搜档网
当前位置:搜档网 › 浅谈反射式强度型光纤传感器

浅谈反射式强度型光纤传感器

浅谈反射式强度型光纤传感器
浅谈反射式强度型光纤传感器

大学物理实验

光纤技术专题实验

学院

班级

学号

姓名

教师张丽梅

首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器

摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。

关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势

1引言

通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。

2反射式强度型光纤传感器及其原理

反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。

图2

与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的

10nm。电磁波

的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E

的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"—

光的相位; t—光的传播时间。由上式可见, 只要使光

的强度、偏振态( 矢量A的方向) 、频率和相位等参量

之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要

的被测量的信息。最简单的反射式强度型光纤传感

( RIMFOS)由光源、发送光纤、接收光纤、反射面以及

光电探测器组成.在图一中S 为光源, D 为检测器。光

源S 发出的光经发送

光纤束全反射传播, 到达反射面( 被测物) , 射

进入接收光纤束再次全反射传播到达检测器D,

测器D 输出相应的电信号U0。

U0=f( d)

在光纤芯半径r、光纤的数值孔径NA、反射面、

检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

光纤传感器测量工作过程如下: 光源发出的光耦

合到入射光纤, 光在光纤中传输到光纤另一端并发射

出去, 光在千分尺测量端面被反射回来并由反射光纤

传输出去照射到光敏三极管上, 光敏三极管将光量变

为电量输出, 经过放大显示在数字电压表或示波器上。输出量的大小与反射光量大小成正

比, 而反射光量的大小又与光纤出射端面距千分尺测

量端面远近成正比。

3反射式强度型光纤传感器的存在的问题和解决方法反射式强度型光纤传感器对光源、光纤以及其它系统元件存在的特性变化非常敏感,光信号通道中被传输的光强很容易受到外界因素干扰而发生变化,从而引起较大的测量误差。这种光纤传感器的主要缺点是广元的不稳定直接导致整个传感器输出的不稳定,造成位移测量误差。另外,反射体表面反射率不同,以及光线在光纤中传输消耗(包括本征损耗和弯曲损耗)的改变都会造成影响。因此,在测量精度和稳定性要求较高的情况下,工业上实用化传感器的设计必须采用某种形式的

补偿,以减小或消除上述因素带来的影响。

随着科学技术的日益发展,更多的高精度、更专业的反射式强度型光纤传感器已被人们研制出来。近来就有人提出并研究了一种等间距排列三光纤强度补偿反射式光纤位移传感器,其探头结构如图2,这种光纤探头无间隙紧密排列,光纤尺寸相同,容易做成带状,省去了各种光纤间距的调整。其间距大小仅有光纤芯径和包层厚度来决定。反射面到光纤端面的距离最终通过两相邻接受光纤光强信号的比值来确定,这种传感器也能自动补偿光源强度和反射面反射率变化对测量精度的影响。使其输出特性只敏感于光纤探头与反射体之间的距离,从而实现对位移的精密测量。

4结束语

通过实验收获了经验和技能,通过写论文查找资料则对反射式强度型光纤传感器加深了了解。

参考文献

1刘迎春, 等.现代新型传感器原理与应用[M].北京:

国防工业出版社, 1998.

2吕海宝, 等.反射式光纤传感器光纤对输出特性的数

学模型[J].光电工程, 1998, 25( 5) : 16- 25.

3徐涛, 等.一种强度补偿反射式光纤传感器的研究[J].国防科技大学学报, 2000, 22( 6) : 109- 112

4李学金,张百钢,姚建铨,等.一种光纤压力传感器的设计理论分析[J].传感技术学报,2004,17(1):133-135

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

光纤传感器使用方法

FS-V21/21G/21RP/21RM/21X 光纤传感器调试方法 1、基本组成 本系列的光纤传感器外观基本由以下几部分组成,从左到右依次为: (1)SET键,此按钮可用于敏感度设定。本传感器的基本原理为:通过光纤探头对不同介质折射率的感应,从而获得数字信号,显示在屏幕上,通过显示数值的大小与设定灵敏值的比较发送开关量。 (2)指示灯,此灯在传感器有信号输出时发生亮灭变化。 (3)“设定灵敏值”,在屏幕上显示为绿色,表明当前设定的灵敏值。当探头采集到的数值变化至此数值时,传感器产生信号。 (4)“当前灵敏值”,在屏幕上显示为红色,显示传感器当前采集的数值。(5)“选择按钮”,及左右箭头,可以实现各种功能的选择,相当于翻页键 (6)“模式选择按钮”,此按钮可用于设定不同的工作模式。 2、接线方法 (1)F S-V21/21G/21R/21RM/21X:棕线:L+24V 黑线:信号线 橙线:1-5V 蓝线:公共端 (2)FS-V21RP:棕线:L+24V 黑线:信号线蓝线:公共端 3、灵敏度校准 (1)全自动校准:在工件进入探头的灵敏区域时,按住“SET”键不放,保持3秒,灵敏值将会被设定,显示为绿色 (2)两点校准:在工件未进入灵敏区域时,按住“SET”键保持三秒,有一个敏感值被记忆,然后将工件放置在敏感区域,按下“SET”键保持三秒,另一个敏感值被记忆,当敏感值从一个值变化为另一值时,传感器产生电平变化。 (3)一般校准:也可以通过按“选择按钮”,及左右键来增减敏感度的设定值。 (4)位置校准:在工件未进入灵敏区域时,按住“SET”键保持

三秒,然后将工件放置在离探头一定距离,按下“SET”键保持三秒,一个敏感值被记忆,当工件每次到达此位置时,传感器产生电平变化。 4、常开常闭设定 按下最右侧的开关选择按钮,可以选择,内部开关为常闭还是常开。

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

光纤传感器应用

光纤传感技术的应用 在机械、电子仪器仪表、航天航空、石油、化工、生物医学、环保、电力、冶金、交通运输、轻纺、食品等国民经济各领域的生产过程自动控制、在线检测、故障诊断、安全报警以及军事等方面有着广泛的应用。 1 光纤传感器的特征 光纤传感器系统按照在传感器中的作用分为两种类型:功能型和非功能型。功能型光纤传感器光纤不仅起传光作用,而且是敏感元件,非功能型光学传感器中,光纤不是敏感元件。描述光波特征的参量很多(如光强、波长、相位、振幅态和模式分布等),这些参量在光纤传输中都可能受外界影响而发生变化。如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和物理量等对光路产生影响时,均使这些参量发生相应变化,光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。光纤传感器由光源、传输光纤、光电元件等部分组成。其中光源是光纤传感器的重要组成部件,目前常用的有白炽灯,激光器和发光二极管。光电元件多用半导体光电二极管。 与其它常规传感器相比,光纤传感器有如下特点: (1)高灵敏度,抗电磁干扰。由于光纤传感器检测系统不传送电信号,因此,光信号在中不会与电磁波发生作用,也不受任何电噪声的影响,由于这一特征,光纤传感器在电力系统的检测中得到了广泛应用。 (2)频带宽、动态范围大。 (3)可根据实际需要做成各种形状。 (4)可以用很近似的技术基础构成传感不同物理量的传感器,这些物理量包括声场、磁场、压力、温度、加速度、位移、液位、流量、电流、辐射等; (5)便于与计算机和光纤系统相连,易于实现系统的遥测和控制。 (6)结构简单、体积小、质量轻、耗能小。正由于它的这些优点,其应用领域非常广阔市场前景也比较广。 2 国内外光纤传感器的发展情况 美国是最早研制光纤传感器并投资最大的国家并且取得很大成就。从1977开始由美国海军研究所主持的光纤传感器系统共有5个公司参加,主要研究方向是水声器、磁强计和其它水下检测有关设备。1980年开始研究,1984年进行飞行实验的现代数字光纤控制系统(ADOSS),采用光纤译码的光纤传感器系统代替直升飞机驾驶员的控制,最终将实现用光纤液压传动系统代替电源。另外,光纤陀螺(FOG)计划、核辐射监控(NRM)计划、飞机发动机监控(AEM)计划、民用研究计划(CRP)使光纤传感器技术迅猛发展,在军事、民用、电力、监控、桥梁、医学生物检测等方面得到广泛应用。 3 光纤传感器的应用 光纤传感器的应用非常广泛,几乎涉及国民经济的所有重要领域和人们的日常生活。在现代信息社会中,传感器技术迅猛发展,其中光纤传感器以其独特的优点应用非常广泛,包括工业、军事、医疗、通讯、过程控制以及恶劣环境下物理量的测量,如光纤传感器在石油领域中的应用、光纤传感器在军事领域的应用、光纤传感器在医学中的应用、光纤传感器在土木工程中的应用、光纤传感器在环境监控中的应用、光纤传感器在飞机上的应用、在电力系统上的应用、光纤传感器的发展动态与研究方面等。“中国2010年远景规划”已将传感器列为重点发展的产业之一,随着我国加入世界贸易组织,传感器的市场需求和发展空间的潜力是非常大的。可以预见,随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将在海洋、化工、水利电力等各个领域显示其应用活力。

光纤传感器

光纤传感器 ①光纤传感器的基本原理 光纤传感器通过光导纤维把输入变量转换成调制的光信号。光纤传感器的测量原理有两种。 (1) 物性型光纤传感器原理 物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。这类传感器又被称为敏感元件型或功能型光纤传感器。 激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压力等。 (2) 结构型光纤传感器原理 结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 图2 结构型光纤传感器工作原理示意图 (3) 拾光型光纤传感器原理 用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。

图3 拾光型光纤传感器工作原理示意图 ②光纤传感器的优点 与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点。 (1) 电绝缘性能好。 (2) 抗电磁干扰能力强。 (3) 非侵入性。 (4) 高灵敏度。 (5) 容易实现对被测信号的远距离监控。 (6) 耐腐蚀,防爆。 (7) 光路有可挠曲性,便于与计算机联接。 (8) 结构简单,体积小,重量轻,耗电少等。 光纤传感器在军事、航空、医学、环境监测、土木工程、电子系统等很多领域都有广泛的应用,尤其适用于以下特殊环境: (1) 在高压、电磁感应噪音条件下的测试; (2) 在危险和环境恶劣条件下的测试; (3) 在机器设备内部的狭小间隙中的测试; (4) 在远距离的传输中的测试。

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

光纤传感器技术简介

光纤传感器技术简介 摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。 关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用 An Introduction to Fiber Optic Sensor Technology Liu Wj Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field. Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications 0引言 光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

光纤传感器的应用及发展

文章编号:10044736(2004)02006304 光纤传感器的应用及发展 杨春曦,胡中功3,戴克中 (武汉化工学院电气信息工程学院,湖北武汉430073) 摘 要:简要介绍了光纤传感器的特点,综述了光纤传感器的发展以及近期国际上光纤传感器的研究和应用情况,最后描述了其前景和主要研究方向. 关键词:光纤传感器;应用;光纤布拉格光栅;温度测量中图分类号:TQ 174.75+9 文献标识码:A 收稿日期:20031013 作者简介:杨春曦(1976),男,贵州铜仁人,硕士研究生.3通讯联系人. 0 引 言 光纤传感器的历史可追溯到上世纪70年代, 那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来.1977年,美国海军研究所(N RL )开始执行由查尔斯?M ?戴维斯(Charles M .D avis )博士主持的Fo ss (光纤传感器系统)计划[1],这被认为是光纤传感器问世的日子.从这以后,光纤传感器在世界的许多实验室里出现.由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果[2].但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少.最近涌现的很多成果无论是在价位上还是技术上都有了新的突破.随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔.本文简要地介绍了光纤传感器的特点,并对光纤传感器近期的发展动态进行简要地概述. 1 光纤传感器的特点 光纤传感器由光源、传输光纤、传感元件或调制区、光检测等部分组成.众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等),这些参量在光纤传输中都可能会受外界影响而发生改变.如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,均会使这 些参量发生相应变化.光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小.一般光纤传感器按其作用不同可分为两种类型:传光型和敏感型.而按其检测方法不同主要又可分为两种类型:强度型和相位型.图1是光纤传感器的结构框图 . 图1 光纤传感器的结构框图 F ig .1 Structu ral diagram of fiber op tic sen so r 与传统的传感器相比,光纤传感器具有抗电磁干扰、灵敏度高、耐腐蚀、本质安全及测量对象广泛等特点,而且在一定条件下可任意弯曲,可根据被测对象的情况选择不同的检测方法,再加上它对被测介质影响小,非常有利于在医药卫生等具有复杂环境的领域中应用. 2 光纤传感器在研究和工程中的应 用近况 2.1 光纤传感器的工程应用 光纤的优点和具体学科理论相结合,产生一大批应用范围更广、性能更好、价格相对低廉的各具特色的光纤传感器,在传统领域和新兴领域都得到很好的应用. 2.1.1 光纤传感器在化学和生物学中的应用 当前,在国外研究得比较多的化学和生物光纤传感器主要有光吸收型传感器,荧光型传感器和衰减波形光纤传感器三种. a .光吸收型传感器的工作原理是根据测定被测物对特定波长的光产生吸收以及吸收的强度来确 第26卷第2期 武 汉 化 工 学 院 学 报 V o l .26 N o.22004年6月 J. W uhan In st . Chem. T ech . Jun. 2004

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

传感器原理第九章 光纤传感器

第九章光纤传感器第一节光纤的传光原理与特性 一、光纤的结构 二、光纤的传光原理 三、光纤的传光特性 第二节传输光的调制技术 一、光强度调制 二、光相位调制 三、偏振调制 四、频率调制 第三节强度调制光纤传感器 一、光纤水深探测器 二、透射式光纤温度传感器 三、反射式光纤位移传感器 第四节相位调制光纤传感器 第五节偏振调制光纤电流传感器 第六节频率调制光纤血流传感器

第九章光纤传感器 1970年,美国康宁玻璃公司研制成功传输损耗为20db/km的光导纤维。光导纤维的诞生,是20世纪人类的重要发明。现已广泛应用于工程技术、及通讯技术。 光导纤维作为远距离传输光波信号的媒质,最早用于光通讯技术,但人们在实际光通讯过程中发现,光导纤维受到如压力,温度、电场、磁场等外界环境因素变化的影响时,将引起光纤传输的光波量,如光强、相位、频率、偏振态等的变化。若能测量光波量的变化,就可以知道导致这些光波量变化的压力、温度、电场、磁场等物理量的大小。于是,诞生了光导纤维传感器技术。 光纤传感器亦称光导纤维传感器,光纤传感器技术是70年代末发展起来的一门崭新技术,是传感器技术领域里的新成就。 光导纤维传感器技术是随着光导纤维的实用化和光通讯技术的发展而发展起来的,它与以电为基础的传感器相比有本质的区别。 光纤传感器是以光来作敏感信息的载体,用光导纤维作为传递敏感信息的媒质。

光导纤维传感器同时具有光导纤维及光学测量的一些宝贵的特点: 灵敏度高、结构简单、体积小、耗电量少、耐腐蚀、绝缘性好、光路可弯曲、抗电磁干扰、对被测场不产生影响、易实现对被测信号的远距离测控。 光纤传感器技术是一门多学科性科学,涉及到的知识面广泛,如光纤光学、光电技术、弹性力学、电磁学、电子技术、计算机应用等。本章重点介绍光纤传感器原理、分类、及典型应用。

光纤传感器的应用和发展

文章编号:100320794(2004)0820009202 光纤传感器的应用和发展 马天兵,杜 菲 (安徽理工大学,安徽淮南232001) 摘要:主要阐述了光纤传感器的原理、特点及国内外的发展情况,介绍了在实际测量中的一些具体应用。提出了我国光纤传感器存在的问题,指出了今后发展的方向,为光纤传感器的深入研究提供了有益的参考。 关键词:光纤传感器;测量精度;传感技术 中图号:T N253文献标识码:A 1 前言 自20世纪70年代以来,光纤传感器取得了飞速发展。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤传感器的原理 光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受外界影响而发生改变,特别如温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。 光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其实用范围受到限制。 3 国内外光纤传感器的发展概况 由于光纤传感器应用的广泛性及其广阔的市场,其研究和开发在世界范围内引起了高度的重视,各国家更是竟相研究开发并引起激烈的竞争。 美国是研究光纤传感器起步最早、水平最高的国家,在军事和民用领域的应用方面,其进展都十分迅速。在军事应用方面,研究和开发主要包括:水下探测的光纤传感器、用于航空监测的光纤传感器、光纤陀螺、用于核辐射检测的光纤传感器等。这些研究都分别由美国空军、海军、陆军和国家宇航局(NAS A)的有关部门负责,并得到许多大公司的资助。美国也是最早将光纤传感器用于民用领域的国家。如运用光纤传感器监测电力系统的电流、电压、温度等重要参数,监测桥梁和重要建筑物的应力变化,检测肉类和食品的细菌和病毒等。日本和西欧各国也高度重视并投入大量经费开展光纤传感器的研究与开发。日本在20世纪80年代便制定了“光控系统应用计划”,该计划旨在将光纤传感器用于大型电厂,以解决强电磁干扰和易燃易爆等恶劣环境中的信息测量、传输和生产过程的控制。20世纪90年代,由东芝、日本电气等15家公司和研究机构,研究开发出12种具有一流水平的民用光纤传感器。西欧各国的大型企业和公司也积极参与了光纤传感器的研发和市场竞争,其中包括英国的标准电讯公司、法国的汤姆逊公司和德国的西门子公司等。 我国在20世纪70年代末就开始了光纤传感器的研究,其起步时间与国际相差不远。目前,已有上百个单位在这一领域开展工作,如清华大学、华中理工大学、武汉理工大学、重庆大学、核工业总公司九院、电子工业部1426所等。他们在光纤温度传感器、压力计、流量计、液位计、电流计、位移计等领域进行了大量的研究,取得了上百项科研成果,其中相当数量的研究成果具有很高的实用价值,有的达到世界先进水平。每年发表的论文、申请的专利也不少。但与发达国家相比,我国的研究水平还有不小的差距,主要表现在商品化和产业化方面,大多数品种仍处于实验室研制阶段,不能投入批量生产和工程化应用。 4 光纤传感器的应用 光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年 ? 9 ?  2004年第8期 煤 矿 机 械

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008 第25卷第5期 ChineseJournalofMedicalPhysics Vol.25.No.5 光纤传感器的基本原理及在医学上的应用 孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封 475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031) 摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。结果:目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。光纤温度传感器在癌症治疗方面的研究和开发正日益兴起。结论:光纤传感器作为一种优势明显的新型传感器在医学领域得到应用,为治疗疾病提供了一种崭新的方法。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将会进一步推动医学的飞速发展。 关键词:光纤传感器;测量;医学;应用中图分类号:R312 文献标识码:A 文章编号:1005-202X (2008)05-0846-05 The Basic Principle and Applications on Medical of Fiber Optic Sensors SUNSu-mei1,CHENHong-yao2,3,YINGuo-sheng2 (1.LuoheMedicalCollege,LuoheHe'nan462000,China;2.ChinaPhysicsandElectronicsCollege,He'nanUniversity,KaifengHe'nan475004,China;3.TheAn'huiInstituteofOpticsandPrecisionMechanics,TheChineseAcademyofSciences,HefeiAnhui230031,China) Abstract:Objective:Thisarticlesimplyintroducedthebasicprincipleoffiberopticsensoranditsapplicationespeciallyonmedicalinbloodpressure,thespeedofflow,thepHvalueetc.Method:Thefiberopticsensorbasicprincipleisthelightwhichsendsoutthephotosourcesendsinafterthefiberopticthemodulationarea,inthemodulationarea,theoutsidewasmeasuredtheparameterwithentersthemodulationareathelighttoaffectmutually,causesthelighttheintensity,thefrequency,thephase,thepolarizationtooccurchangesintothesignallightwhichmodulates,againpassesthroughthefiberoptictosendinthelightdetector,thedemodulatorobtainsismeasuredthephysicalquantity.Thefiberopticsensormaydivideintotwokindsaccordingtoitssensingprinciple:onekindisthelight-passingsensor;theotheristhesensingsensor.Result:Atpresent,themainapplicationinthemedicineisthelight-passingfiberopticsensor.Themainadvantagesoffiberoptic sensorare:exquisite,insulation,notinfluencedbytheradiofrequencyandthemicrowave.Themeasuringaccuracyish igh.Theimagetransmissioninmedicalisthespecialpartof theapplicationonthetransmissionmodesfiberopticsensor.Onlytieaplentyoffiberoptictocompositionfiberoptics,wecouldmakethesensorwhichcancausetheimagespace 收稿日期:2008-03-10 作者简介:孙素梅(1954-),女,漯河医学高等专科学校物理教研室 副教授。Tel :0395-296452713939575106;E -mail : sunsumei2007@https://www.sodocs.net/doc/7411613854.html, 。 846--

相关主题