搜档网
当前位置:搜档网 › 第6章岩石边坡工程分析

第6章岩石边坡工程分析

第6章岩石边坡工程分析
第6章岩石边坡工程分析

第6章岩石边坡工程 (213)

§6.1 概述 (213)

§6.2 岩石边坡破坏 (214)

6.2.1 岩石边坡的破坏类型 (214)

6.2.2 边坡稳定的影响因素 (215)

§6.3 岩石边坡稳定分析 (217)

6.3.1 圆弧法岩坡稳定分析 (217)

6.3.2 平面滑动岩坡稳定分析 (221)

6.3.3 双平面滑动岩坡稳定分析 (226)

6.3.4 力多边形法岩坡稳定分析 (228)

6.3.5 力的代数叠加法岩坡稳定分析 (230)

6.3.5 楔形滑动岩坡稳定分析 (231)

6.3.6 倾倒破坏岩坡稳定分析 (234)

§6.4 岩石边坡加固 (237)

6.4.1 用混凝土填塞岩石断裂部分 (237)

6.4.2 锚栓或预应力缆索加固 (237)

6.4.3 混凝土挡墙或支墩加固 (238)

6.4.4 挡墙与锚栓相结合的加固 (238)

6.5 岩石边坡加固实例 (240)

习题 (242)

第6章岩石边坡工程

§6.1概述

倾斜的地面称为坡或斜坡。露天矿井开挖形成的斜坡构成了采矿区的边界,因此称为边坡;在铁路、公路建设施工中,所形成的路堤斜坡称为路堤边坡;开挖路堑所形成的斜坡称为路堑边坡;在水利建设中开挖所形成的斜坡也称为边坡。在土木工程中常称为边坡的实际上是建筑边坡,就是在建(构)筑物场地或其周边,由于建(构)筑物和市政工程开挖或填筑施工所形成的人工边坡和对建(构)筑物安全或稳定有影响的自然边坡。

边坡按成因可分为自然边坡和人工边坡。天然的山坡和谷坡是自然边坡,此类边坡是在地壳隆起或下陷过程中逐渐形成的。较大规模的破坏都是自然边坡。人工边坡是由于人类活动形成的边坡,其中挖方形成的边坡称为开方边坡,填方形成的称为构筑边坡,后者有时也称为坝坡。人工边坡的几何参数可以人为控制。

边坡按组成物质可分为岩质边坡和土质边坡。岩坡失稳与土坡失稳的主要区别就在于土坡中可能滑动面的位置并不明显,而岩坡中的滑动面则往往较为明确,无需像土坡那样通过大量试算才能确定。岩坡中结构面的规模、性质及其组合方式在很大程度上决定着岩坡失稳时的破坏形式;结构面的产状或性质稍有改变,则岩坡的稳定性将会受到显著影响。因此,要正确解决岩坡稳定性问题,首先需搞清结构面的性质、作用、组合情况以及结构面的发育情况等,在此基础上不仅要对破坏方式做出判断,而且对其破坏机制也必须进行分析,这是保证岩坡稳定性分析结果正确性的关键。

典型的边坡如图6-1所示。边坡与坡顶面相交的部位称为坡肩;与坡底面相交的部位坡趾或坡脚;坡面与水平面的夹角称为坡面角或坡倾角;坡肩与坡脚间的高差称为坡高。

图6-1 边坡示意图

边坡稳定向题是工程建设中经常遇到的问题,例如水库的岸坡、渠道边坡、隧洞进出口边坡、拱坝坝肩边坡以及公路或铁路的路堑边坡等,都涉及到稳定性问题。边坡的失稳,轻则影响工程质量与施工进度;重则造成人身伤亡与国民经济的重大损失。因此,不论土木工程还是水利水电工程,边坡的稳定问题经常成为需要重点考虑的问题。

§6.2岩石边坡破坏

6.2.1 岩石边坡的破坏类型

岩坡的破坏类型从形态上可分为崩塌和滑坡。

所谓崩塌是指块状岩体与岩坡分离,向前翻滚而下。其特点是,在崩塌过程中,岩体中无明显滑移面。崩塌一般发生在既高又陡的岩坡前缘地段,这时大块的岩体与岩坡分离而向前倾倒,如图6-2(a)所示;或者,坡顶岩体由某种原因脱落翻滚而在坡脚下堆积,见图6-2(b)和(c)所示。它经常产生于坡顶裂隙发育的地方。其起因是由于风化等原因减弱了节理面的内聚力;或由于雨水进入裂隙产生水压力所致;或者也可能由于气温变化、冻融松动岩石的结果;或者是植物根系生长造成膨胀压力,以及地震、雷击等原因而引起。自然界的巨型山崩,总是与强烈地震或特大暴雨相伴生。

所谓岩石边坡的滑坡是指岩体在重力作用下,沿坡内软弱结构面产生的整体滑动。与崩塌相比,滑坡通常以深层破坏形式出现,其滑动面往往深入坡体内部,甚至延伸到坡脚以下,其滑动速度虽比崩塌缓慢,但不同的滑坡其滑速可以相差很大,这主要取决于滑动面本身的物理力学性质。当滑动面通过塑性较强的岩土体时,其滑速一般比较缓慢;相反,当滑动面通过脆性岩石,如果滑面本身具有一定的抗剪强度,在构成滑面之前可承受较高的下滑力,那么一旦形成滑面即将下滑时,抗剪强度急剧下降,滑动往往是突发而迅速的。

滑坡可分为平面滑动、楔形滑动以及旋转滑动。平面滑动是一部分岩体在重力作用下沿着某一软弱面(层面、断层、裂隙)的滑动,如图6-3(a)所示。滑面的倾角必须大于滑面的内摩擦角,否则无论坡角和坡高的大小如何,边坡都不会滑动。平面滑动不仅要求滑体克服滑面底部的阻力,而且还要克服滑面两侧的阻力。在软岩(例如页岩)中,如果滑面倾角远大于内摩擦角,则岩石本身的破坏即可解除侧边约束,从而产生平面滑动。而在硬岩中,如果结构面横切到坡顶,解除了两侧约束时,才可能发生平面滑动。当两个软弱面相交,切割岩体形成四面体时,就可能出现楔形滑动(图6-3,b)。如果两个结构面的交线因开挖而处于出露状态,不需要地形上或结构上的解除约束即可能产生滑动。法国马尔帕塞坝的崩溃(1656年)就是岩基楔形滑动的结果。旋转滑动的滑面通常呈弧形,见图6-3(c),这种滑动一般产生于非成层的均质岩体中。

图6-2(图c的标题改为崩塌破坏)图6-3 边坡实际的破坏形式是很复杂的,除上述两种主要破坏形式外,还有介于崩塌与滑坡之间的滑塌,以及倾倒、剥落、流动等破坏方式;有时也可能出现以某种破坏方式为主,兼有其它若干破坏形式的综合破坏。

岩坡的滑动过程有长有短,有快有慢,一般可分为三个阶段。初期是蠕动变形阶段,这一阶段中坡面和坡顶出现张裂缝并逐渐加长和加宽;滑坡前缘有时出现挤出现象,地下水位发生变化,有时会发出响声。第二阶段是滑动破坏阶段,此时滑坡后缘迅速下陷,岩体以极大的速度向下滑动。此一阶段往往造成巨大的危害。最后是逐渐稳定阶段,这一阶段中,疏松的滑体逐渐压密,滑体上的草木逐渐生长,地下水渗出由浑变清等。

6.2.2 边坡稳定的影响因素

1.结构面在边坡破坏中的作用

许多边坡在陡坡角和几百米高的条件下是稳定的,而许多平缓边坡仅高几十米就破坏了。这种差异是因为岩石边坡的稳定是随岩体中结构面(诸如断层、节理、层面等)的倾角而变化的。如果这些结构面是直立的或水平的,就不会发生单纯的滑动,此时的边坡破坏将包括完整岩块的破坏以及沿某些结构面发生的移动。另一

方面,如果岩体所含的结构面倾向于坡面,倾角又在30°到70°之间,就会发生简单的滑动。

因此,边破变形与破坏的首要条件,在于坡体中存在各种形式的结构面。岩体的结构特征对边坡应力场的影响主要表现为由于岩土体的不均一和不连续性,使沿结构面周边出现应力集中和应力阻滞现象。因此,它构成了边坡变形与破坏的控制性条件,从而形成不同类型的变形与破坏机制。

边坡结构面周边应力集中的形式主要取决于结构面的产状与主压应力的关系。结构面与主压应力平行,将在结构面端点部位或应力阻滞部位出现拉应力和剪应力集中,从而形成向结构面两侧发展的张裂缝。结构面与主压应力垂直,将发生平行结构面方向的拉应力,或在端点部位出现垂直于结构面的压应力,有利于结构面压密和坡体稳定。结构面与主压应力斜交,结构面周边主要为剪应力集中,并于端点附近或应力阻滞部位出现拉应力。顺坡结构面与主压应力成30~40°交角,将出现最大剪应力与拉应力值,对边坡稳定十分不利,坡体易于沿结构面发生剪切滑移,同时可能出现折线型蠕滑裂隙系统。结构面相互交汇或转折处,形成很高的压应力及拉应力集中区,其变形与破坏常较剧烈。

2.边坡外形改变对边坡稳定性的影响

河流、水库及湖海的冲刷及淘刷,使岸坡外形发生变化。当侵蚀切露坡体底部的软弱结构面,使坡体处于临空状态,或侵蚀切露坡体下伏软弱层的顶面时,使坡体失去平衡,最后导致破坏。

人工削坡时未考虑岩体结构特点,切露了控制斜坡稳定的主要软弱结构面,形成或扩大了临空面,使坡体失去支撑,会导致斜坡的变形与破坏。施工顺序不当,坡顶开挖进度慢而坡脚开挖速度快,加陡斜坡或形成倒坡。坡角增加时,坡顶及坡面张力带范围扩大,坡脚应力集中带的最大剪应力也随之增大。坡顶、坡脚应力集中增大,会导致斜坡的变形与破坏。

3.岩体力学性质的改变对边坡稳定性的影响

风化作用使坡体强度减小,坡体稳定性大大降低,促进斜坡变形与破坏。坡体岩土风化越深,斜坡稳定性越差,稳定坡角越小。

斜坡的变形与破坏大都发生在雨季或雨后,还有部分发生在水库蓄水和渠道放水之后,有的则发生在施工排水不当的情况下。这些都表明水对斜坡稳定性的影响是显著的。当斜坡岩土体亲水性较强或有易溶矿物成分时,如含易溶盐类的粘土质页岩、钙质页岩、凝灰质页岩、泥灰岩或断层角砾岩等,浸水易软化、泥化或崩解,导致边坡变形与破坏。因此,水的浸润作用对斜坡的危害性大而普遍。

4.边坡直接受各种力的作用

区域构造应力的变化、地震、爆破、地下静水压力和动水压力,以及施工荷载等,都使斜坡直接受力,对斜坡稳定的影响直接而迅速。

边坡处于一定历史条件下的地应力环境中,特别是在新构造运动强烈的地区,往往存在较大的水平构造残余应力。因而这些地区边坡岩体的临空面附近常常形成应力集中,主要表现为加剧应力差异分布。这在坡脚、坡面及坡顶张力带表现得最

明显。研究表明,水平构造残余应力愈大,其影响愈大,二者成正比关系。与自重应力状态下相比,边坡变形与破坏的范围增大,程度加剧。

由于雨水渗入,河水水位上涨或水库蓄水等原因,地下水位抬高,使斜坡不透水的结构面上受到静水压力作用,它垂直于结构面而作用在坡体上,削弱了该面上所受滑体重量产生的法向应力,从而降低了抗滑阻力。坡体内有动水压力存在,会增加沿渗流方向的推滑力,当水库水位迅速回落时犹甚。

地震引起坡体振动,等于坡体承受一种附加荷载。它使坡体受到反复振动冲击,使坡体软弱面咬合松动,抗剪强度降低或完全失去结构强度,斜坡稳定性下降甚至失稳。地震对斜坡破坏的影响程度,取决于地震强度大小,并与斜坡的岩性、层理、断裂的分布和密度以及坡面的方位和岩土体含水性有关。

由上述可见,应根据岩土体的结构特点、水文地质条件、地形地貌特征,并结合区域地质发育史,分析各种营力因素的作用性质及其变化过程,来论证边坡的稳定性。

§6.3 岩石边坡稳定分析

在进行岩坡稳定分析时,首先应当查明岩坡可能的滑动类型,然后对不同类型采用相应的分析方法。严格而言,岩坡滑动大多属空间滑动问题,但对只有一个平面构成的滑裂面,或者滑裂面由多个平面组成而这些面的走向又大致平行者,且沿着走向长度大于坡高时,也可按平面滑动进行分析,其结果偏于安全。在平面分析中,常常把滑动面简化为圆弧、平面、折面,把岩体看作为刚体,按莫尔—库仑强度准则对指定的滑动面进行稳定验算。

目前,用于分析岩坡稳定性的方法有刚体极限平衡法、赤平投影法、有限元法以及模拟试验等。但是比较成熟,目前应用得较多的仍然是刚体极限平衡法。在刚体极限平衡法中,组成滑坡体的岩块被视为刚体。按此假定,可用理论力学原理分析岩块处于平衡状态时必须满足的条件。本节主要讨论刚体极限平衡法。

实践证明,许多滑坡的发生都与岩体内的渗水作用有关,这是由于岩体内渗水后岩石强度降低和应力增加的缘故。因此,做好岩坡的排水工作是防止滑坡的手段之一。

6.3.1 圆弧法岩坡稳定分析

对于均质的以及没有断裂面的岩坡,在一定的条件下可看作平面问题,用圆弧法进行稳定分析。圆弧法是最简单的分析方法之一。

在用圆弧法进行分析时,首先假定滑动面为一圆弧(图6-4),把滑动岩体看作为刚体,求滑动面上的滑动力及抗滑力,再求这两个力对滑动圆心的力矩。抗滑力矩M R和滑动力矩M S之比,即为该岩坡的稳定安全系数F S:

S

R S M M F ==滑动力矩抗滑力矩

图6-4 圆弧法岩坡分析

如果F S >1,则沿着这个计算滑动面是稳定的;如果F S <1,则是不稳定的;如果F S =1,则说明这个计算滑动面处于极限平衡状态。

由于假定计算滑动面上的各点覆盖岩石重量各不相同。因此,由岩石重量引起在滑动面上各点的法向压力也不同。抗滑力中的摩擦力与法向应力的力的大小有关,所以应当计算出假定滑动面上各点的法向应力。为此可以把滑弧内的岩石分条,用所谓条分法进行分析。

如图6-4,把滑体分为n 条,其中第i 条传给滑动面上的重量为W i ,它可以分解为两个力:一是垂直于圆弧的法向力N i ;另一是切于圆弧的切向力T i 。由图6-4可见

i i i i

i i W T W N θθsin cos == (6-1)

N i 通过圆心,其本身对岩坡滑动不起作用。但是N i 可使岩条滑动面上产生摩擦力N i i ?tan (i ?为该弧所在的岩体的内摩擦角),其作用方向与岩体滑动方向相反,故对岩坡起着抗滑作用。

此外,滑动面上的内聚力c 也是起抗滑作用的,所以第i 条岩条滑弧上的抗滑力为:

i i i i N l c ?tan +

因此第i 条产生的抗滑力矩为

R N l c M i i i i i R )tan ()(?+=

式中,i c ——第i 条滑弧所在岩层的内聚力(MPa);

i ?一一第i 条滑弧所在岩层的内摩擦角(°);

i l ——第i 条岩条的圆弧长度(m)。

对每一岩条进行类似分析,可以得到总的抗滑力矩

R N l c M n

i i i n i i i R ∑∑==+=11)tan (? (6-2)

而滑动面上总的滑动力矩为

∑==n

i i S R T M 1 (6-3)

将式(6-2)及(6-3)代入安全系数公式,得到假定滑动面上的安全系数为

∑∑∑===+=n i i

n i i i n i i

i S T

N l c F 111tan ? (6-4)

由于圆心和滑动面是任意假定的,因此要假定多个圆心和相应的滑动面作类似的分析进行试算,从中找到最小的安全系数即为真正的安全系数,其对应的圆心和滑动面即为最危险的圆心和滑动面。

根据用圆弧法的大量计算结果,有人绘制出了如图6-5所示的曲线。该曲线表示当一定的任何物理力学性质时坡高与坡角的关系。在图上,横轴表示坡角α,纵轴表示坡高系数'

H ,H 90表示均质垂直岩坡的极限高度,亦即坡项张裂缝的最大深度,用下式计算: )245tan(290?

γ+?=c

H (6-5)

图6-5 对于各种不同计算指标的均质岩坡

高度与坡角的关系曲线

利用这些曲线可以很快地决定坡高或坡角,其计算步骤如下:

1)根据岩体的性质指标(c 、?、γ)按式(6-5)确定H 90;

2)如果己知坡角,需要求坡高,则在横轴上找到已知坡角位的那点,自该点向上作一垂直线,相交于对应已知内摩擦角?的曲线,得一交点,然后从该点作一水平线交于纵轴,求得'H ,将'

H 乘以H 90即得所要求的坡高H 90'H H H = (6-6)

3)如果已知坡高H ,需要确定坡角,则首先用下式确定'

H 90'H H H =

根据这个'H ,从纵轴上找到相应点,通过该点作一水平线相交于对应已知?的

曲线,得一交点,然后从该交点作向下的垂直线交于横轴求得坡角。

例题6-1 已知均质岩坡的?=26°,c =400kPa ,γ=25kN /m 3,问当岩坡高度为300m 时,坡角应当采用多少度?

解:

1)根据已知的岩石指标计算90H

1902400tan (4513)51.225

H -?=

?-?=m 2)计算'H 9.52

.5130090'===H H H 3)按照图6-5的曲线,根据?=26°以及9.5'=H ,求得α=46.5°。

6.3.2 平面滑动岩坡稳定分析

1. 平面滑动的一般条件

岩坡沿着单一的平面发生滑动,一般必须满足下列几何条件(见图6-6):

1)滑动面的走向必须与坡面平行或接近平行(约在土20°的范围内);

2)滑动面必须在边坡面露出,即滑动面的倾角β必须小于坡面的倾角α;

3)滑动面的倾角β必须大于该平面的摩擦角?;

4)岩体中必须存在对于滑动阻力很小的分离面,以定出滑动的侧面边界。

2. 平面滑动分析

大多数岩坡在滑动之前在坡项上或坡面上出现张裂缝,如图6-6所示。张裂缝中不可避免地还充有水,从而产生侧向水压力,使岩坡的稳定性降低。在分析中往往作下列假定:

1) 滑动面及张裂缝的走向平行于坡面;

2) 张裂缝垂直,其充水深度为w Z ;

3) 水沿张裂缝底进入滑动面渗漏,张裂缝底与坡趾间的长度内水压力按线性变化至零(三角形分布),如图6-6所示。

4) 滑动块体重量W 、滑动面上水压力U 和张裂缝中水压力V 三个均通过滑体

的重心。即假定没有使岩块转动的力矩,破坏只是由于滑动。一般而言,忽视力矩造成的误差可以忽略不计,但对于具有陡倾斜结构面的陡边坡要考虑可能产生倾倒破坏。

图6-6 平面滑动分析简图(将Ⅰ改为“张裂缝”)

潜在滑动面上的安全系数可按极限平衡条件求得。这时安全系数等于总抗滑力与总滑动力之比,即

β

β?ββcos sin tan )sin cos (V W V U W cL F S +--+= (6-7) 式中,L ——滑动面长度(每单位宽度内的面积),m 。

β

sin Z H L -= (6-8) L Z U w w γ2

1= (6-9) 22

1w w Z V γ= (6-10) W 按下列公式计算。当张裂缝位于坡顶面时,

(){}

αβγcot cot ]/1[2

122--=H Z H W (6-11) 当张裂缝位于坡面上时,

[]

)1tan (cot cot )/1(2122--=αββγH Z H W (6-12) 当边坡的几何要素和张裂缝内的水深为已知时,用上列这些公式计算安全系数很简单。但有时需要对不同的边坡几何要素、水深、不同抗剪强度的影响进行比较,这时用上述方程式计算就相当麻烦。为了简化起见可以将(6-7)式重新整理为下列的无量纲的形式:

β

?βγ11tan tan )](tan [)/2(--++-+=RS Q S P R Q P H c F S (6-13) 式中

β

sin /1H Z P -=

14) 当张裂缝在坡顶面上时: βαβsin }cot cot ])/(1{[2--=H Z Q (6-15)

当张裂缝在坡面上时

)]1tan (cot cos )/1[(2--=αββH Z Q (6-16)

其它

H

Z Z Z R w w ??=γγ (6-17) βsin H Z Z Z S w ?=

(6-18) P 、Q 、R 、S 均为无量纲的,它们只取决于边坡的几何要素,而不取决于边坡的尺寸。因此,当内聚力c =0时,安全系数s F 不取决于边坡的具体尺寸。

图6-7、图6-8和图6-9分别表示各种几何要素的边坡的P 、S 、Q 的值,可供

计算使用。两种张裂缝的位置都包括在Q比值的图解曲线中,所以不论边坡外形如何,都不需检查张裂缝的位置就能求得Q值,但应注意张裂缝的深度一律从坡顶面算起。

图6-8 不同边坡几何要素的P值图6-9 不同边坡几何要素的S值

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

岩石边坡治理

应用锚杆治理岩石边坡的研究 摘要: 应用正交设计原理对常张高速公路某边坡锚固参数进行了优化设计, 结果表明以边坡水平变形量为评价指标, 主要锚固参数对锚固效果的影响显著性依次为: 锚杆长度> 锚杆间距> 混凝土喷层厚度。 关键词: 锚杆, 正交设计, 锚固参数, 水平变形 在各类边坡工程中, 开挖岩石高边坡工程是十分常见而又非常重要的, 往往由于其复杂的地质结构而成为边坡工程中的重点与难点。岩石工程边坡的稳定问题事关工程建设和运行期间的安全和经济效益, 对其稳定性进行综合评价和控制具有非常重要的工程实践意义和经济价值。在我国, 治理岩石边坡的最有效措施就是锚固, 然而锚固参数( 锚杆长度、锚固间距、喷混凝土厚度等) 的选取至今都没能很好的解决, 设计大多数停留在经验( 规范) 的层次上。因此, 如何确定岩石边坡最优锚固参数就显得尤为重要。 1 锚杆加固机理 研究锚杆的加固机理必须考虑其锚固方式, 它与所加固的岩体之间的相互作用。研究表明, 作为岩体内在因素的岩体结构在岩体的变形破坏发展过程中起着决定性作用, 而作为外因的外力即荷载, 是通过内因起作用的。在岩体表面或内部修建工程时, 应把岩体视为工程结构的一部分或全部, 岩体与地下洞室的支护结构形成一个完整的支护体系。而且在整个体系中, 岩体应视为主要的承载体单元。在岩体加固工程中, 对不稳定岩体不一定采取支护措施, 而从改造变更岩体结构的观点出发, 对劈裂、块裂结构的岩体直接进行处理, 使它变为完整的岩体。锚杆的作用效果还可从改变岩体应力状况方面来理解。岩体变形和破坏机制包括结构变形和破坏及材料变形和破坏两种因素, 其中材料的变形和破坏多

边坡工程第七章

第7章平面形破坏的稳定分析 §7.1 引言 在岩石边坡中平面破坏是比较少见的,原因是产生平面破坏所需要的全部几何条件在实际边坡中仅是偶而存在。楔形破坏则是普遍得多的一种情况,所以许多岩石边坡工程师把平面破坏当作较普遍的楔形破坏分析的一种特殊情况。 对于一个具有广泛设计知识的经验丰富的边坡设计师来说,这种办法可能是正确的,但在边坡破坏的一般讨论中,忽视二线边坡问题那就不应该了。从这个简单破坏模式的力学研究中可学到许多有价值的东西,这对于说明边坡随抗剪强度和地下水条件变化而变化的灵敏度是特别有用的。当论及较复杂的三维边坡破坏力学时,这种变化就不太明显。 沿一个结构面发生的平面滑动破坏是最简单的平面形破坏,大部分情况下,是沿着由几个结构面组成的多平面形破坏,这时在剖面上看,滑动面为折线形。 图7-1 发生平面形破坏的条件 §7.2滑体沿单个滑面滑动时的稳定分析 §7.2.1平面破坏的一般条件 为了使滑动沿单一平面发生,如图7-1所示,必须满足以下的几何条件: 1. 滑动面的走向必须与坡面平行或接近平行(约在° ±20的范围之内)。 2.破坏面必须在边坡面露出,就是说它的倾角必须小于坡面的倾角,即β α>。 β>。 3.破坏面的倾角必须大于该面的摩擦角,即φ 4.岩体中必须存在对于滑动仅有很小阻力的解离面,它规定了滑动的侧面边界。另一种可能的情况是,破坏在穿通边坡的凸出的“鼻部”的破坏平面上发生。 分析二维边坡问题时,通常是考虑与边坡面正交的一个单位厚度的岩片。这就是说, 滑动面的面积可用穿过边坡垂直断面上可见的滑动线长度来代表,而滑动块的体积可用在 105

106 垂直断面上表示该块体图形的面积来代表。 §7.2.2 平面破坏分析 分析中所考虑的边坡几何要素,如图7-2中所规定。注意,有两种情况须加考虑: a .坡顶面上有张裂缝的边坡。 b .坡面上有张裂缝的边坡。 图7-2 边坡的几何要素 当张裂缝与边坡坡顶线重合时,则处于由一种情况转变为另一种情况的过渡阶段,这时: βαtan cot 1?=H z (7-1) 此分析中所作的假定如下: a .滑动面及张裂缝的走向平行于坡面。 b .张裂缝是直立的,其中充有深度为w z 的水。 c. 水沿张裂缝的底进入滑动面并沿滑动面渗透,在大气压力下沿坡面滑动面的出露处流出。在张裂缝中和沿滑动面上由于存在着地下水而引起的水压分布如图7-2所示。 d .W (滑动块的重量)、U (由于滑动面上水压所产生的上举力)和V (由于张裂缝中的水压所产生的力)三力均通过滑体的重心来作用。换言之,这就是假定没有使岩块旋转的力矩, 所以破坏仅仅是滑动。尽管这个假定对于大多数实际边坡来说不是绝对真实的,但忽视力

第6章岩石边坡工程分析

第6章岩石边坡工程 (213) §6.1 概述 (213) §6.2 岩石边坡破坏 (214) 6.2.1 岩石边坡的破坏类型 (214) 6.2.2 边坡稳定的影响因素 (215) §6.3 岩石边坡稳定分析 (217) 6.3.1 圆弧法岩坡稳定分析 (217) 6.3.2 平面滑动岩坡稳定分析 (221) 6.3.3 双平面滑动岩坡稳定分析 (226) 6.3.4 力多边形法岩坡稳定分析 (228) 6.3.5 力的代数叠加法岩坡稳定分析 (230) 6.3.5 楔形滑动岩坡稳定分析 (231) 6.3.6 倾倒破坏岩坡稳定分析 (234) §6.4 岩石边坡加固 (237) 6.4.1 用混凝土填塞岩石断裂部分 (237) 6.4.2 锚栓或预应力缆索加固 (237) 6.4.3 混凝土挡墙或支墩加固 (238) 6.4.4 挡墙与锚栓相结合的加固 (238) 6.5 岩石边坡加固实例 (240) 习题 (242)

第6章岩石边坡工程 §6.1概述 倾斜的地面称为坡或斜坡。露天矿井开挖形成的斜坡构成了采矿区的边界,因此称为边坡;在铁路、公路建设施工中,所形成的路堤斜坡称为路堤边坡;开挖路堑所形成的斜坡称为路堑边坡;在水利建设中开挖所形成的斜坡也称为边坡。在土木工程中常称为边坡的实际上是建筑边坡,就是在建(构)筑物场地或其周边,由于建(构)筑物和市政工程开挖或填筑施工所形成的人工边坡和对建(构)筑物安全或稳定有影响的自然边坡。 边坡按成因可分为自然边坡和人工边坡。天然的山坡和谷坡是自然边坡,此类边坡是在地壳隆起或下陷过程中逐渐形成的。较大规模的破坏都是自然边坡。人工边坡是由于人类活动形成的边坡,其中挖方形成的边坡称为开方边坡,填方形成的称为构筑边坡,后者有时也称为坝坡。人工边坡的几何参数可以人为控制。 边坡按组成物质可分为岩质边坡和土质边坡。岩坡失稳与土坡失稳的主要区别就在于土坡中可能滑动面的位置并不明显,而岩坡中的滑动面则往往较为明确,无需像土坡那样通过大量试算才能确定。岩坡中结构面的规模、性质及其组合方式在很大程度上决定着岩坡失稳时的破坏形式;结构面的产状或性质稍有改变,则岩坡的稳定性将会受到显著影响。因此,要正确解决岩坡稳定性问题,首先需搞清结构面的性质、作用、组合情况以及结构面的发育情况等,在此基础上不仅要对破坏方式做出判断,而且对其破坏机制也必须进行分析,这是保证岩坡稳定性分析结果正确性的关键。 典型的边坡如图6-1所示。边坡与坡顶面相交的部位称为坡肩;与坡底面相交的部位坡趾或坡脚;坡面与水平面的夹角称为坡面角或坡倾角;坡肩与坡脚间的高差称为坡高。 图6-1 边坡示意图 边坡稳定向题是工程建设中经常遇到的问题,例如水库的岸坡、渠道边坡、隧洞进出口边坡、拱坝坝肩边坡以及公路或铁路的路堑边坡等,都涉及到稳定性问题。边坡的失稳,轻则影响工程质量与施工进度;重则造成人身伤亡与国民经济的重大损失。因此,不论土木工程还是水利水电工程,边坡的稳定问题经常成为需要重点考虑的问题。

第6章岩石边坡工程

第6章岩石边坡工程 §6.1概述 边坡按成因可分为自然边坡和人工边坡。天然的山坡和谷坡是自然边坡,此类边坡是在地壳隆起或下陷过程中逐渐形成的。通常发生较大规模破坏是自然边坡。人工边坡是由于人类活动形成的边坡,其中挖方形成的边坡称为开方边坡,填方形成的称为构筑边坡,后者有时也称为坝坡。人工边坡的几何参数可以人为控制。 边坡按组成物质可分为岩质边坡和土质边坡。岩坡失稳与土坡失稳的主要区别在于土坡中可能滑动面的位置并不明显,而岩坡中的滑动面则往往较为明确,无需像土坡那样通过大量试算才能确定。岩坡中结构面的规模、性质及其组合方式在很大程度上决定着岩坡失稳时的破坏形式;结构面的产状或性质稍有改变,岩坡的稳定性将会受到显著影响。因此,要正确解决岩坡稳定性问题,首先需搞清结构面的性质、作用、组合情况以及结构面的发育情况等,在此基础上不仅要对破坏方式做出判断,而且对其破坏机制也必须进行分析,这是保证岩坡稳定性分析结果正确性的关键。 典型的边坡如图6-1所示。边坡与坡顶面相交的部位称为坡肩;与坡底面相交的部位坡趾或坡脚;坡面与水平面的夹角称为坡面角或坡倾角;坡肩与坡脚间的高差称为坡高。

图6-1 边坡示意图 边坡稳定问题是工程建设中经常遇到的问题,例如水库的岸坡、渠道边坡、隧洞进出口边坡、拱坝坝肩边坡以及公路或铁路的路堑边坡等,都涉及到稳定性问题。边坡的失稳,轻则影响工程质量与施工进度;重则造成人员伤亡与国民经济的重大损失。因此,不论土木工程还是水利水电工程,边坡的稳定问题经常成为需要重点考虑的问题。 §6.2岩石边坡破坏 6.2.1 岩石边坡的破坏类型 岩坡的破坏类型从形态上可分为崩塌和滑坡。 所谓崩塌是指块状岩体与岩坡分离,向前翻滚而下。其特点是,在崩塌过程中,岩体中无明显滑移面。崩塌一般发生在既高又陡的岩坡前缘地段,这时大块的岩体与岩坡分离而向前倾倒,如图6-2(a)所示;或者,坡顶岩体由于某种原因脱落翻滚而在坡脚下堆积,如图6-2(b)和(c)所示。崩塌经常发生在坡顶裂隙发育的地方。其起因是由于风化等原因减弱了节理面的内聚力,或是由于雨水进入裂隙产生水压力所致,或者也可能是由于气温变化、冻融松动岩石的结果,或者是由于植物根系生长造成膨胀压力,以及地震、雷击等原因而引起。自然界的巨型山崩,总是与强烈地震或特大暴雨相伴生。 所谓滑坡是指岩体在重力作用下,沿坡内软弱结构面产生的整体滑动。与崩塌相比,滑坡通常以深层破坏形式出现,其滑动面往往深入坡体内部,甚至延伸到坡脚以下,其滑动速度虽比崩塌缓慢,但不同的滑坡其滑速可以相差很大,这主要取决于滑动面本身的物理力学性质。当滑动面通过塑性较强的岩土体时,其滑速一般比较缓慢;相反,当滑动面通过脆性岩石,如果滑面本身具有一定的抗剪强度,在构成滑面之前可承受较高的下滑力,那么一旦形成滑面即将下滑时,抗剪强度急剧下降,滑动往往是突发而迅速的。 滑坡的滑动形式可分为平面滑动、楔形滑动以及旋转滑动。平面滑动是一部分岩体在重力作用下沿着某一软弱面(层面、断层、裂隙)的滑动,如图6-3(a)所示。滑面的倾角必须大于滑面的内摩擦角,否则无论坡角和坡高的大小如何,边坡都不会滑动。平面滑动不仅要求滑体克服滑面底部的阻力,而且还要克服滑面两侧的阻力。在软岩(例如页岩)中,如果滑面倾角远大于内摩擦角,则岩石本身的破坏即可解除侧边约束,从而产生平面滑动。而在硬岩中,如果结构面横切到坡顶,解除了两侧约束时,才可能发生平面滑动。当两个软弱面相交,切割岩体形成四面体时,就可能出现楔形滑动(图6-3(b))。如果两个结构面的交线因开挖而处于出露状态,不需要地形上或结构上的解除约束即可能产生滑动。法国Malpasset坝的崩溃(1656年)

边坡工程学

边坡稳定性分析方法 摘要:边坡稳定性研究由来已久,早期的边坡研究是仅以土体为研究对象的,其方法的显著特点是采用材料力学和简单的均质弹性、弹塑性理论为基础的半经验半理论性质的研究方法,并把此方法用于岩质边坡的稳定性研究,但由于其力学机理的粗浅或假设的不合理,提高及岩体力学性质研究的进展,各种复杂的数值计算方法广泛地应用于边坡研究,一类是基于极限平衡理论的条分法,另一类是数值分析方法。本文综述了边坡稳定性分析研究的历史及方法,介绍了目前常用的边坡稳定分析方法,结合工程实例对边坡稳定性进行分析,并对边坡稳定性方法的各自的作特点了简要论述。 关键词:边坡工程,边坡稳定,边坡稳定性分析方法 1 引言 边坡工程是一个开放系统,它既有有限变形问题又有无限变形问题,有瞬时变形问题又有长时变形问题。边坡稳定性问题涉及矿山工程、道桥工程、水利工程、建筑工程等诸多工程领域。 岩土边坡是一种自然地质体,在边坡角变化、地下水、地震力、水库蓄水水位变化等外因作用下,将会使边坡沿其内部多组断层、节理、裂隙、软弱带等一些不稳定结构面产生相对滑移而最终导致边坡的失稳。 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果。 边坡发生破坏失稳是一种复杂的地质灾害过程,由于边坡内部结构的复杂性和组成边坡岩石物质的不同,造成边坡破坏具有不同模式。对于不同的破坏模式就存在不同的滑动面,因此应采用不同的分析方法及计算公式来分析其稳定状态。目前边坡稳定性的分析方法归结起来可分为两类:即确定性方法和不确定性方法,确定性方法是边坡稳定性研究的基本方法,它包括极限平衡法、数值方法、块体理论法、赤平极射投影法等。它们将影响边坡稳定性的各种因素都作为确定的量

相关主题