏行业的飞速发展刺激,NTC 在中国的销售量快速增长,尤其在2008年取得了400多台线切割机的销售量,即使在

收经济危机影响的2009年也卖出了300 多台各类型的线切割机。在国内的主要用户晶龙集

团、江苏顺达、江阴海润、西安隆基、浙江昱辉、江西晶科等。受多晶硅片市场发展影响,于2008年推出了新的设备类型单工作台面的PV600和PV80Q这些设备借鉴了梅耶博格

DS264的设计理念,切割最大负载棒长分别达到630毫米(3根210毫米,单根棒最大负载600毫米)和840 毫米(4 根210毫米,单根棒最大负载800毫米)。这些设备非常好的适应的多晶硅片的生产技术发展趋势。

线切割设备国产化开发的第一个高潮随着中国光伏产业以令全世界震惊的讯速崛起,国外三大多线切割设备厂家的设备生产能力远远不能满足中国硅片加工企业的购买需求,在2008年市场火热的设备交货期最少

半年以上,有的甚至一年以上。于是很多相关的设备制造企业纷纷介入,比如日本的高鸟、安永专门推出了针对太阳能硅片切割的机型。

国内最早从事太阳能多线切割机开发的为上海日进。上海日进引进日本技术,早在2006 年就推出了第一台多线切割样机,样机类似NTC MWM44。^样机在日进内部切割试验结果

良好,切除的硅片质量完全合格。但是在客户实际试用的时候,还是遇到了很多的问题,比如成品率低、断线率高、设备的控制精度比国外进口设备要差。

国内陆陆续续推出多线切割样机的厂家还有上海汉虹、电子集团45所、兰州瑞德、无

锡开源、大连连城、北京京联发、湖南宇晶等。

从样机来看,技术原理和设计主要都是借鉴了日本NTC MWM442机型的很多理念,样

机基本都属于小型机。北京京联发尝试开发类似HCTB5机型的样机,但是在市场上没有看

到试用的设备。国内目前开发出的多线切割机样机都面临着类似的问题,成品率低、断线率高、控制精度差等。加上硅料价格高昂,客户尝试新机器的成本非常高,每次的损失可能动则几万元到几十万元,这也限制了设备制造企业很难获得更多的生产性试验数据来改进设备。

湖南宇晶在2006年左右开始研制多线切割机,主要针对水晶切割市场。经过几年的实验和改进后,目前在国内也已经销售出了几十台多线切割机,取得了长足的进步。但是该公司还没有开发出适应太阳能硅片切割的多线切割机。

线切割设备国产化意外的收获——开方机虽然国内很多厂家在多线切割机的开发上投入了很大的人力、物力,但是实际进展却并不如人意。

在2008年PV行业爆发式增长之际,不仅多线切割机交货期大大延长,连硅锭开方机

也变得非常紧张。由于开方机使用的钢丝直径较粗,一般250微米到300微米,较切片常

用的直径120微米的钢丝不容易发生断丝。另外,开方完成后,一般还要对硅锭打磨。因此对切

割的精度要求比硅片大大降低。

国内厂家中上海日进首先抓住了这个机遇,目前已经在国内市场有了不错的销售业绩。另一家大连连城的开方机也于2009年取得重大突破,在2010年有望取得不错的销售业绩。2010年更多国内企业有望在线开方设备制造取得突破。

目前国内主要晶硅片制造企业产能及扩产计划如下表:

2009年以来多晶硅价格下降,降低了单位发电成本,光伏发电并网应用有望实现:

受全球金融危机和多晶硅供求关系的影响,至2009年末,国际市场多晶硅价格由2008 年上半年的460美元/千克下跌至目前60美元/千克左右,多晶硅价格的下跌将带动晶体硅太阳能电池生产成本的下降,从而降低单位太阳能发电量的成本。在欧洲电价高、日照时间长的地区比如意大利南部、西班牙等,光伏的发电成本已经低于上网电价。太阳能光伏发电安装在这些地域将迎来爆炸式的增长。

多晶硅价格下降将使目前基于补贴的太阳能项目发电成本下降,使太阳能与风能、天然气等能源比较有较强的竞争力。2005年以前,我国太阳能发电成本约为40元/千瓦时左右,国家补贴方面难以承受。随着国内洛阳中硅高科技有限公司、四川新光硅业科技有限责任公司、峨嵋半导体材料厂、江苏顺大半导体发展有限公司、江西赛维LDK太阳能高

科技公司、大全集团有限公司等6家主导企业新增多晶硅产能的投产,多晶硅价格有望进一步下跌,太阳能发电成本可降低至 2.5元/千瓦时。2009年1月,包括无锡尚德、江西赛维LDK常州天合、江苏林洋等在内的太阳能电池生产企业将“1元/千瓦时”太阳能发

电成本的方案上交给科技部。该方案预测,2012年实现太阳能发电成本降至1元/千瓦时完全可行,之前预测的3?5年达到1元/千瓦时的太阳能发电成本有望在两年后即可实现。

按照最新的市场预测,中国2-3年后,或者在2015年前,光伏发电成本将逐步降低接近目前的风力发电成本,0.5-0.6元/度电,到那时,中国的光伏安装将迎来爆炸式增长。国内光伏企业在制造环节的成本优势将获得空前的发展机遇,尤其是硅片切割环节。随着更多更有实力的国有企业进入到这个行业,更多的人力、物力投入,更多的经验积累,以及大大降低的实验成本,中国的线切割设备将步入新一轮增长周期。

科技成果——太阳能硅片电磨削多线切割技术及装备

科技成果——太阳能硅片电磨削多线切割技术及装备 技术开发单位南京航空航天大学 技术简介 太阳能硅片多线切割机是一种大型、复杂、精密的核心光伏制造装备,长期依赖进口。目前,国外已能采用多线切割的方法生产出面积较大而又较薄的硅片(300mm×300mm),但由于仍属于非刚性切割,在切割过程中切割线必然产生变形从而不断产生瞬间的冲击作用,要使目前的大尺寸硅片厚度和切割损耗进一步降低,实现低成本高效切割,技术难度相当大。 因此针对现阶段国内外晶硅太阳能电池的制造技术瓶颈,寻求解决降低成本和提高光电转换效率的有效方法和途径,2009年,技术开发单位基于硅片磨削/电解多线切割原理,发明一种低宏观切削力、少机械损伤的太阳能硅片电磨削多线切割新方法。 从太阳能级晶硅表面能带结构、载流子扩散方式及磨料滚动切割特性入手,掌握了硅片的机械磨削复合微区电化学钝化(或腐蚀)材料去除和绒面形成机制,建立了全新的太阳能硅片高效低成本加工体系。采用较低电导率的水性切削液,外加低压连续(或脉冲)直流电源,基于机械磨削和电解复合加工原理,降低宏观切削力,实现大尺寸超薄硅片的磨削/电解复合多线切割,从而满足光伏产业的生产工艺需求。 目前采用该技术较传统游离磨料多线切割效率提高一倍以上,与固结磨料多线切割效率相当,且表面完整性优于单独采用游离(或固

结)磨料的传统多线切割方法;采用常规制作工艺,研制成功的太阳能多晶硅电池片平均光电转换效率达到17.5%。 为应用与推广上述技术,已在现有主流游离磨料多线切割设备上进行工艺验证和参数优化,并与国内外耗材厂家合作,开展相关的耗材如切割线、磨料使用等关键工艺技术的研发,为高效低成本太阳能硅片的规模化生产奠定坚实的基础。 该项目实施后,与现有多线切割技术相比,切割线、磨料及切削液等耗材成本将降低20%以上;此外,将为国产新型多线切割设备的研制及国内现有近8000台进口多线切割设备的升级换代提供借鉴经验。 技术指标 针对太阳能电池市场现状,以8寸多晶硅片(电阻率0.5-5Ω·cm)为例,拟达到的主要技术指标如下: 切片厚度:190±15μm 硅片总厚度误差:<20μm 切缝宽度:小于180μm 切割速度:大于0.5mm/min 良品率:提高5%以上 光电转换效率:提高0.3-0.5% 技术特点 (1)加工原理的创新 在现有多线切割技术基础上,发明了一种硅片的磨削/电解复合

太阳能EL检测仪是如何实现电池片缺陷检测的

太阳能EL检测仪是如何实现电池片缺陷检测的? EL检测仪,又称场致发光测试,是跟据硅材料的电致发光原理对组件进行缺陷检测及生产工艺监控的专用测试设备。利用红外测试方式对电池片组件进行测试,达到EL成像模式,从而可以查看是否有电池片组件内部有电池片破裂、隐裂、黑心片、烧结断栅严重、虚焊、脱焊等情况再进入下道工序,因为通电发的光与PN结中离子浓度有很大的关系,也因此可以根据EL的电脑反映出来的图像来判断硅片内部的是否异常。从而保证太阳能电池组件的质量。 然而硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低以及电池组件发电效率。太阳能电池片的是否有缺陷需要通过EL缺陷检测仪来判断,这样一道检测和分选的工序可以大大减少市面上不良太阳能电池片的流通和销售,从而较小层面的降低组件功率受损。因此对太阳能电池硅片质量检测在生产和实验中显得尤为重要。 我们日常所能用得到的太阳能电池硅片有单晶硅片和多晶硅片,硅片在生产过程中由于制作条件的随机性,生产出来的电池性能不尽相同或多或少地存在一些缺陷。多晶硅片常见的缺陷有边缘不纯、位错缺陷,单晶硅片常见的缺陷有漩涡缺陷。硅片缺陷的存在会极大地降低电池片的发电效率,减少电池组件的使用寿命,甚至影响光伏发电系统的稳定性。为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,从而生产出质量合格的电池组件。 日常实验和应用中,我们较常用的电池硅片缺陷检测就是采用EL缺陷检测仪。EL缺陷检测仪通过1-1.5倍Isc的电流后硅片会发出1000-1100nm的红外光对太阳能电池硅片进行缺陷检测,那么太阳能电池硅片会有哪几种缺陷情况存在呢?跟着小编一起往下看: 缺陷种类一:黑心片 通过EL照片反映出的黑心片主要形成原因是该区域没有1150红外光发出,故导致红外相片中反映出黑心片的效果图。这种黑心片的形成是由于其中心部位的电阻率偏高。和它硅衬底少数载流子浓度有关。 缺陷种类二:黑团片 在生产过程中,由于硅片厂家一再在强调缩短晶体定向凝固时间,熔体潜热释放与热场温度梯度失配,晶体生长速率加快,过大的热应力导致硅片内部位错缺陷。 缺陷种类三:短路黑片(非短路黑片) 组件单串焊接过程中造成的短路;组件层压前,混入了低效电池片造成的后果形成的短路黑片;而边缘发亮的黑片我们称之为非短路黑片,它主要是由于硅片使用上错用N型片,造成PN结反,短路的电池片不能对外提供功率,输出功率和IV测试曲线也随之降低。造成整个组件功率和填充因子受影响。 缺陷种类四:断栅片

太阳能电池硅片缺陷检测

硅片缺陷自动检测仪 中科院上海光机所研制成功“硅片缺陷自动检测仪”样机(图1),灵敏度优于180纳米(图2),检测速度30片/小时(8英寸硅片),拥有6项专利(3项发明),具有自主知识产权。该类型设备市场非常大,目前我国完全依赖进口,单台价格达千万元人民币以上。该样机研制成功,对于改变我国IC专用检测设备长期依赖进口局面、研制和开发国产化设备取得重要进展。该技术还可用于检测卫星用太阳能电池帆板碎片(图3)以及光学元件表面疵病。 An Automated Wafer Defects Detection System An automated wafer defects detection system has been developed in Shanghai Institute of Optics and Fine Mechanics, CAS. The photograph of this detector is shown in figure 1. The apparatus can detect defects of size of 180nm on wafer surface, with velocity of 30 pieces per hour for 8 inch wafer. The oscilloscope signal is shown in figure 2. This type of detecting apparatus will have large demand in China in future. It entirely depends on importing now and its unit price outvalues ten millions yuan. Therefore, the successful development of this detecting apparatus (having 6 Chinese patents) is very important to change the situation of depending on importing and manufacture home-made products. This detecting technology can also be used to detect flaws on surfaces of solar cell array and large-caliber optical elements. The oscilloscope signal of detecting solar cell array is shown in figure 3.

太阳能电池及硅切片技术

太阳能电池简介 太阳能电池根据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转化效率最高,技术也最为成熟,理想转化效率略大于30%,在实验室最高的转化效率为23%,最近实验室转化效率可以达到24.7%,常规地面用商业用直拉单晶硅太阳能电池转化效率可达到18%,期望不久可以达到20%以上。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,弱光特性较差,生产工艺复杂,大幅度降低其成本很困难,为了降低成本,发展多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为16%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。(2)多元化合物薄膜太阳能电池 多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。 砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs 电池的普及。 铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 (3)聚合物多层修饰电极型太阳能电池

太阳能硅片多线切割技术详解

硅片是半导体和光伏领域的主要生产材料。硅片多线切割技术是目前世界上比较先进的硅片加工技术,它不同于传统的刀锯片、砂轮片等切割方式,也不同于先进的激光切割和内圆切割,它的原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而达到切割效果。在整个过程中,钢线通过十几个导线轮的引导,在主线辊上形成一张线网,而待加工工件通过工作台的下降实现工件的进给。硅片多线切割技术与其他技术相比有:效率高,产能高,精度高等优点。是目前采用最广泛的硅片切割技术。 多线切割技术是硅加工行业、太阳能光伏行业内的标志性革新,它替代了原有的内圆切割设备,所切晶片与内圆切片工艺相比具有弯曲度(BOW)、翘曲度(WARP)小,平行度(TAPER)好,总厚度公差(TTA)离散性小,刃口切割损耗小,表面损伤层浅,晶片表面粗糙度小等等诸多优点。 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。

红外热像仪检测太阳能电池综合缺陷

红外热像仪检测太阳能电池综合缺陷 仪器设备:NEC H2640 一、背景应用 石油、天然气、煤炭等矿产资源随着社会经济的发展变得越来越稀缺。与此同时产生的 粉尘、CO2、SO2 对环境、大气造成严重的破坏。因而寻找新的洁净能源改善现有能源架构就非常重要和紧迫了。 图1 调查研究表明,地球上每年蕴含的太阳能、地热能、风能、潮汐能、水能分别如下图所示。人类都已经开始开发应用。 图2 从蕴能的角度看,太阳能无异是最丰富,最易开发利用的资源。太阳能热水器已经广泛 的应用到地球回归线以内的广大地区,而太阳能发电也正蓬勃的发展起来,有利于解决地球能源不足和温室效应的问题。但是太阳能发电也存在转换效率低,生产成本高,生产工艺复杂等诸多因素困扰。今天我们就是要针对太阳能电池片和组件综合缺陷检测给出红外检测方案。 二、太阳能电池系统生产及检测 太阳能电池生产过程如下图所示,在组装环节,我们使用电池片PV Cell 焊接、层压成 为组件Modules。

图3 在出厂前需要进行电池组件缺陷进行测试,现在主要使用的方法有1、电池板电性能测 试;2、EL 隐裂可视化检测;3、层压后红外检测。我们主要介绍红外检测电池板综合缺陷。当太阳能电池板通反向电流时,电池板会发热,电池板缺陷部分阻抗比较大,所以发热量也大,我们就是通过红外热像仪观察电池板的热区和冷区来。通常情况下正常区域面积较大,过热区域是太阳能电池板的缺陷所在,过冷区域是太阳能电池板的短路区域。因而过热和过冷都是有问题的。 三、案例应用 下面以太阳能电池组件综合缺陷红外热成像检测为例进行说明,检测在暗房内进行,以避免太阳光的干扰。首先选择有电性能缺陷的单片电池片做实验,单片电池片表面为硅材料,没有层压玻璃薄膜。使用恒流电流源对电池片接通反向1A 电流,电池片逐渐升温,其中缺陷部位升温较快,当电池片的整体温度达到40℃时,缺陷部位的温度已经达到60℃左右。如图4 所示,电池片右上方区域存在过热区域。 图4 在对几组电池片完成实验后我们将恒流电流源反向接通到太阳能电池组件上,电流大小 9A。从红外热像仪观察,组件升温缓慢,但是仍然出现了热区和冷区,出现缺陷的位置与客户划定的缺陷区域吻合。下图5 是组件的检测。电池组件存在过热和过冷区域,该电池存在缺陷并有部分短路。

单晶硅中可能出现的各种缺陷分析

单晶硅中可能出现的各种缺陷分析 缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷: 点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。 线缺陷:线缺陷指二维尺度很小而们可以通过电镜等来对其进行观测。 面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。我们可以用光学显微镜观察面缺陷。 体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。 一、点缺陷 点缺陷包括空位、间隙原子和微缺陷等。 1、空位、间隙原子 点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。 1.1热点缺陷 其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。单晶中空位和间隙原子在热平衡时的浓度与温度有关。温度愈高,平衡浓度愈大。高温生长

的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。间隙原子和空位目前尚无法观察。 1.2杂质点缺陷 A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子 B、间隙杂质点缺陷,如硅晶体中的氧等 1.3点缺陷之间相互作用 一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。 2、微缺陷 2.1产生原因 如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。 2.2微缺陷观察方法 1)择优化学腐蚀: 择优化学腐蚀后在横断面上呈均匀分布或组成各种形态的宏观漩涡花纹(漩涡缺陷)。宏观上,为一系列同心环或螺旋状的腐蚀图形,在显微镜下微缺陷的微观腐蚀形态为浅底腐蚀坑或腐蚀小丘(蝶形蚀坑)。在硅单晶的纵剖面上,微缺陷通常呈层状分布。 2)热氧化处理: 由于CZ硅单晶中的微缺陷,其应力场太小,往往需热氧化处理,使微缺陷缀饰长大或转化为氧化层错或小位错环后,才可用择优腐蚀方法显示。 3)扫描电子显微技术,X射线形貌技术,红外显微技术等方法。 2.3微缺陷结构

(工艺技术)太阳能电池与硅片划片切割工艺的研究

太阳能电池与硅片划片切割工艺的研究 一半导体其主要特性 导电能力介于导体和绝缘体之间的物体,则叫做半导体,如锗、硅、砷化镓、硫化镉等,其电阻率为10-5~107Ω·m 半导体性能上具有如下两个显著的特点。 (1)电阻率的变化受杂质含量的影响极大,例如,纯硅中磷杂质的浓度在1026~1019m-3范围内变化时,它的电阻率就会从10-5Ω·m变到104Ω·m;室温下在纯硅中掺人百万分之一的硼,硅的电阻率就会从2.14X103Ω·m减小到0.004Ω·m左右。如果所含杂质的类型不同,导电类型也不同。 (2)电阻率受光和热等外界条件的影响很大,温度升高或光照时,均可使半导体材料的电阻率迅速下降。例如,锗的温度从200℃升高到300℃,其电阻率降低一半左右。一些特殊的半导体,在电场和磁场的作用下,其电阻率也会发生变化。 半导体材料的种类很多,按其化学成分,可分为元素半导体和化合物半导体;按其是否含有杂质,可分为本征半导体和杂质半导体。杂质半导体按其导电类形,又分为n型半导体和p型半导体。 二、半导体硅的晶体结构 自然界物质存在的形态有气态物质、液态物质和固态物质。固态物质可根据它们的质点(原子、离子和分子)排列规则的不同,分为晶体和非晶体两大类。具有确定的熔点的固态物质称为晶体,如硅、砷化镓、冰及一般金属等;没有确定的熔点、加热时在某一温度范围内就逐渐软化的固态物质称为非晶体,如玻璃、松香等。 所有晶体都是由原子、分子、离子或这些粒子集团在空间按一定规则排列而成的。这种对称的、有规则的排列,叫晶体的点阵或晶体格子,简称为晶格。最小的晶格,称为晶胞。晶胞的各向长度,称为品格常数。将晶格周期地重复排列起来,就构成为整个晶体。晶体又分为单晶体和多晶体。整块材料从头到尾都按同一规则作周期性排列的晶体,称为单晶体。整个晶体由多个同样成分、同样晶体结构的小晶体(即晶粒)组成的晶体,称为多晶体。在多晶体中,每个小晶体中的原子排列顺序的位向是不同的。非晶体没有上述特征,组成它们的质点的排列是无规则的,而是“短程有序、长程无序’’的排列. 三、太阳能电池工作原理与特性 太阳能电池的分类和结构,太阳能电池的工作原理和特性。 (一)、太阳能电池的分类 太阳能电池多为半导体材料制造,发展至今,已经种类繁多,形式各样。 可用各种方法对太阳能电池进行分类,如按照结构的不同分类,按照材料的不同分类,按照用途的不同分类,按照工作方式的不同分类,等等。下面对按照结构和材料进行的分类加以介绍。 (1) 按照结构的不同可分为如下各类 1.同质结太阳能电池 由同一种半导体材料所形成的p—n结或梯度结称为同质结。用同质结构成的电池称为同质结太阳能电池,如硅太阳能电池。 四太阳能电池的结构 因生产制造太阳能电池的基体材料和所采用的工艺方法的不同,太阳能电池 的结构也就多种多样。这里以常规硅太阳能电池为例简述太阳能电池的结构。图 3—16是一个p型硅材料制成的//p型结构常规太阳能电池的示意图。①p层为 基体,厚度为o.2~0.5mm。基体材料称为基区层,简称基区。②p层上面是n

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

硅片多线切割技术详解

硅片多线切割技术详解 太阳能光伏网 2012-4-9 硅片是半导体和光伏领域的主要生产材料。硅片多线切割技术是目前世界上比较先进的硅片加工技术,它不同于传统的刀锯片、砂轮片等切割方式,也不同于先进的激光切割和内圆切割,它的原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而达到切割效果。在整个过程中,钢线通过十几个导线轮的引导,在主线辊上形成一张线网,而待加工工件通过工作台的下降实现工件的进给。硅片多线切割技术与其他技术相比有:效率高,产能高,精度高等优点。是目前采用最广泛的硅片切割技术。 多线切割技术是硅加工行业、太阳能光伏行业内的标志性革新,它替代了原有的内圆切割设备,所切晶片与内圆切片工艺相比具有弯曲度(BOW)、翘曲度(WARP)小,平行度(TAPER)好,总厚度公差(TTA)离散性小,刃口切割损耗小,表面损伤层浅,晶片表面粗糙度小等等诸多优点。 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。 2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。 二、碳化硅微粉的粒型及粒度

太阳能光伏电池硅片切割技术

本文由哈哈5790902贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏电池硅片切割技术 硅片切割是太阳能光伏电池制造工艺中的关键部分。该工艺用于处理单晶硅或者多晶硅的固体硅锭。线锯首先把硅锭切成方块,然后切成很薄的硅片。(图 1)这些硅片就是制造光伏电池的基板。 图 1.硅片切割的 3 个步骤:切料, 切方和切片 硅片是晶体硅光伏电池技术中最昂贵的部分,所以降低这部分的制造成本对于提高太阳能对传统能源的竞争力至关重要。本文将对硅片切片工艺、制造业的挑战和新一代线锯技术如何降低切片成本做一个概述。 线锯的发展史 第一台实用的光伏切片机台诞生于 1980 年代,它源于 Charles Hauser 博士前沿性的研究和工作。Charles Hauser 博士是瑞士 HCT 切片系统的创办人,也就是现在的应用材料公司 PWS 精确硅片处理系统事业部的前身。这些机台使用切割线配以研磨浆来完成切割动作。今天,主流的用于硅锭和硅片切割的机台的基本结构仍然源于 Charles Hauser 博士最初的机台,不过在处理载荷和切割速度上已经有了显著的提高。 切割工艺 现代线锯的核心是在研磨浆配合下用于完成切割动作的超细高强度切割线。最多可达1000 条切割线相互平行的缠绕在导线轮上形成一个水平的切割线“网“。马达驱动导线轮使整个切割线网以每秒 5 到 25 米的速度移动。切割线的速度、直线运动或来回运动都会在整个切割过程中根据硅锭的形状进行调整。在切割线运动过程中,喷嘴会持续向切割线喷射含有悬浮碳化硅颗粒的研磨浆。 图 2. 硅块通过切割线组成的切割网. 硅块被固定于切割台上,通常一次 4 块。切割台垂通过运动的切割线切割网,使硅块被切割成硅片(图 2)。切割原理看似非常简单,但是实际操作过程中有很多挑战。线锯必须精确平衡和控制切割线直径、切割速度和总的切割面积,从而在硅片不破碎的情况下,取得一致的硅片厚度,并缩短切割时间。 减少硅料消耗 对于以硅片为基底的光伏电池来说,晶体硅(c-Si)原料和切割成本在电池总成本中占据了最大的部分。光伏电池生产商可以通过在切片过程中节约硅原料来降低成本。降低截口损失可以达到这个效果,截口损失主要和切割线直径有关,是切割过程本身所产生的原料损失。切割线直径已经从原来的 180-160μm 降低到了目前普遍使用的 140-100μm 。降低切割线直径还可以在同样的硅块长度下切割出更多的硅片,提升机台产量。 让硅片变得更薄同样可以减少硅原料消耗。在过去的十多年中,光伏硅片的厚度从原来的 330μm 降低到现在普遍的 180-220μm 范围内。这个趋势还将继续,硅片厚度将变成100μm. 减少硅片厚度带来的效益是惊人的, 330μm 从到 130μm,光伏电池制造商最多可以降低总体硅原料消耗量多达 60%。 制造业的挑战 在硅片切割工艺中我们需要面对多项挑战,主要聚焦于线锯的生产力,也就是单位时间内生产的硅片数量。生产力取决于以下几个因素: 1) 切割线直径–更细的切割线意味着更低的截口损失,也就是说同一个硅块可以生产更多的硅片。然而,切割线更细更容易断裂。 2) 荷载–每次切割的总面积,等于硅片面积 X 每次切割的硅块数量 X 每个硅块所切割成的硅片数量。

缺陷太阳电池EL图像及伏安特性分析

现代科学仪器 Modern Scientific Instruments 第5期2010年10月 N o.5 O c t. 2010105 缺陷太阳电池EL 图像及伏安特性分析 肖娇 徐林 曹建明 (上海交通大学物理系太阳能研究所 上海 200240) 摘 要 本文基于电致发光(Electroluminescence,EL)的理论,利用红外检测的方法,通过CCD 近红外相机实验检测出了晶体硅太阳电池中存在的隐性缺陷,如隐裂、断栅、电阻不均匀、花片等,并将可见光下电池图像与EL 图像进行对比。对存在缺陷的太阳电池进行了伏安特性测试,得出隐裂缺陷对太阳电池伏安特性、填充因子、效率等性能的影响,也证明电致发光技术检测太阳电池缺陷的准确性。关键词 太阳电池;电致发光;电池缺陷;伏安特性 中图分类号 O474 Electroluminescence Images and I-V Characteristic Analysis of Defective Crystalline  Silicon Solar Cells Xiao Jiao, Xu Lin, Cao Jianming (Solar Energy Institute, Physics Dept, Shanghai JiaoTong University, Shanghai, 200240, China) Abstract Based on Electroluminescence (EL) theory, the micro-cracks of crystalline silicon solar cells were detected by the near-infrared CCD camera, such as the cracks, off-grid, non-uniform resistance, ? ower slice. Then we compared the EL images with the images under visible light. I-V characteristic of the defective solar cells was tested, and we got that the defects would affect the I-V curve, ? ll factor, ef ? ciency of the solar cell, meanwhile EL technology is proved to be an accurate measurement to detect solar cells. Key words Solar cell; Electroluminescence;Solar cell defects; I-V characteristic 收稿日期:2010-06-23 作者简介:肖娇,女,上海交通大学硕士研究生,主要从事太阳能光伏检测设备的研发 目前工业化晶体硅太阳电池在制造过程中通常采用丝网印刷、高温烧结、互联、层压封装等生产工艺,其中丝网印刷的机械应力、焊接的热应力、高温烧结的热应力、层压封装的机械应力等不可避免会引入一些缺陷,包括隐裂、碎片、断栅、虚焊等,这类缺陷的存在极大地影响了太阳电池的光电转化效率和电池的寿命。据估计,每条组件生产线每年由于缺陷带来的直接经济损失约为60万美元,故有效的检测手段是非常必要的。本文运用基于电致发光(Electroluminescence ,EL)的检测方法,有效地检测出了太阳电池中可能存在的缺陷,是一种有效的检测电池、组件的方法。对检测出来的各类缺陷电池进行伏安特性曲线、填充因子、效率、串联电阻等各项性能测试,结果表明存在缺陷的电池漏电流较大,填充因子、效率减少较严重,性能测试结果和EL 检测方法得出的结论一致. 1 电致发光实验理论基础 在太阳电池中,少子的扩散长度远远大于势垒 宽度,因此电子和空穴通过势垒区时因复合而消失的几率很小,继续向扩散区扩散。在正向偏压下,p-n 结势垒区和扩散区注入了少数载流子。这些非平衡少数载流子不断与多数载流子复合而发光,这就是太阳电池电致发光的基本原理[1]。 发光成像有效地利用了太阳电池间带中激发电子载流子的辐射复合效应。在太阳能电池两端加入正向偏压, 其发出的光子可以被灵敏的CCD 相机获得,即得到太阳电池的辐射复合分布图像。但是电致发光强度非常低,而且波长在近红外区域,要求相机必须在900-1100nm 具有很高的灵敏度和非常小的噪声。图1为电致发光的光谱图[2]。 2 CCD 红外相机试验方法 实验样品为国产多晶硅太阳电池,采用由加拿大生产的INFILITY 近红外相机,ELECTROOPTIC 公司生产的红外相机镜头,其波谱响应范围为800nm ~1100nm。在试验过程中,利用直流稳压电源给多晶硅电池加正向偏压,控制正向偏压大小为

中国太阳能硅片线切割设备国产化的现状和趋势(20200831060022)

硅片切割设备的现状和发展趋势 一、光伏产业链 作为硅片上游生产的关键技术,切割的质量与规模直接影响到整个产业链的后续生产,切割过程中需要用到刃料(创业板新大新材的产品)、研磨液、切割机床设备等。 硅片加工工艺流程一般经过晶体生长、切断、外径滚磨、平边、切片、倒角、研磨、腐蚀、抛光、清洗、包装等阶段。近年来光伏发电和半导体行业的迅速发展对硅片的加工提出了更高的要求(图1.1): 一方面为了降低制造成本,硅片趋向大直径化。另一方面要求硅片有极高的平面度精度和极小的表面粗糙度。所有这些要求极大的提高了硅片的加工 难度,由于硅材料具有脆、硬等特点,直径增大造成加工中的翘曲变形,加工精度不易保证。厚度增大、芯片厚度减薄造成了材料磨削量大、效率下降等。 图1.1晶片发展趋势 硅片切片作为硅片加工工艺流程的关键工序,其加工效率和加工质量直接关系到整个硅片生产的全局。对于切片工艺技术的原则要求是:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 目前,硅片切片有两种加工方法:1、内圆切割;2、自由磨粒的多丝切割,大连连城的产品属于后者。 内圆切割是传统的加工方法(图 1.2a),材料的利用率仅为40%?50%左右;同时,由于结构限制,内圆切割无法加工200mn以上的大中直径硅片。 图1.2内圆切割与多丝切割原理示意图 多丝切割技术是近年来崛起的一项新型硅片切割技术,它通过金属丝带动碳化硅研磨料进行研磨加工来切割硅片(图 1.2b )。和传统的内圆切割相比,多丝切割具有切割效率高、材料损耗小、成本降低(例如日进NWS6X型6”多丝切割加工07年较内圆切割每片省15元)、硅片表面质量高、可切割大尺寸材料、方便后续加工等特点(见表1.1)o 表1.1 :内圆切割与多丝切割的对比

太阳能硅片切割技术

优化太阳能硅片切割成本 当太阳能硅片切割行业的利润逐渐趣于稳定,行业内的竞争逐步升温的2009 年到来时,对太阳能硅片切割企业,尤其是中小型切割企业来说,在提高硅片质量的同时进行成本优化已成为一种必然。 由于行业的竞争,使得产品在销售过程中已不可能像经济危机之前那样坐等采购上门来买,并且对硅片的质量提出来极高的要求,因此,尽管太阳能硅片是按张数来卖,但只为增加张数的生产时光已一去不复返了。按常理来讲,要提高并且保持太阳能硅片的质量,就必须在生产环节层层把关,这样,带来的最直接的影响就是生产成本的上升.。对于硅片切割这样的加工型经营模式来讲,在保证质量的前提下,最直接的降低成本的方式莫过于实现规模化生产,但这种成本优化的方式只属于资金以及经营理念超前的赛维LDK、昱辉等大型硅片切割企业。因而,中小型硅片切割企业的成本优化方式,必须是结合生产工艺改进条件下的对切割液、碳化硅微粉、以及钢线等的优化使用。 沙浆的优化使用:在整个硅片切割过程中,最容易做到的首先是对沙浆的优 化使用 由于废沙浆的回收使用已经比较成熟,所以对大多数中小型硅片切割企业来说讲,在保证质量的前提下,降低沙浆的使用成本已经成为一种可能。我们以四台NTC442D线切割机为例,以液砂配比比例1 : 0.95计算,一台机一个月的用量液6吨,砂5.7吨,按市场价液16000元/吨,砂30000元/吨计算,那么四台机一个月的使用成本是1068000 元。如果用回收液和回收砂,为保证回收液和砂的质量,用塞矽做回收,回收比例可以达到液70%,砂50%。液按8000元/吨,砂15000元/吨计算,为保险起见,我们在使用过程中回收液,砂都参50%,那么四台机一个月的使用成本为802000,这样一个月可节省成本266000 元,即一年节省成本3192000 元。 如果技术改进,砂的回收加工费用可降到10000元/吨,并且回收液和砂的 使用比例还可以有大的提升。 可见,如果在工艺许可的范围内,对沙浆的使用进行优化,也可以为硅片切割企业节省大额的成本。 太阳能硅片切割液 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。

硅片切割技术

太阳能硅片切割技术 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。 2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。 二、碳化硅微粉的粒型及粒度 太阳能硅片的切割其实是钢线带着碳化硅微粉在切,所以微粉的粒型及粒度是硅片表片的光洁程度和切割能力的关键。粒型规则,切出来的硅片表明就会光洁度很好;粒度分布均匀,就会提高硅片的切割能力。 三、砂浆的粘度 线切割机对硅片切割能力的强弱,与砂浆的粘度有着不可分割的关系。而砂浆的粘度又取决于硅片切割液的粘度、硅片切割液与碳化硅微粉的适配性、硅片切割液与碳化硅微粉的配比比例、砂浆密度等。只有达到机器要求标准的砂浆粘度(如NTC机器要求250左右)才能在切割过程中,提高切割效率,提高成品率。 四、砂浆的流量 钢线在高速运动中,要完成对硅料的切割,必须由砂浆泵将砂浆从储料箱中打到喷砂咀,再由喷砂咀喷到钢线上。砂浆的流量是否均匀、流量能否达到切割的要求,都对切割能力和切割效率起着很关键的作用。如果流量跟不上,就

太阳能电池重点答案(前4章)

第一章 1.法国物理学家Edmond Becquerel 于1839 年首先观察到光伏效应。 2.1883 年美国科学家Charles fritts 制造了历史上第一个太阳能光电池。 3.1954 年贝尔实验室的科学家研制出了第一块现代太阳能电池,转换效率达到6%,这是太阳能 电池发展史上一个重要里程碑。 4.2000 年德国首先颁布可再生能源法。 5.光子的能量?能量(eV)与波长(μm)的关系。(计算) 答:光子的能量:E(J) = hf = hc/λ 能量与波长的关系:E (eV ) = 1.24 / λ(μm)。光的能量与波长成反比。 6.太阳的能量主要来源于太阳内核发生核聚变反应(氢转换成氦),这些能量以电磁波的形式向四 方辐射:太阳表面温度高达6000 k。 7.太阳光照射在距离D 处的球面,入射到物体的光强为?(计算) 答:(式中,Isun为太阳的表面辐射功率强度) 8.大气效应主要在哪些方面影响着地球表面的太阳辐射? 答: 1)由大气吸收、散射和反射引起的太阳辐射能量的减少。 2)由于大气对某些波长的较为强烈地吸收和散射而导致光谱含量的变化。 3)当地大气层的变化引起入射光能量、光谱和方向的额外改变。 引起的太阳辐射能量的减少:导致光谱含量的变化。 (特殊的气体包括:臭氧(O3),二氧化碳(CO2)和水蒸气(H2O)都能强烈地吸收能量与其分子键能相近的光子。从而改变太阳的光谱含量,使得辐射光谱曲线深深地往下凹。 然而空气分子和尘埃,却是通过对光的吸收和散射成为辐射能量减少的主要因素) 9.什么叫光学大气质量?太阳在相对水平面成30?的高度,其相应的大气光学质量是多少? 答:光线通过大气层的路程,太阳在头顶正上方时,路程最短。我们把实际路程与此最短路程的比称之为大气光学质量。简称AM。大气光学质量表达式: (θ为太阳和头顶正上方成角度) 当太阳在头顶上方时,AM=1,称为大气光学质量1的辐射。 当太阳在相对水平面成30?时, 10.地球表面的标准光谱称为AM1.5,辐射能量密度为1000 W/m2;地球大气层外的标准光谱称为 AM0,辐射能量密度为1366 W/m2。 11.北半球,正午时分太阳高度角?式中各量表示什么? 答:北半球正午时分太阳高度角表达式: 式中ф为观测位置所处的纬度;δ为偏向角,大小取决于所在一年中的天数,北半球:春分日和秋分日偏向角为0°,夏至日偏向角为23.45°,冬至日偏向角为-23.45°。 在赤道地区(纬度为0?),春分日和秋分日:太阳处在头顶时高度角为90?;在北回归线处(大约在纬度23.5?),夏至日,太阳在头顶正上方,其高度为90?。 第二章 1.硅的晶体结构为金刚石结构。 2.求晶面的密勒指数? 答:选一格点为原点,并作出沿三轴线,在某族晶面中必有一个离原子最近的晶面,假设它在3个坐标轴上的截面距分别为h1',h2',h3',用(h1,h2,h3)来标志这个晶面系-密勒指数: 注意:若晶面系和某轴线平行,截面距将为∞。所对应的指数为0。

EL和PL测试分析在太阳电池生产中的应用

EL和PL测试分析在太阳电池生产中的应用 摘要:采用电阻率为1.5-2.0Ω•cm的P型156*156cm的多晶硅片经制绒、扩散、湿法刻蚀、PECVD沉积和丝网印刷等工序制备了转换效率为17.25%的多晶太阳电池。利用光致发光(PL)和少子寿命测试仪对原硅片的缺陷和寿命进行了测量和表征;同时,对高效率多晶硅片和普通太阳电池的电学参数和电致发光(EL)等特性进行了分析对比。结果表明,PL检测为制备高效电池提供了保障,而EL检测为丝网印刷质量、烧结等提供了后续的检测手段。因此,有效利用一定的检测手段对分析太阳电池转换效率以及生产工艺的优化和改进会起到重要的作用。 关键词: EL;PL;太阳电池;少子寿命 一、引言 目前,随着环境的不断恶化和能源日益紧缺,加强环境保护和开发清洁能源已成为世界各国高度关注的问题。作为一种重要的光电能量转换器件,太阳电池的研究受到了人们的热切关注。近年随着太阳电池新技术、新工艺和新结构的开发和利用使太阳电池行业得到了迅猛发展。多晶硅太阳电池因工序流程简单、工艺成熟和制造成本低,使其在太阳能电池市场占据着较大的比例。为了更快的推动绿色能源发展,降低太阳电池成本和提高电池转换效率已成为行业发展和竞争的两个主要目标。EL和PL测试对原硅片和太阳电池性能测试分析中起到了重要的作用。 二、实验方法 取高效率和普通多晶硅片各5片,测试硅片的PL图对原硅片的质量进行表征和分析以及沉积氮化硅后硅片的少子寿命。随后各取200片硅片,经相同的制绒、扩散、PECVD以及丝网印刷和测试工序完成太阳电池的制备。最后,两批太阳电池片在标准测试条件下进行了电学性能和EL测试。 三、结果与讨论

相关主题