搜档网
当前位置:搜档网 › 直流电磁铁设计

直流电磁铁设计

直流电磁铁设计
直流电磁铁设计

直流电磁铁设计

共26 页

编写:

校对:

直流电磁铁设计

电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B=

S

Φ

(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=

L

NI

(A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=

H

B

建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0

μμ 5、 磁通Φ=

M R NI 磁阻R M =

s

l

μ

这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=

qv

F

,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的

B=2

1μ0nI 。

面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。

面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。

面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。

9、机械效率

A

K1=

A

A:输出的有效功

A0:电磁铁可能完成的最大功。

10、重量经济性系数

G

K2=

A

G=电磁铁重量。

A0:电磁铁可能完成的最大功。

K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kυ

每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。

为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

Q

K

υ=

Q-初始吸力(kg)

δ-气隙长度(cm)

Q正比于电磁铁的横截面;δ正比于电磁铁的轴向长度。

结构系数可以从设计的原始数据求得。

量不再增加,电磁铁从电源吸收的能量全部消耗于线圈子的发热上,磁场的能量用来产生吸力和作功。

13、工作制

(1)热平衡公式

当输入功率=发散的功率时Pdt=0+μsτdt=μsτdt,即本身温度为再升高,电磁铁本身温度不再升高。这时就可计算产品的温升值τw。当τw小于容许温升,产品运行是可靠的。当τw大于容许温升,产品是不可靠的。

(2)发热时间常数

发热时间常τy=发热体从τ=0 发热到温升0.632τy时所需时间。4τ达到稳定温升。

冷却时间常数和发热时间常数基本相同。

(3)工作制分为:长期工作制、短期工作制和重复短期工作制。

长期工作制:电器工作时间很长,一般不小于发热时间常数,工作期间,产品的温度达到或接近温升τy(产品温度不再升高)。工作停止后,产品的温度又降到周围介质温度。长期工作制散热是主要的。

长期工作制电流密度可按2~4A/mm2。

短期工作制:电器工作时间很短,一般小于发热时间常数,工作期间,产品的温度达不到温升τy。工作停止后,产品的温度又降到周围介质温度。短期工作制CGdτ(产品本身热容)是主要的方面。

短期工作制电流密度按13~30A/mm2。

重复短期工作制:产品工作和停止交替进行,工作时产品温度达不到温升τy,停止时产品降不到周围介质温度。

重复短量工作制电流密度按5~12A/mm2

14、漆包线等的耐温等级

Y:90℃ A;105℃ Q

E:120℃ QQ QA QH

B:130℃ QZ 云母石棉F:155℃ QZY

H:180℃

C:>180℃ QY QXY

辅助材料的耐热等级

B级聚酯薄膜

C级聚四氟乙烯薄膜

二、交、直流电磁铁比较

1、直流的NI是不变的,是恒磁动势,吸力F与间隙δ的平方成反比。

2、交流磁链ψ(磁通υ与线圈的一些匝数相交链ψ=Nυ)近似常数,是恒磁链磁路,吸力F与间隙δ关系不大。只是漏磁随间隙δ的增加而增加,故间隙δ增大F减小。

3、直流螺管式电磁铁中可获得边平坦的吸力特性。

4、导磁材料:直流整块软钢或工程纯铁,交流用硅钢片冲制叠铆而成。

5、铁心形状:直流为圆柱形,交流为矩形或圆形。

6、铁心分磁环:直流无,交流有。

7、线圈外形:直流细而高,交流短而粗。

8、振动情况:直流工作平稳无振动,交流有振动和噪音。

9、交流电磁铁比较重,而且它的吸力特性不如直流电磁铁。

电磁铁的最优设计,在于合理选择电磁铁的型式。不同型式的电磁铁有不同的吸力特性,盘式吸力大,适用于起重电磁铁、电磁吸盘和电磁离合器;拍合式特性比较陡,广泛用于接触器和继电器;螺管式,吸力特性比较平坦,用于长行程牵引和和制动电磁铁;机床电器如接触器、中间继电器电器基本上都是E型。

不同型式的电磁铁适用于不同的场合,它们有不同的吸力特性。

电磁铁的线圈叫激磁线圈,按联接方式分为串联和并联。串联线圈称为电流线圈,匝数少电流大(也叫电流继电器)。并联线圈称为电压线圈,匝数多,电阻大、电流小,匝间电压高(也叫电压继电器)。

五、直流电磁铁的要求

1、航空电磁铁应在下列条件下正常工作

(1)周围的的温度从-60℃~+50℃,而耐热的结构应达到+125℃。(2)大气压的变化由790~150mmHg。

(3)相对湿度达98%。

(4)飞机起飞、滑跑和着陆时的冲击。

(5)2500Hz以上的振动。

(6)线加速达8g以上。

还有电网压降,工作持续时间,绕组温升,最低作动电压、作动时间、释放电压和使用期限等。

此外还要求重量轻、尺寸小,并有良好的工艺性,用材少以及最少资金等要求。

2、要保证电磁铁可靠动作,在整个工作行程内,吸力均大于反

力。一般电磁铁均选择衔铁释放位置为设计点,在该点应保证吸力可以克服反力而使衔铁动作。

有时需根据电磁铁的动作时间来确定电磁铁的类型,对于快速执行要求可达到3~4ms ,如极化继电器。对于慢速要求的可达300~500ms 。为了获得慢速要求,可采用带短路环的拍合式和吸入式。 3、直流电磁铁的吸力

(1)F=

2μδ

B S(N ) 式中:S-磁极总面积(m2) Bδ-气隙磁感应强度(T )

(2)F=2

1(IN )2

20δμS

×10-6(N )

式中:S 和δ的单位为cm 和 cm 2 (3)吸力和气隙的关系

2、衔铁的行程δH (厘米)

3、容许温升(℃)

4、工作制:长期工作制τ=1;短时工作制τ<1;重复短时工作制τ<1。重复短时工作制还应给出接通时间或循环时间。

5、电磁铁的工作电压。 (二)、计算 1、按公式K υ=

H

H

Q 计算结构系数

2、根据计算出的结构系数值,按表1确定导磁体类型

3、按下面各表,确定长期工作制电磁铁的气隙磁通密度B δ和比值

12R R L =h

L

(线圈的长高比) 表2

表4

表2、表3、表4、表5是电磁铁长期工作的B δ,如果是短时工作制或反复短时工作制,应加大10~15%。

对于比值

12R R L -=h

L

(线圈子的长高比,也叫窗口尺寸),如果吸力增大或行程减小,可减小此值。减小此值后,每匝线圈的平均长度增加,铜的用量增加,而导磁体的长度缩短了,钢的用量减小。最优设计的电磁铁,此值为1~7。

表5

盘式和拍合式电磁铁最优磁通密度曲线

(三)、初算

根据电磁吸力公式Q H =π

2

2

1

2

5000R B δ(公斤) (1)

式中B δ-气隙中的磁通密度(高)

由(1)式得R 1=

π

δ2

25000B Q H

(cm ) (2)

1、盘式和吸入式平头电磁铁的衔铁半径可直接用(2)式计算。

2、吸入式锥台座电磁铁 吸力Q=

α

2cos h

Q

行程δ=δH cos 2α 式中α-锥度角

吸入式锥台座电磁铁的衔铁半径将Q H 换成Q 再按(2)式计算。

3、拍合式电磁铁

可直接用公式(2)算出极靴的半径R1。对于铁心的半径R C

R C =R1

CT

B B σδ

式中:B CT =4000~12000

根据电磁铁要求的灵敏度,灵敏度高的选小值。 σ=1.3~3

F CT -导磁体中的磁动势 F υ-非工作气隙中的磁动势 5、确定线圈的长度和高度 (1)长度

L K =3

4

22105Y

K Kf F θτρθ-

式中:ρθ-漆包线的电阻率

F-总磁势 τ-工作制系数 K-散热系数 θy -温升 f K -填充系数

表7 f K 填充系数

表8 K-散热系数

(2)R2=

1

2R R L L K

K

-+R1 h K =R2-R1 (3)R3=2221R R +

7、确定漆包线直径

d=0.2

U

F h

R

K )

1

2(+

θ

ρ

U-工作电压。

(四)、复算

1、修正导磁体的尺寸和漆包线的径

电磁铁设计

直流电磁铁设计 共26 页 编写: 校对:

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=21 μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kυ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁设计

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

08-3-29 直流电磁铁设计指导书 电子版要点

编著 2014年12月8日

第一部分手工计算 一、计算反力特性 (一)、计算工作气隙值: 1、衔铁打开(即主触头打开,称a点)位置的工作气隙δa: δa = (β1+γ1)?Kg 1 2、动断辅助(桥式)触头断开(称b点)时的工作气隙δb: δb = δa-γ2 ?Kg 2 3、主触头刚接触(闭合,称c点)时的工作气隙值δc: δc = γ1 ?Kg 1 4、动合辅助触头刚接触(闭合,称d点)时的工作气隙δd: δd = γ 2 ?Kg 2 5、衔铁完全闭合位置(称e点)时的工作气隙δe: 取δe = 0.1mm;其中镀锌层厚度δ镀层= 2?12?10-6m = 24?10-6m;(二)、计算各位置反力,并作反力特性曲线(如图1.1所示): 图1.1 反力特性曲线

1. 释放弹簧折算反力F fl 的特性曲线 F fl 实质是将释放弹簧初始反力Fs 0折算到铁芯中心线后的释放弹簧反力,其特性曲线是一条直线,从a 点到e 点。 ○1 δ= δa : F f1a = 3Kg Fso ○ 2 δ= δe : F f1e = [ Fso + 3)(C Kg e a s δδ-? ] 3 1 Kg ? ○3 F f1b 、F f1e 、F f1d 的反力则由F f1a 和F f1e 的连线,按比例(或相似三角形)求出; 2. 主触头刚接触(闭合)时的折算反力F f 2特性曲线 F f 2实质是将所有主触头的弹簧初始反力F 2O 和F 2Z 折算到铁芯中心线后的弹簧反力,其特性曲线是一条直线,从o 点到c 点 。 ○1 δ= δc : F f 2C = 110 1F n Kg ? ○2 δ= δe : F f 2e = 1 Z 11Kg F n ? ○ 3 F f 2d 的反力由 F f 2c 和 F f 2e 的连线按比例(或相似三角形)求出; 3、动合辅助触头折算反力F f 3 特性曲线 F f 3 实质是将所有动合辅助触头的弹簧初始反力 F 2O 和F 2Z 折算到铁芯中心线后的弹簧反力,其特性曲线是一条直线,从d 点到e 点。 ○1 δ= δd : F f 3d = 220 2F n Kg ? ○2 δ= δe : F f 3e = 2 Z 22Kg F n ? 4、动断辅助触头折算反力 F f 4 反力特性曲线

电磁铁使用说明书

目录Index 1、基本原理和使用条件 Basic principle and operating conditions 2、产品型号及含义 Models and contents 3、用途及使用范围 Usage and applicable range 4、结构及特点 Structure and characteristic 5、电气性能 Electrical property 6、型号、技术参数与外形尺寸图 Models, technical data, and overall dimension drawing 7、使用注意事项 Cautions 8、保养及维修 Maintenance and service

1.基本原理和使用条件 Basic principle and operating conditions 1.1 基本原理 Basic principle 电磁铁工作时,电源及控制设备向电磁铁供给直流电,电磁铁内部产生强大的磁场,通过壳体磁路和工作气隙对被吸物产生强大磁力而达到搬运物料的目的。 When electromagnet works, the power source and the controlling device supply direct current to the electromagnet. A strong magnetic field will be generated inside the electromagnet, the magnetic field gives enough strong magnetic force on the material through the shell magnetic circuit and the operating clearance to lift the bulk material . 1.2 使用条件 using conditions 1.2.1 使用地点的海拔高度不超过2000m。 Not more than elevation of 2000m 1.2.2 周围空气温度:Surrounding air temperature 常温型:不高于+40℃,不低于-20℃。 Normal temperature type -20℃ ~ +40℃ 高温型:不高于+50℃,不低于-20℃。 High temperature type: no more than +50℃,no less than -20℃ 1.2.3 周围工作环境无爆炸危险和不含有腐蚀性气体的环境中。 No explosive dangerous or corrosive gas around the magnet. 1.2.4 周围环境相对温度不大于85%。 The relative humidity is not more than 85% 1.2.5 户外、户内均可使用。Both outdoors and indoors. 2.产品型号说明:Model Designations MW 辅助规格代号:"QS"表示潜水型 "1"表示常温型 "2"表示高温型 "75"表示高频型 派生代号:"L"表示铝材 "表示铜导线 基本规格代号:圆形电磁铁表示直径(cm) 方形电磁铁表示长×宽(cm)

(直流起重电磁铁).doc

(直流起重电磁铁) D96 备案号: 中华人民共和国机械行业标准 JB/T10730—2007 直流起重电磁铁 DCELECTROMAGNETICLIFTER 2007-05-29发布2007-11-01实施 中华人民共和国国家发展和改革委员会发布

前言 本标准由中国机械工业联合会提出。 本标准由全国矿山机械标准化技术委员会〔SAC/TC88〕归口。 本标准负责起草单位:抚顺隆基磁电设备有限公司。 本标准主要起草人:张承臣、赵能平、黄嘉琳、吕凤钧、邵贵成。 本标准为首次发布。 直流起重电磁铁 1范围 本标准规定了MW系列直流起重电磁铁的术语和定义、型式与基本参数、技术要求、试验方法、检验规那么、标志、标签、使用说明书、包装、运输和贮存。 本标准适用于励磁功率不大于60KW的直流起重电磁铁〔以下简称电磁铁〕。该电磁铁装备在起重机械上,用于装卸搬运废钢〔生铁锭〕、钢板、板坯、钢坯、型钢等。 2规范性引用文件 以下文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单〔不包括勘误的内容〕或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T191包装储运图示标志〔GB/T191-2000,EQVISO780:1997〕 GB/T549电焊锚链 GB/T2900、1电工术语基本术语 GB/T2900、18电工术语低压电器 GB/T6388运输包装收发货标志 GB9969、1工业产品使用说明书总那么 GB/T12467、4焊接质量要求金属材料的熔化焊第4部分:基本质量要求〔GB/T12467、4-1998,EQVISO3834-4:1994〕 GB/T13306标牌 GB/T13384机电产品包装通用技术条件 GB/T14048、1低压开关设备和控制设备总那么 3术语和定义 GB/T2900、1、GB/T2900、18确立的以及以下术语和定义适用与本标准。 3、1 强励磁STRONGEXCITATION 电磁铁励磁电压290V的励磁。 3、2 弱励磁WEAKEXCITATION 电磁铁励磁电压为200V的励磁。 4型式与基本参数 4、1型式 电磁铁按照结构型式分为: A〕圆形起重电磁铁; B〕矩形起重电磁铁; C〕椭圆形起重电磁铁; D〕多边形起重电磁铁。 4、2型号 电磁铁的型号表示方法如下: MW□—□□

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

设计电磁铁

设计直流电磁铁 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7 享/米 相对磁导率μr = μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1 μ0nI 。

面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏

磁通大,面积Ⅱ就大。 9、机械效率 K 1= A A A :输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 K 2= A G G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。 11、结构系数K φ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁 铁长,吸力大的电磁 铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J 这个判据。 K φ= Q Q-初始吸力(kg ) δ-气隙长度(cm ) Q 正比于电磁铁的横截面;δ正比于电磁铁的轴向长度。 结构系数可以从设计的原始数据求得。 12、电磁铁工作的过渡过程

电磁铁设计

直流电磁铁设计 共 26 页 编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B=S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、 磁通Φ=M R NI

磁阻R M =s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使 Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 K 1=0A A A :输出的有效功

直流电磁铁设计

直流电磁铁设计 共26页 编写: ______________________ 校对: _______________________ 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电 能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各

种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B丄(T) S 2、磁势F=NI,电流和匝数的乘积(A) 3、磁场强度日二寻(A/m),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率■二旦建立了磁场强度和磁感应强度(磁通密度)的关系 < H ^=4 n X 10-7享/米相对磁导率r='- #0 5、磁通①二巴 R M 磁阻R M二+ 这称为磁路的欧姆定律,由于铁磁材料的磁导率卩不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

真空中无限长螺线管 B= — it °nl 。 2 磁效率 电磁铁工作循环图 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行 磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时, 工作点由2?3。断电后工作点由3?0。 面积I 为断电后剩留的能量,面积H 为作功前电磁铁储存的能 量,面积皿为电磁铁作的功 6、 磁感应强度的定义式 B=—,磁感应强度与力的关系。 qv 7、 B=卩o nl 。对于长螺线管,端面处的

直流电磁铁设计

直流电磁铁设计共26 页 编写:

校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 ?(TB=) 1、均匀磁场S2、磁势F=NI,电流和匝数的乘积(A)NI(A/m),H=建立了电流和磁场的关系。 3、磁场强度L该公式适用于粗细均匀的磁路 B建立了磁场强度和磁感应强度(磁通密度)的关系。 4、磁导率=? H?-7 = 10相对磁导率享/米×=4 π??r0?0NIΦ5、磁

通=R M l =R磁阻M s这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。. F,磁感应强度与力的关系。6、磁感应强度的定义式B=qv7、真空中无限长螺线管B=μnI。对于长螺线管,端面处的01 nI。B=μ0ψ 2 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作

点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。. 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A =K1A0A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G = K2A0G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正 确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数K φ每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K 这个判据。J. Q =Kφ Q-初始吸力(kg) δ-气隙长度(cm)

电磁铁设计

精心整理 直流电磁铁设计 共26页 编写: 1234、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10 -7 享/米相对磁导率μr = μμ 5、 磁通Φ= M R NI

磁阻R M = s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7 8(2)9、机械效率 K 1= 0A A A :输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数

G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。 11 K Q 12 一部分用来建立磁场,当电流达到稳定值后,磁场的能量不再增加,电磁铁从电源吸收的能量全部消耗于线圈子的发热上,磁场的能量用来产生吸力和作功。 13、工作制 (1)热平衡公式 热平衡公式:Pdt=CGdτ+μsτdt

式中:Pdt供给以热体的功率和时间 CGdτ-提高电磁铁本身温度的热量。C-发热体比热 G-发热体质量dτ-在dt时间内电磁铁较以前升高的温度。 μsτdt-发散到周围介质中的热量。μ-散热系数。S-散热面积。τ-电磁铁超过周围介质的温度。 (2 升。 (3 度达不到温升τy。工作停止后,产品的温度又降到周围介质温度。短期工作制CGdτ(产品本身热容)是主要的方面。 短期工作制电流密度按13~30A/mm2。 重复短期工作制:产品工作和停止交替进行,工作时产品温度达不到温升τy,停止时产品降不到周围介质温度。

电磁铁常识

电磁铁构造 一、确定需要的电磁铁的电压 1、直流电磁铁 2、交流电磁铁 二、确定需要的电磁铁的形状和性能 1、按照电磁铁的形状可以分为: (1)、框架电磁铁 (2)、圆管电磁铁(管状电磁铁) 2、按照电磁铁的性能可以分为: (1)、保持式电磁铁 (2)、门锁电磁铁(锁类电磁铁) (3)、拍打式电磁铁 (4)、按摩电磁铁 (5)、电磁线圈 三、确定需要的电磁铁的工作方式: 1、拉式电磁铁 2、推式电磁铁 3、吸盘电磁铁 4、旋转电磁铁 四、确定需要电磁铁的行程,行程范围内的力量要求,通电频率(最长通电时间和最短断电时间) 五、确定以上电磁铁的参数后,再选择相对有能力生产的电磁铁厂家,最好是实地考察后再决定。 电磁铁应用 为确保您所使用的螺线管式电磁铁(包括我们通常所说的各式旋转电磁铁,推拉式电磁铁,直动式电磁铁,圆管式电磁铁,门锁电磁铁,保持式电磁铁,变压器等)能可靠的工作和达到应有的寿命,我们在选用各种螺线管式电磁铁时,应注意以下几个方面: 1:螺线管式电磁铁都是以直流电工作的,因此当工作电源为交流电时,请使用全波整流方式将交流电转换为直流电。 2:通电率(或通电持续率),是用线圈通电时间和断开时间的比率来表示 除通电率之外,有时还注出了每一次的最长通电时间的规定,这都是为防止线圈温度过度上升,从而导致螺线管电磁铁动作失误或寿命的减短,因此务必请在低于规定的数值下使用。 3:线圈中通过的电流值和线圈的圈数的乘积算做安培的匝数。各种螺线管式电磁铁的线圈数据中对应每个通电率周期都提供有参数值,螺线管式电磁铁的机械输出力的大小与其安培匝数成正比。 4:随着线圈温度的变化会引起螺线管电磁铁总体性能的变化。当线圈接通电源施加上电压后,线圈的温度会逐渐上升,线圈的电阻也就随之增加,通过线圈的电流会降低,从而,造成安培匝数的减少,螺线管电磁铁的机械输出功率也

高压断路器中直流电磁铁设计的讨论

万方数据

万方数据

万方数据

万方数据

高压断路器中直流电磁铁设计的讨论 作者:钱家骊 作者单位:清华大学电机系,100084 刊名: 上海电器技术 英文刊名:SHANGHAI ELECTRIC APPLIANCE TECHNOLOGY 年,卷(期):2001(1) 被引用次数:4次 参考文献(3条) 1.夏天伟电器学 1999 2.钱家骊高压开关永磁机构不同线圈布置讨论 3.清华大学高压教研组高压断路器 1980 本文读者也读过(10条) 1.陈振生.温成维.CHEN Zhen-sheng.WEN Cheng-wei XQB系列电磁线圈保护装置的原理及应用[期刊论文]-电工电气2009(2) 2.龙卧云.任文辉.林智群.谭玉.LONG Wo-yun.REN Wen-hui.LIN Zhi-qun.TAN Yu霍尔位置传感器测量材料杨氏模量的改进[期刊论文]-实验室科学2010,13(5) 3.崔葛瑾.张中炜.CUI Gejin.ZHANG Zhongwei振动测量中霍尔位置传感器特性自标定[期刊论文]-上海海事大学学报2007,28(3) 4.刘伟.徐兵.杨华勇.伍中宇超高压断路器液压操动机构分合闸特性研究[会议论文]-2008 5.李娟.刘焕平.罗旭.LI Juan.LIU Huan-ping.LUO Xu基于AT89C51单片机的60-2曲轴位置信号发生器设计[期刊论文]-石家庄职业技术学院学报2010,22(4) 6.刘飞.刘新正.张蕊Matlab在电磁铁设计计算中的应用[期刊论文]-低压电器2004(7) 7.丁玉红.DING Yu-hong一种小型直流电磁铁的结构设计[期刊论文]-机电元件2008,28(4) 8.西门子公司浅析西门子新3WT系列框架断路器[期刊论文]-电气制造2009(6) 9.刘小虎.吴峻.赵宏涛.陆珊珊.LIU Xiao-hu.WU Jun.ZHAO Hong-tao.LU Shan-shan直线无刷直流电动机位置传感器电路简化及其可行性分析[期刊论文]-微特电机2010,38(10) 10.张敬菽.陈德桂.耿英三.仝力.祖力民基于数据库的电磁铁设计及其可视化仿真系统[期刊论文]-工程图学学报2004,25(1) 引证文献(1条) 1.汤敬秋,崔彦彬基于能量法的变速驱动凸轮机构的设计[期刊论文]-机械设计 2005(09) 引用本文格式:钱家骊高压断路器中直流电磁铁设计的讨论[期刊论文]-上海电器技术 2001(1)

直流接触器电磁铁设计-湖南工程学院应用技术学院

课程名称电器设计 课题名称直流接触器电磁铁设计 专业电气及其自动化 班级1181 学号 姓名 指导教师陈小明蔡斌军 2014年12月29日

设计内容与设计要求 一、设计目的: 掌握直流电磁铁的结构,培养学生的计算能力、制图能力和计算机的操作能力。 二、设计原始数据 (一)反力特性有关参数 1、主触头: 开距β1超程γ1初压力F01(N)终压力F Z1(N)触头对数n1杠杆比kg1 8(mm)9(mm) 2、辅助触头: 初压力F02(N)终压力F Z2(N)触头对数n2、n3杠杆比kg2 开距β2超程 γ2 9(mm)2(mm) 3、释放弹簧: 初始反力Fs)(N)弹簧刚度Cs(N/mm)杠杆比kg3 (二)、线圈额定电压及其允许波动范围: U N = V ,U =()U N (三)、线圈绝缘耐热等级及允许温升: 级绝缘,ζ允许= ℃ (四)、工作制: Q T =

三、设计内容 1、计算反力特性并确定设计点: (1) 计算工作气隙值; (2) 计算各位置反力,并作反力特性曲线; (3) 确定设计点,并计算设计点吸力; (4) 计算结构因数,并据此选择电磁铁的结构形式; (5) 初步设计:包括铁心半径、极靴半径和极靴高度的没计算;线圈磁势的计算;线圈高度和厚度的计算;线圈导线直径和匝数的计算;电磁铁其它结构尺寸的计算;画电磁铁结构草图。 2、电磁铁的性能验算: (1) 验算线圈电阻及磁势; (2) 验算线圈温升; (3) 计算气隙磁导; (4) 磁路计算; (5) 设计点吸力的计算; (6) 计算电磁铁的铜重、铁重及经济重量; 3、计算机优化设计 (1) 将设计步骤用程序编写出来; (2) 对设计点的数据进行优化设计; (3) 将其它气隙的数据用计算机算出;

起重电磁铁的设计

错误!未指定书签。摘要 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。本课程设计主要讨论了直流盘式起重电磁铁机构的计算方法,特性以及它们的简单设计方法。以电磁感应理论为核心根据直流电磁铁的起重特点,通过经验设计确定线圈的磁感应强度等参数,然后通过经验参数计算出电磁铁线圈的内径并确定线圈的高度,从而使吸力达到设计符合的要求。电磁铁的线径以及线圈的高度参数是计算的重点并加以进一步讨论。 关键字:电磁铁起重直流

目录 1 概述 3 1.1 直流盘式起重电磁铁4 1. 2 直流盘式起重电磁铁的特点 4 2起重电磁铁原理 4 2.1 电磁感应原理4 2.2 磁化曲线 4 2. 3 电磁铁材料4 2.4 电磁铁的吸合 5 3 直流盘式起重电磁铁图 6 4 起重电磁铁的设计7 4.1 电磁铁的设计参数8 4.2 起重电磁铁的计算8 6 结论10 7参考文献12

一. 概述 1.1直流盘式起重电磁铁 起重电磁铁,顾名思义,就是在工业领域应用的,作为用于冶金、矿山、机械、交通运输等行业吊运钢铁等导磁性材料或用作电磁机械手,夹持钢铁等导磁性材料。电源通过控制部分给电磁铁输入直流电,电磁铁产生强大磁场并对铁磁性物质产生吸力,把电能转换为机械能,从而达到搬运各种铁磁性物料的目的。 1.2直流盘式起重电磁铁的特点 1、采用全密封结构,防潮性能好。 2、经计算机优化设计,结构合理、自重轻、吸力大、能耗低。 3、励磁线圈经特殊工艺处理,提高了线圈的电器和机械性能,绝缘材料热等级达到C 级,使用寿命长。 4、普通型电磁铁的额定通电持续率由过去的50%提高到60%,提高了电磁铁的使用效率。 5、超高温型电磁铁采用独特隔热方式,其中被吸物温度有过去的600℃提高700℃,扩大了电磁铁的适用范围。 6、安装、运行、维护简便。

电磁铁基本知识

电磁铁基本知识 电磁铁是一个带有铁心的通电螺线管,电磁铁的磁性大小与通电电流与螺线管的匝数有关。磁铁工作原理:电磁铁的工作原理就是采用电磁感应原理,主要运用毕奥-沙瓦定律与基尔霍夫定律进行磁场设计、计算。 电磁铁的特点是:电磁铁本身有无磁性,可以通过通断电流来控制,磁性的大小可以改变电流的大小来控制,磁极的方向有电流的方向决定。 电磁铁应用范围 各类小型精密电磁铁及电磁铁应用组件,作为自动控制系统的执行器件,已被广泛应用于工业自动化控制、办公自动化、医疗器械等各个领域。如办公设备、影像器材、银行设备、包装机械、医疗器械、食品机械、纺织机械、自动分拣机、自动柜员机、自动售货机、卡片打孔器、电磁锁、各种遥控装置、制动装置、计数装置、门禁系统等。 电磁铁选型主要参数 客户选用或定做所需的电磁铁需要考虑以下的技术参数: 1.外形:安装电磁铁位置所能容纳的最大尺寸:长;宽;高, 2.电磁铁的最大行程及其吸力要求,断电后的复位力要求 3.提供给电磁铁的电源最大电压;电流?电压稳定性,交流/直流供电,能否提供正;负脉冲电源? 4.电磁铁是否需要长期不间断工作;断续工作,每次最长的通电时间及两次通电之间最短的间歇; 5.电磁铁的用途,使用电磁铁的环境特殊要求,如温度; 湿度; 冲击; 振动; 加速度等 电磁铁的分类方法 1.按动作方式: 保持式如电磁离合器、电磁卡盘、起重电磁铁等 吸引式各种自动电器继电器、接触器、电磁阀门、电动锤、电铃等

2.照激磁线圈供电的种类:直流、交流 3.按照动作速度:快速动作、正常动作、延缓动作 4. 按衔铁的运动方式:直动式、转动式 5. 按磁路的形状:开路导磁体如螺管式;闭路导磁体如盘式(起重电磁铁)、拍合式、Ⅱ型、Ⅲ型(及E型)、装甲螺管式 注:一般在工业上根据结构,可以简单的合并为三大类型: 拍合式:盘式、Ⅱ型从原理上可归到此类,该类行程最短 螺管式:行程最长 E 型:行程介于上两者之 本文由:电磁铁厂家https://www.sodocs.net/doc/727718822.html,整理发布

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压 UH=24V 额定工作电压时的工作电流 IH ≤1A 2 测试数据 测试参数工作行程δ =1mm 吸力 F=7.5kg 电阻 R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径 dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力 F=7.5kg 则电磁铁的结构因数 K = F/δ 7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度 BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中 Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800× F Bp = 5800× 7.510000 =1.59cm=15.9mm 取 dc=16 mm 4.2 确定外壳内径 D2 在螺管式电磁铁产品中它的内径 D2与铁心直径 dc之比值 n 约为 2~ 3 ,选取 n=2.7 D2=n ×dc=2.76× 16=28.16 毫米 (3) 式中 D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ (4) 式中 bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度 lk=β×bk (5) lk------线圈长度毫米

电磁铁设计

直流电磁铁设计 共 26 页 编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI

磁阻R M = s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使 Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 K 1= A A A :输出的有效功

直流电磁铁设计(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 赠人玫瑰,手留余香。 直流电磁铁设计 共 26 页

编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念

1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率

量,面积Ⅲ为电磁铁作的功。 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率

MFZ1 系列直流干式阀用电磁铁

MFZ1 系列直流干式阀用电磁铁 用途本系列电磁铁适用于单相桥式全波整流电源,电压至220V的控制电路中。在机床及自动化系统中,作为被压电磁换向阀的动力元件。 正常工作条件 可任意方向安装。 使用环境中应无足以腐蚀金属和破坏绝缘的气体和尘埃。否则,可能影响产品寿命。 电磁铁适用长期工作制、断续周期工作制。 电源电压的合理波动范围为85%-110%(特殊要求可订货时提出)。 外壳防护等级为IP55。 主要技术参数 型号额定电压 (V) 额定吸力 (N) 额定行程 (mm) 全行程 (mm) 操作频率 (T/h) 通电持续率% MFZ1-0.712/24/11 0/220 ≥74≥53600100 MFZ1-1.512/24/11 0/220 ≥154≥63600100 MFZ1- 212/24/11 0/220 ≥205≥63600100 MFZ1-4.512/24/11 0/220 ≥456≥8.51800100 MFZ1-4D 12/24/11 0/220 ≥387≥8.51800100 MFZ1- 712/24/11 0/220 ≥707≥10.51800100 订货代号 阀用电磁铁直流设计序号额定吸力(Kgf) MF Z10.7/1.5/2/4.5/3.8(4D)/7 行程-力特性曲线

外形及安装尺寸 型号 外形尺 寸 安装尺寸 d1H1 A ma x H max B D MFZ1-0.736. 5 48.529±0.20φ3.5≥φ413.5±0.25 MFZ1-1.542. 5 7034±0.20φ4.5≥φ519±0.25 MFZ1- 247. 5 7538±0.20φ4.5≥φ621±0.25 MFZ1-4.555. 6 9345±0.20φ4.5≥φ926.5±0.25 MFZ1-4D 55. 6 9345±0.20φ4.5≥φ926.5±0.25 MFZ1- 772. 6 10660±0.20φ6.5≥φ1326.5±0.25

相关主题