搜档网
当前位置:搜档网 › 最新短波通信天线介绍整理

最新短波通信天线介绍整理

最新短波通信天线介绍整理
最新短波通信天线介绍整理

短波天线原理和应用

短波天线的原理和应用 摘要:本文从电波传播和电离层分布特性的角度解释了短波电波辐射的特点,并介绍了常用短波天线的种类和特性。对各类短波天线的架设要求和注意事项给出了建议和参考。最后对短波天线的接地系统的设计给出了一些参考方案。 关键词:天线、电离层、极化、接地 1.序 无线电通信就是依赖于无线电电波在空间的传播而建立通信链路的,因此电波传播是 无线电的一个重要环节。对于不同的工作频段,电波的传播特性将有所不同。同时所采用的辐射天线也将有很大的不同。本文将就电波的传播特性和短波常用天线以及电台架设的注意问题作一些介绍。 1.1 电离层特性 电波在空间传播将会受到电离层的影响,尤其是中短波的传播就是依赖于电离层的反射进行传输的,因此对电离层应有一些了解。 a)电离层的产生 地球表面有1000公里高的大气层,由于太阳光辐射(x射线,紫外线)空气不断电离同时不断复合,这样空气中将存在着游离的带电粒子; b)带电粒子随高度增加而增加,在离地面较近的地方每立方米只有几个或几十个粒子,到接近1000公里时,每立方米将有上千或上万个带电粒子。因电离层一般按如下分层: C层D层E层F1层F2层 0~50kM 60~90kM 100~120kM 170~220kM 225~450kM c)电离层在白天、黑夜,一年四季将会有不同的变化。白天由于有阳光,低层(D层)电离层浓度升高,反之黑夜时将降低。一年四季变化也是由于因受阳光照射时间长或短而变化。 d)电离层在不断上下或水平运动,从而造成电波反射传播过程中的瑞利衰落和多普勒效应。 e)电离层具有非均匀分布性,类似云彩的特点,因而造成电波反射时的散射,多径时延。f)电离层对电波的吸收随工作频率升高而减少。对中长波吸收很大,如10~20kW的中波广播机覆盖面在100km左右,而1kW的短波可传送3000km。即频率愈高的中短波信号愈容易穿越低层(D层)的电离层。 1.2 大地对电波的影响 大地对电波的影响主要是地波传播的影响,大地不能视为良导体也不能视为绝缘体,由于地质不同应区分对待。 a)对于如海水、淡水、湿地,对电波的吸收较小,但由于地面反射波与入射波有180o 相位差,将会吸收紧靠地面的电波,使波瓣抬高; b)对于干燥地质对电波吸收会较大(主要对短波吸收); c)对于金属矿藏地质如铁矿地带,对电波吸收是非常大的,千万不要在这里设立电台(收发信台);

主流卫星通信天线对比

常用卫星通信天线介绍(一) 原文:寇松江(爱科迪) ★★★★(7020207)添加点图片

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线

抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

业余无线电 短波便携GP天线

PAC-12 Kit Contents Part Quantity Screws: 8/32 x 3/8” 8 Screws: 8-32 x 5/16” 2 Screw: 8-32 x 1/4” 1 #8 internal tooth washers 8 #8 solder lug ring terminals 6 Bolt: Aluminum, 1/4-20 x 1.5” 1 1/4” internal tooth washer 1 Nut: Aluminum hex, 1/4-20 1 Stainless wing nut, 1/4-20 1 1/4” ring terminals 3 BNC connector 1 BNC mounting plate 1 Wire, PVC insulated stranded 12” Wire, 18AWG enamel copper 1 14 conductor ribbon cable roll 1 Feedpoint insulator PVC tube 1 Feedpoint insulator end caps 2 6” Coil form, PVC 1 3.5” Coil form, PVC 1 Coil form end caps 4 Aluminum Rods 12” 2 Aluminum hex coupling nuts 1 72” telescoping antenna 1 Antenna whip adapter 1 Aluminum ground spike 1 Tools Needed Soldering iron Phillips screwdriver Wire stripper Wrenches, 7/16” and 1/2” Terminal crimp tool Pliers Solder

中短波天线基本知识讲座

如有帮助,欢迎下载。 中短波天线基本知识讲座 毛旭辉 一、天线的基本情况 1.天线的发展 最早是麦克斯韦尔根据前人的经验,如安培定律、基尔霍夫方程,提出了一个位移电流的概念,从而引出麦氏方程,推断存在电磁波。也就是变化的磁场产生变化的电场,变化的电场又产生变化的磁场,这样不断地从中心向外传播。在1887年,赫兹通过实验证实这一推断。从而带来了一系列的实用研究,马可尼于1901年利用偶极子天线进行无线电传输。到现在马可尼公司还活跃在世界无线电舞台上。天线从简单的偶极子天线,发展到目前不同频段、不同形式的线天线、面天线,而用于不同部门,如雷达天线、广播电视天线、微波通讯天线等等,只要把有用的信息有效地向空间辐射出去而不引起自身出现问题的物体都可以认为是天线。 2.天线的作用 由于天线的互易性,把天线可以当成一个四端网络,输入——输出,也可接受信号,通常天线就是将发射机输出的射频信号变成电磁波辐射出去,同时也可以作为接收电磁波信号传到专用的接收机,使我们能够发射、接收广播电视节目。 3.中短波广播频段的划分 根据国际无线电联盟ITU在92年确定的WAC92短波频段是: 3.2MHz—3.4MHz, 3.9MHz— 4.0MHz, 5.005MHz—5.06MHz,5.90MHz— 6.20MHz, 7.1MHz—7.35MHz, 9.4MHz—9.9MHz,11.6MHz—12.1MHz,13.57MHz—13.87MHz, 15.1MHz—15.8MHz,17.48MHz—17.9MHz,1 8.90MHz—1 9.02MHz,21.45MHz—21.85MHz,25.67MHz—26.10MHz 这些为专用的广播频段,但我们常用一些带外频率,这样的播出效果也非常好,尽管接收场强比较低,但效果非常好。但国际都有这方面的限制,不是可以随便使用的。 中波是526.5KHz—1606.5KHz。 由于9 KHz邻频间隔,实际上中波从531KHz—1602KHz共120个频率,因此中波频率资源非常紧张,特别是大功率广播覆盖上经常是选择一个频率要做许多工作,因为在大功率中波的覆盖范围内,都只能有一个广播声,如果说地方想使用,这频率就会互相干扰,而大功率覆盖范围广,所以选择一个频率是非常难的。 4.天线的主要参数 ①方向图 通常的方向图是水平360o垂直0o--90o,距离在5—10λ的场强值图。见图1 图1 天线方向图 方向图实际都是理论计算得出的,但要得实际上方向图是比较困难,需要用直升飞机载场强仪在不同的测试点,不同的高度的测试点测出后画出一个立体的方向图。 在实际中我们只考虑仰角为1o--2o距离在5—10λ的场型,它不是一个真的场型,但是它能够判断天线的主向是否正确。 ②方向系数、效率、增益 方向系数D是无方向天线在最大产生的场强和实际天线同样功率在最大方向产生的场强之比。 32

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。 图2 卡塞格伦天线 3.格里高利天线 格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重

《短波通信概述》word版

短波通信概述 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;三、与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。 一、短波通信的一般原理 1.无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为 10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10 米,频率为1.6~30兆赫;超短波的波长为10米

~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: 1)地波(地表面波)传播。沿大地与空气的分界面传播的电波叫地表面波,简称地波。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。 2)直射波传播 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。

9米卫星天线技术资料.

9.0米电动卫星通信天线 WTX9.0-6/4(14/12)型 技术说明书 贵州振华天通设备有限公司(4191厂)

1、概述 WTX9-6/4和WTX9-14/12型卫星通信天线是一种具有四口线极化频谱复用 馈源系统的9米改进型卡赛格伦天线系统。当天线朝天时,天线的轮廓尺寸为φ9m×10.3m。整个天线具有效率高、旁瓣低、使用维护方便、抗风能力强、造形 美观,刚性好,精度高的特点。广泛用于C频段和Ku频段卫星通信地球站。 天线的主反射面均为实体铝板结构,主面直径为9m,副面直径为 1.08m。 立柱式座架的设计允许方位连续转动140o,俯仰从5o~90o连续转动。方位轴和俯仰轴由马达驱动,驱动速度为0.03o/秒和0.1o/秒两种。 馈源系统的极化轴也由马达驱动,驱动速度为 1.5o/秒,转动范围为180o。 步进跟踪系统由室内天线控制单元、室外马达控制器、变频器和信标接收机组成。轴角显示分辨率为0.01o,跟踪精度为0.06o,步进跟踪系统能使天线随时准确地对准卫星。 本天线的外型图见图 1.1。

图1.1 2、天线的主要技术参数 天线主要技术参数与性能指标 项目名称 参数指标 WTX9.0-4/6 WTX9.0-12/14 C波段Ku波段 接收发射接收发射 一、电气性能指标 1.工作频率(GHz) 3.625~4.2 5.825~6.425 10.95~12.75 14.00~14.50 2.增益(dB)50.1 53.2 59.2 60.4 3.驻波≤1.25:1 ≤1.25:1 4.波束宽度(-3dB) 0.513°0.359°0.185°0.159° 5.天线噪 声温度(仰角10°) 37°K57°K (仰角20°) 32°K 48°K 6.G/T值(dB/K)(T LNA=60K) 30 38.4dB/K 7.极化方式四端口或二端口线极化 8.馈源插入损耗(dB) 0.2 0.25 0.40 9.收发隔离度(dB) ≥85 10.交叉极化隔离度(dB) ≥35 11.第一旁瓣(dB) -14 12.广角旁瓣符合CCIR-580-4标准 13.功率容量(KW) 5 1 14.馈源接口CPR-229F CPR-137G WR-75 WR-75 二、机械性能指标 天线口径9000 mm 转动范围方位±70°俯仰5°~90° 跟踪速度0.03°/S 跟踪精度0.06°/S 三、环境特性 1.工作风速35m/s 2.不破坏风速55m/s 3.环境温度-50oC—+60oC 4.雨降10cm/h 5.阳光辐射1000kcal/h㎡6.相对温度0%—100% 7.裹冰 2.5cm 8.使用寿命:8年 抗风能力保精度工作稳态风20m/s,阵风27m/s. 降经度工作稳态风25m/s,阵风30m/s,降雨50mm/h. 保全条件阵风55m/s,天线朝天锁定. 天线重量3500

天线简介

天线一般理论简介 为了有效斯将能量从发射机馈送到天线,需要解决如下三个问题:1、有效地进行能量转换,提高辐射功率或提高天线系统的信噪比,天线作为传输线的终端负载,要求天线与传输线匹配;2、天线作为一种辐射或接受器件,应具有向所需方向辐射无线电波的能力;3、天线作为一种极化器件,可分为线极化,圆极化和椭圆极化。在同一系统中收发天线应具有相同的极化形式。天线一般都是可逆的,即同一副天线即可用做接收天线,也可用作发射天线。天线按结构形式分为两大类:一类是导线,金属棒或金属板构成的天线,称为线天线;另一类是似声学或光学设备,由金属面或介质面构成的面天线。 一、基本元的辐射: 1、电基本振子的辐射 给出在球坐标原点沿z 轴放置的电基本振子在各向同性理想均匀无限大自由空间的表达式: 3202 32022 cos 41sin 41 sin 40 jkr A r jkr A jkr A r I l j k E e r r I l j k jk E e r r r I l jk H e r r H H E θ?θ?θπωεθπωεθπ---? ?= -+ ?????=-+- ?????= + ??? ===注:9 02 2 000 010 362/E 120H k k θ? εεπ πλωεμηπ-== === =相移常数;波阻抗(远区场) (1)近区场

当kr<<1时称为近区场,此时 2 3 3 sin 42 cos 41 sin 40 A A r A r I l H r I l E j r I l E j r H H E ?θθ?θ πθωεπθ ωεπ= =-=-=== 不难看出,上述表达式和稳态场的公式完全相符,因此,近区场又称为似稳区。场随距离的增大而迅速减少。电场滞后于磁场90度,因此复坡印延矢量是虚数(12S E H =?),每周平均 辐射的功率为零。这种没有能量向外辐射的场称之为“感应场”。 (2)远区场 当kr>>1时称为远区场,此时60sin e sin e 20 jkr A jkr A r r I l E j r I l H j r E H H E θ? θ?πθλθλ--==≈=== 此时,有电场和磁场两个分量在空间相互垂直且与r 矢径方向垂直,三者构成右手螺旋系统。电场、磁场在时间上同相,其复坡印延矢量* 12S E H =?是实数,为有功功率且指向r 增加的 方向上。二者比值为一实数0 120η π =,所以仅需讨论二者之一。 且电基本振子远区场是沿着径向向外传播的横电磁波TEM 。在0180 o o θ =、方向上辐射为0,在90 o θ =方向辐射最强。方向图: E 面(包含振子轴)为一个8字形,H 面(垂直振子轴)为一个圆。 (3)辐射功率

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

天线概述

天线的分类和选择+天线材料选择的.txt 天线分为:1.全向天线2.定向天线(我们接触和用的基本是前两种)3.机械天线4.电调天线5.双极化天线。 下面主要介绍坛友们比较关心的定向和全向天线。感兴趣的朋友可以google或者baidu其他相关天线的详细资料。“相关资料提供下载”中提供简单介绍下载。) 天线介绍: 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,(使用大功率网卡的朋友注意了,此类天线最好能离人体3米及以上,辐射对人体的伤害就不用说了吧)也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 2.2.1个人见解:定向分为反射型和引向型定向 反射型:常见的有:双菱(叠双菱)(跟平板差不多。),长城(跟平板差不多)平板(方向角较大,一般用于覆盖,形用于接收角度广容易调试) 栅格(方向尖锐,常用于点对点)。此类天线主要靠反射信号到达振子来工作。 引向型:常见的有:8木(引导信号到主振子,多余的经反射振子,再次到达主振子)叠双菱是两者都有,主振子信号源:是前面引向菱,后面反射板。主要靠反射,所以定义反射型。 全向天线:常见的有9db.8db. 7db.6db.5db 2db 定向天线:叠双菱(N菱),平板,八木,栅格,卫--星锅,长城,开槽等等 注:排名分前后(个人推荐) 天线的选择: 本帖隐藏的内容需要回复才可以浏览 以上天线介绍主要偏重于发射,个人认为接收的原理和发射原理相类似。发射要考虑一个功率问题,因为如果天线做的不好,在功率过大的情况下,该发射出去的功率没有发射出去就很容易反过来(简单说就是驻波大,导致功率反噬)损坏机器。友情提醒一下:使用大功率路由和网卡的朋友,在不确定自制天线技术指标的情况下,尽量将功率调低一点,够用就好。 关于天线的选择,关键还是要看使用环境。如果是6层以下的小区环境,视野不太开阔20-50米之间就有阻挡物的,建议使用全向或者平板天线。个人推荐:9db,8db,7db,叠双菱,14DB平板。 如果是小高层,或者小区边缘环境(视野开阔,信号在远处)。建议使用八木,14db以上平板。此类天线建议在100-800米范围内使用。

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

天线知识

1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:(1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚gov-ern-ment的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因, 而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很

车载卫星通信设备及操作简介

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

天线简介

天线介绍

版本历史 版本/状态责任人发布日期备注V1.0 张鑫2010年7月天线简介第一版

目录 一、基础知识 (4) 1.1天线的定义 (4) 1.2天线的原理 (4) 1.3天线的基本参数 (5) 1.3.1 谐振频率 (5) 1.3.2 增益 (5) 1.3.3 驻波比 (6) 1.3.4 极化 (7) 1.3.5 辐射方向图 (8) 1.3.6 波瓣宽度 (9) 1.3.7 天线类型 (9) 二、天线的类型与选购 (11) 2.1 全向天线 (11) 2.1.1 普通全向天线 (11) 2.1.2 室内吸顶天线 (11) 2.2 定向天线 (12) 2.2.1 平板定向天线(Patch Antenna) (12) 2.2.2 八木天线(Yagi Antenna) (14) 2.2.3 抛物面栅状天线(Grid Antenna) (15) 2.3 天线配件 (15) 2.3.1 接头 (16) 注解:如何辨别天线接头的公母类型 (19) 2.3.2 射频电缆 (20) 2.3.3 其他配件 (21) 2.4 法律法规 (22) 三、无线传输 (23) 3.1影响室内无线传输的因素 (23) 3.2 室外传输和增益选择 (24) 3.2.1 视距传输(Line of Sight Propagation) (24) 3.2.2 自由空间路径损耗与传输距离 (25) 3.2.3 衰落余量和距离计算 (25) 3.2.4 Fresnel Zone (26) 3.2.5 计算举例 (26)

一、基础知识 1.1天线的定义 天线(Antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。 天线是在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。 1.2天线的原理 当导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图b、c所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L远小于波长λ时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

短波天线

优化短波通信的方法 1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率: (1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线

短波通信概述

短波通信概述 短波通信是无线电通信的一种。波长在50米~10米之间,频率围6兆赫~30兆赫。发射电波要经电离层的反射才能到达接收设备,通信距离较远,是远程通信的主要手段。由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。目前,它广泛应用于电报、、低速传真通信和广播等方面。 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一旦发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比; 二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波; 三、与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界围获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。 一、短波通信的一般原理 1.无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。无

线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10 米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: (1)地波(地表面波)传播 沿与空气的分界面传播的电波叫地表面波,简称地波。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。 (2)直射波传播 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达

动中通卫星通信天线系统组成及原理分析

动中通卫星通信天线系统组成及原理分析 摘要:动中通天线系统主要用于移动载体移动条件下实时通信,满足处理突发紧急事件的需求。本文提出惯导跟踪式动中通卫星通信车载天线系统的组成,对工作原理进行了分析。惯导跟踪式的动中通天线系统不依赖于任何外部信号,利用惯性导航系统自身即可完全实现自主对星,在移动载体移动过程中也能够进行实时对星和换星,灵活性高。 关键词:动中通,惯性导航,天线,卫星通信 概述 动中通卫星通信天线系统主要用于车辆等载体在快速移动的条件下,保持对卫星实时跟踪,使车载卫星天线始终对准地球同步通信卫星,在地球同步通信卫星与卫星地面站之间构建双向链路的卫星通信,以达到实时、不间断与其他地面站进行图像、语音、数据的卫星通信双向传输。 动中通卫星通信车应用动中通卫星通信天线系统跟踪卫星,利用卫星通信的无缝覆盖,加上所具备的机动灵活和行进间通信的特点,可以使动中通卫星通信车在任何时间、任何地点开通并投入使用,满足处理紧急突发事件的需求。 动中通卫星通信天线系统是实现动中通车载站的核心,天线面通常采用偏馈或正馈面反射的抛物面天线,外形呈球状,相对于相控阵天线来说,其天线增益较高,旁瓣特性较好,可以跟踪制导系统控制天线的方位和俯仰指向。 1天线系统主要分类 一般来说,动中通卫星通信天线系统主要采用以下两种技术实现对星跟踪: (1)单脉冲跟踪式:利用多个方向上卫星通信信号强弱的和差关系,在短时间内判断出天线指向的偏差,即时调整卫星天线的指向,保持对通信卫星的跟踪。 (2)惯导跟踪式:利用惯性导航系统建立一个坐标基准,通过前馈控制伺服系统,使卫星天线稳定在坐标基准中,不受到车辆载体运动的干扰,始终对准通信卫星。 单脉冲跟踪式动中通卫星通信天线系统由于依赖卫星信号进行对星跟踪,因此存在以下问题: 在卫星信号受到遮挡时容易丢星,如途经隧道、桥梁等情况下,被楼宇、大树等遮挡的情况下,都难以保持正常通信;在没有卫星信号的时候无法进行初始对准卫星,在车辆载体行进中无法进行初始对准卫星;在车辆载体大动态情况下,

天线介绍

介紹 在過去的十年,網路技術有著爆炸性的進步。我們可以在網路的世界裡找到我們需要的資料且我們的日常生活也變得更依賴他了。大部分的人其生活作息已經與網路世界融合在一起了。因此,在我們的生活中無線的網路連接變成一個必要的方式,亦就是所有攜帶式裝置都要有無線通訊的能力。更進一步,物聯網勢必變成科技業發展的一個焦點。最終,每一個物件將會透過無線通訊裝置連接在一起。在無線產業的競爭環境裡,一個微型天線技術可使得攜帶式裝置更薄、更小與更輕,讓您的產品更具有競爭力,也讓您的產品在這個廣大的市場中獲得勝利。 觀察過去電子產品的發展軌跡,我們可以知道,如何依新世代產品的需求先期開發關鍵元件,即時推出新產品所需要的元件,或提供性能優越的替代元件,將能使該新產品在市場上佔有相對優勢及增加競爭力。就無線通訊產品而言,天線產品或技術,就是佔有重要地位的關鍵零組件。為了能有穩定的上網能力與資料下載速度,個人行動裝置都需要效能優越的天線裝置,來強化其訊號收發能力,以便能隨時輕輕鬆鬆上網無障礙。而詠業科技獨特的專利晶片天線(Chip Antenna)技術,能提供給客戶高收訊效率的微小型晶片天線,提高客戶無線通訊產品的效能。 以網路連線相當重要的無線路由器(WiFi AP Router)為例,大多數市售機種還是採用外置雙極(Dipole)棒狀天線,不但影響外觀設計、佔用很大的體積、使用不方便,材料與組裝成本也都很高。尤其是商務人士用的口袋型路由器,如果還要外掛一支棒狀天線,更是不搭調。 以平板電腦當例子,FPC天線仍被廣泛的使用。但要使用FPC天線,必須先將FPC天線用人工組裝的方式黏貼到平板電腦的外殼上,並在主板上焊接兩個彈片,以便讓FPC天線與主板做電性連接。這樣的做法不只是總成本高,而且人工組裝之FPC天線的穩定性不佳。但以詠業的晶片天線而言,只需將晶片天線利用SMT製程打件在主板上,即可完成,具有方便性、穩定性與總成本低等特點。 如何設計一個內建型的天線 智慧型手機、平板電腦、手持式裝置等產品的天線,主要仍以內建型天線為主。想要將天線設計為內置,目前主要有幾種形式可供選擇,包括:金屬片沖壓成型天線、印刷電路板(PCB)或軟板(FPC)天線、LDS天線以及晶片天線。模具沖壓成型金屬天線,在生產上都需要開發金屬加工成型模具,開模具不但貴而且時程長,對於新產品開發的成本與時程控制甚為不利。而且不論是使用印刷電路板製成的天線、模具沖壓成型金屬天線或LDS天線,最後都需要用人工組裝於行動裝置內,不僅人工成本高昂,而且人工組裝的良率較不穩,對品質的管控較困難。而且,不管是金屬沖壓天線或是LDS天線,其尺寸都相當大,並不符合個人可攜式產品輕薄短小的趨勢需求。所以,具有輕薄短小優勢的晶片天線,便成為另一種頗具吸引力之選擇,晶片天線之設計方式,主要以單極(Monopole或PIFA)天線與迴路(Loop)天線為主。 而內建型的天線在實際應用上會遭遇哪些主要問題呢?我們例舉如下: 1.人體靠近時對天線特性的影響 2.天線尺寸與效率的關係 3.輻射場型對有效訊號傳輸能力的影響 4.是否需針對每一機型製作客製化天線 5.生產成本 而詠業的專利晶片天線,採用改良的迴路天線設計原理,在上述的幾個問題領域,都有優越的表現。詠業的晶片天線如何克服以上的問題,並與其他類型的天線做一比較,敘述如下:

相关主题