搜档网
当前位置:搜档网 › 高等数学教学设计——导数

高等数学教学设计——导数

高等数学教学设计——导数
高等数学教学设计——导数

3.1导数概念单元教学设计

一、教案头

二、教学设计

3.2求导法则单元教学设计

一、教案头

二、教学设计

3.3微分单元教学设计

一、教案头

二、教学设计

高等数学常用导数和积分公式

高等数学常用导数和积分公式 导数公式:基本积分表:三角函数的有理式积分: (一)含有的积分() 1.= 2.=() 3.= 4.= 5.= 6.= 7.= 8.= 9.= (二)含有的积分10.=11.=12.=13.=14.=15.=16.=17.=18.= (三)含有的积分19.=20.=21.= (四)含有的积分22.=23.=24.=25.=26.=27.=28.= (五)含有的积分29.=30.= (六)含有的积分31.==32.=33.=34.=35.=36.=37.=38.=39.=40.=41.=42.=43.=44.= (七)含有的积分45.==46.=47.=48.=49.=50.=51.=52.=53.=54.=55.=56.=57.=58.=

(八)含有的积分59.=60.=61.=62.=63.=64.=65.=66.=67.=68.=69.=70.=71.=72.=(九)含有的积分73.=74.=75.=76.=77.=78.=()含有或的积分79.=80.=81.=82.=(一)含有三角函数的积分83.=84.=85.=86.=87.==88.==89.=90.=91.=92.=93.=94.=95.=96.=97.=98.=99.==100.=101.=102.=103.=104.=105.=106.=107.=108.=109.=110.=111.=112.=(二)含有反三角函数的积分(其中)113.=114.=115.=116.=117.=118.=119.=120.=121. =(三)含有指数函数的积分122.=123.=124.=125.=126.=127.=128.=129.=130.=131.=(四)含有对数函数的积分132.=133.=134.=135.=136.=(五)含有双曲函数的积分137.=138.=139.=140.=141.=(六)定积分142.==0143.=0144.=145.=146.==147. ===(为大于1的正奇 数),=1 (为正偶数),=

高等数学-导数的概念-教案

例4求 f (x ) = sin x 的导函数 (),(+∞-∞∈x ). 解:x x f x x f x y x f x x ?????)()(lim lim )(00-+=='→?→ x x x x x ?-?+=→?sin )sin(lim 0x x x x x ????? ?? ?+=→?2sin 2cos 2lim 0 x x x x x x cos 2 2sin 2cos lim 0=???? ? ???+=→?, 即: x.cos (sin x)'= 类似可得:sin x. - x)'(cos = 定义 如果x x f x x f x ???) ()(lim 000-+-→存在,则称此极限值为f (x ) 在点 x 0 处的左导数,记作 f’ (x 0);同样,如果x x f x x f x ???) ()(lim 000 -++→存在,则称此极限值为 f (x ) 在点 x 0 处的右导数,记作 f’ +(x 0) . 显然,f (x ) 在 x 0 处可导的充要条件是 f’ -(x 0) 及 f ‘ +(x 0) 存在且相等 . 定义 如果函数 f (x ) 在区间 I 上每一点可导,则称 f (x ) 在区间 I 上可导. 如果 I 是闭区间[a , b ],则端点处可导是指 f’+(a )、 f’-(b ) 存在 . 六、可导与连续的关系 定理 如果函数 y = f (x ) 在点 x 0 处可导, 则 f (x ) 在点 x 0 处连续,其逆不真.。 D.课堂小结 一、导数的定义 二、导数的几何意义 三、可导与连续的关系 E.布置作业

高等数学公式汇总(大全)

高等数学公式汇总(大全) 一 导数公式: 二 基本积分表: 三 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学公式导数基本公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 222122an 11cos 12sin u du dx x t u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x x x x a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx t +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln an 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学公式总结(绝对完整版).

高等数学公式大全 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高中导数公式大全

C'=0(C为常数函数); (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) .y=c(c为常数) y'=0 .y=x^n y'=nx^(n-1) .y=a^x y'=a^xlna y=e^x y'=e^x y=lnx y'=1/x .y=sinx y'=cosx .y=cosx y'=-sinx .y=tanx y'=1/cos^2x .y=cotx y'=-1/sin^2x

高等数学中的导数公式和等价无穷小公式

声明:第一次弄这些,花了本人好些时间,o(∩_∩)o ,版权所有,严禁将本人的劳动成果用于商业用途。 导数公式 (1) (C)'=0 (2) (x μ )'=μ1 x μ- (3) (sinX)'=cosX (4) (cosX)'=-sinX (5) (tanA)'=2 sec A (6) (cotA)'=-2 csc A (7) (secA)'=secAtanA (8) (cscA)'=-cscAcotA (9) (x a )'=x a ln a (10) (x e )'=x e (11) (㏒a x)'= 1 ln x a (12)(lnx)'= 1x (13) (arcsinX)' (14) (arccosX)'= - (15) (arctanX)'= 2 1 1X + (16) (arccotX)'=- 2 11X +10 2 2 33331lim(1)1~ (1) 123 (4) n x x x n n n n →+-+++++=

等价公式 10 1lim(1)1~ n x x x n →+- 当0x →时,ln(1+x)~x 201cos 1 lim 2 x x x →-= 当0x →时,1~x e x - 0sin lim 1x x x →= 当0x →时,1~ln x a x a - 1 lim(1)x x e x →∞+= 22221 123...(1)(21)6 n n n n ++++=++ 0tan lim 1x x x →= 22 3 3 3 3 (1)123 (4) n n n +++++= 0arcsin lim 1x x x →= 220 sin cos n n xdx xdx π π =?? 0ln(1) lim 1x x x →+= 01lim 1ln x x a x a →-=

基本初等函数的导数公式表

基本初等函数的导数 公式表 Revised on November 25, 2020

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、=n n x nx -1'() (n 为正整数) 3、ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1 '() 5、ln =x x 1 '() 6、sin cos =x x '() 7、cos sin =-x x '() 8、=-x x 211 '() 知识点二:导数的四则运算法则 1、v =u v u ''' ±±() 2、=u v uv v u '''+() 3、(=Cu Cu '') 4、u -v =u v u v v 2'' '() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b 内,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b 内,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调 减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15=

(2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23=0 ( (6)y x 5= (7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 14= ,x =16 (2)sin y x = , x π=2 (3)cos y x = ,x π=2 (4)sin y x x = , x π=4 (5)3y x = ,1128(,)

高等数学中的求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =, )(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1=

复合函数求导法则 设 ) (u f y= ,而 ) (x u? = 且 ) (u f 及 ) (x ? 都可导,则复合函数 )] ( [x f y? = 的导数为 dy dy du dx du dx = 或 ()() y f u x ? ''' =

高等数学求导公式

I.基本函数的导数 01.()0C '=; 02.()1x x μμμ-'=; 03.()sin cos x x '=; 04.()cos sin x x '=-; 05. ()2tan sec x x '=; 06.()2 cot csc x x '=-; 07.()sec sec tan x x x '=; 08.()csc csc cot x x x '=-; 09.() ln x x a a a '=; 10.()x x e e '=; 11.()1 log ln a x x a '=; 12.()1ln x x ' =; 13. ( )1 arcsin x '= ; 14.( )arccos x ' =-; 15.()2 1 arctan 1x x ' = +; 16. ()2 1 arc cot 1x x '=-+。 II.和、差、积、商的导数 01.()u v u v '''±=±; 02.()Cu Cu ''=; 03.()uv u v uv '''=+; 04.2(0)u u v uv v v v ''' -??=≠ ??? 。 III 复合函数的导数 若()(),y f u u x ?==,则 dy dy du dx du dx = 或 ()()()y x f u x ?'''=。

● 计算极限时常用的等价无穷小 0lim sin x x x → 0lim tan x x x → ()2 01lim 1cos 2 x x x →- ()0 lim 1x x e x →- ()0lim ln 1x x x →+ 01 1x x n →- ● 两个重要极限: 0 sin lim 1x x x →= 1lim 1x x e x →∞?? += ??? ● 若 ()()lim 0, lim f x A g x B =>=,则 () () lim g x B f x A = ● 罗尔定理:()0F x '≠若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则存在一(),a b ξ∈,使()0f ξ'=。 ● 拉格朗日中值定理:若()f x 在[],a b 上连续,在(),a b 内可导,则存在一 (),a b ξ∈,使得()()()()f b f a f b a ξ'-=-。 ● 柯西中值定理:若()f x 、()F x 在[],a b 上连续,在(),a b 内可导,且()0 F x '≠则存在一(),a b ξ∈,使得0x x δ-<,则()()()()() () f b f a f F b F a F ξξ'-= '-。 ● 罗必达法则:若(1)()()()() lim lim 0()x a x a f x F x →∞→∞==∞或或或,(2)()f x '及()F x '在00x x δ<-<(或x X >)处存在,且()0F x '≠,(3)() () lim () x a f x F x →∞''或存在(或∞),则()() ()()lim lim ()() x a x a f x f x F x F x →∞→∞'='或或。 ● 泰勒公式: ()()()()()()()()()()200000001!2!! n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+ 其中:()()()()()11 01! n n n f R x x x n ξ++=-+ ,()0,x x ξ∈。

高等数学必背公式大全一目了然版

高 等数 学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

最全高等数学导数和积分公式汇总表

高等数学导数及积分公式汇总表 一、导数公式 1.幂函数 0='c 1)(-='n n nu u 2.指数函数 a a a u u ln )(=' e e e u u ln )(=' 3.对数函数 a u a u ln 1 )(log =' u u 1)(ln = ' 4.三角函数 u u cos )(sin =' u u sin )(cos -=' u u 2sec )(tan =' u u 2csc )(cot -=' u u u tan sec )(sec =' u u u cot csc )(csc -=' 5.反三角函数 2 11)(arcsin u u -= ' 2 11)(arccos u u -- =' 11)(arctan u u +=' 11)cot (u u arc +-=' 6.其他 1='u 2 11)(u u -=' u u 21)(= ' 2 3 21 1 )( u u - =' 2 2 )(22a u u a u ±= '± 二、积分公式 1.幂函数 C du =?0 C u du u n n n += ++?11 1 2.指数函数 C e du e u u +=? C du a a a u u += ?ln 3.有关对数 C u du +=? ln 4.三角函数 C u udu +-=?cos sin C u udu +=?sin cos C u udu +=?tan sec 2 C u udu +-=?cot csc 2 C u udu u +=?sec tan sec C u udu u +-=?csc cot csc C u udu +-=?cos ln tan C u udu +=?sin ln cot C u u udu ++=?tan sec ln sec C u u udu +-=?cot csc ln csc 5.反三角函数 C a u u a u du +±+=? ±22ln 2 2 C a u u a du +=?-arcsin 2 2 C u a u a a u a du += -+-?ln 212 2 C a u a u a du +=? +arctan 12 2 6.其他 C u u du +-=? 12 C u du u +=? 23 3 2 C u du u +=? 2 1 21 C u u udu +-=? -222 2 C u u udu ++=? +2 2111ln 2

高数-导数的概念、定义及求法

导数的概念 在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。例:设一质点沿x 轴运动时,其位置x是时间t的函数, ,求质点在t 0的瞬时速度?我们知道时间从t 有增量△t时,质点的位置有增量 ,这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: .若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在 t 0时的瞬时速度。我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t 时的瞬时速度,即:质点在t 时的瞬时速度= 为此就产生了导数的定义,如下:导数的定义:设函数 在点x 0的某一邻域内有定义,当自变量x在x 处有增量△x(x+△x也在该邻域内)时,相应地函 数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为 在x 处的导数。记为: 还可记为: , 函数

处存在导数简称函数 在点x 在点x 处可导,否则不可导。若函数 在区间(a,b)内每一点都可导,就称函数 在区间(a,b)内可导。这时函数 对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数 的导函数。 注:导数也就是差商的极限 左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限 存在,我们就称它为函数 处的左导数。若极限 在x=x 存在,我们就称它为函数 在x=x 处的右导数。 注:函数 在x 处的左右导数存在且相等是函数

在x 处的可导的充分必要条件 函数的和、差求导法则 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为: 。其中u、v为可导函数。 例题:已知 ,求 解答: 例题:已知 ,求 解答: 函数的积商求导法则 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 例题:已知

高数公式大全

高等数学公式汇总 第一章 一元函数的极限与连续 1、一些初等函数公式: sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1 cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβ αβ αβαβαβαββα αβαβαβαβαβαβ ±=±±=±±= ??±= ±±=±±=±m m m 和差角公式: sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβ αβαβαβ αβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()]21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 2222222 222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααα αααααααα ==-=-=-= --= ==+= =-=+ 倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1 sin 2 cos 2 1cos sin tan 2 sin 1cos 1cos sin cot 2 sin 1cos x x x x ch x sh x ααααααα ααααα αα +=+=+=-===-===++=== -半角公式:

考研数学140分 必背公式大全

全国硕士研究生统一入学考试 数学公式大全 高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高中文科数学公式大全(完美版)

高三文科数学公式及知识点 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是 ))((000x x x f y y -'=-. 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ= θ θ cos sin . 10、和角与差角公式 sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=m ; tan tan tan()1tan tan αβ αβαβ ±±=m .

高等数学公式大全 史上最全的高等数学公式

高等数学公式大全 微分方程的相关概念: 即得齐次方程通解。 , 代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。 得:的形式,解法: 为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x y y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0 ),(),(),(???一阶线性微分方程: ) 1,0()()(2))((0)(,0)() ()(1)()()(≠=+? +?=≠? ===+?--n y x Q y x P dx dy e C dx e x Q y x Q Ce y x Q x Q y x P dx dy n dx x P dx x P dx x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程: 全微分方程: 通解。 应该是该全微分方程的,,其中:分方程,即: 中左端是某函数的全微如果C y x u y x Q y u y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),(),(),(0),(),(),(0),(),( 二阶微分方程: 时为非齐次 时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d

高等数学求导公式打印版

I.基本函数的导数 01.()0C '=; 02.()1x x μμμ-'=; 03.()sin cos x x '=; 04.()cos sin x x '=-; 05. ()2tan sec x x '=; 06.()2 cot csc x x '=-; 07.()sec sec tan x x x '=; 08.()csc csc cot x x x '=-; 09.() ln x x a a a '=; 10.()x x e e '=; 11.()1 log ln a x x a '=; 12.()1ln x x ' =; 13. ( )1 arcsin x '=; 14.( )arccos x ' =; 15.()21 arctan 1x x '= +; 16.()2 1 arccot 1x x '=- +。 II.和、差、积、商的导数 01.()u v u v '''±=±; 02.()Cu Cu ''=; 03.()uv u v uv '''=+; 04.2 (0)u u v uv v v v ''' -??=≠ ??? 。 III 复合函数的导数 若()(),y f u u x ?==,则 dy dy du dx du dx = 或 ()()()y x f u x ?'''=。

● 计算极限时常用的等价无穷小 0limsin x x x →: 0lim tan x x x →: ()2 01lim 1cos 2x x x →-: ()0lim 1x x e x →-: ()0limln 1x x x →+: 01 1x x n →-: ● 两个重要极限: 0sin lim 1x x x →= 1lim 1x x e x →∞?? += ??? ● 若 ()()lim 0, lim f x A g x B =>=,则 () () lim g x B f x A = ● 罗尔定理:()0F x '≠若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则存在一 (),a b ξ∈,使()0f ξ'=。 ● 拉格朗日中值定理:若()f x 在[],a b 上连续,在(),a b 内可导,则存在一(),a b ξ∈,使得 ()()()()f b f a f b a ξ'-=-。 ● 柯西中值定理:若()f x 、()F x 在[],a b 上连续,在(),a b 内可导,且()0F x '≠则存在一 (),a b ξ∈,使得0x x δ-<,则 ()()()()() () f b f a f F b F a F ξξ'-='-。 ● 罗必达法则:若(1)()()()() lim lim 0()x a x a f x F x →∞→∞==∞或或或,(2)()f x '及()F x '在00x x δ<-<(或x X >)处存在,且()0F x '≠,(3)() () lim () x a f x F x →∞''或存在(或∞),则()() () ()lim lim ()() x a x a f x f x F x F x →∞→∞'='或或。 ● 泰勒公式: ()()()()()()()()()()200000001!2!! n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+L 其中:()()() ()()11 01! n n n f R x x x n ξ++= -+ ,()0,x x ξ∈。 ● 马克劳林公式: ()()()()()()()200001!2!! n n n f f f f x f x x x R x n '''=+++++L

常用微积分公式大全

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

高数导数公式

【导数】 一、 导数的定义 设函数)(x f y = 在点 x 0的某个邻域内有定义,当x 在x 0处取得 增量x ?(点x 0+x ?仍在该邻域内)时,相应的函数y 取得增量())(00x f x x f y -?+=?,如果当0→?x 时,增加量y ?与 x ?之比的极限 x y x ??→?lim 0=x x f x x f x ?-?+→?)()(000lim =0 0)()(lim 0x x x f x f x x --→ 存在,则称此极限值为函数)(x f y =在点 x 0处的导数,并称函 数)(x f 在x 0处可导, 记作: x x f x x f x f x ?-?+= '→?) ()()(000 0lim 如果x y x ??→?lim 0 不存在,则称函数)(x f 在x 0处不可导 二、 左右导数 1) 左导数 若当-→?0x 时,x y ??的极限存在,则称此极限值为函数) (x f 在x 0处的左导数, 即:()0x f -'=x y x ??-→?lim 0=()() x x f x x f x ?-?+- →?000 lim 2) 右导数 若当+→?0x 时,x y ??的极限存在,则称此极限值为函数) (x f 在x 0处的右导数,

即:()0x f +'=x y x ??+→?lim 0=()() x x f x x f x ?-?++ →?000 lim 定理1:函数)(x f 在x 0处的可导的充要条件是,)(x f 在x 0处左右导数均存在,且()0x f -'=() 0x f +' 三、 可导与连续的关系 若)(x f y = 在 x 0处可导,则在x 0处必定连续,可导?连续,反 之不对。 四、 求导公式 1) 基本初等函数的导数公式 ① 0='C (C 为常数) ② ()1-=' n n nx x (n 为任意常数) ③ () a a a x x ln =' (a >0,a ≠1)特别的:()x x e e =' ④ ()a x e x x a a ln 1 log 1log ==' (a >0,a ≠1) 特别的:()x x 1 ln =' ⑤ () x x cos sin =' ⑥ () x x sin cos -='

相关主题