搜档网
当前位置:搜档网 › 哺乳动物红细胞专题知识总结

哺乳动物红细胞专题知识总结

哺乳动物红细胞专题知识总结
哺乳动物红细胞专题知识总结

哺乳动物红细胞专题知识总结

生物组赵鹏

高中阶段关于红细胞的知识一再出现,尤其是哺乳动物红细胞,历年各省高考题、全国高考题多次以红细胞为知识背景考查学生的能力水平,由此也凸现了红细胞知识的重要性。在此做以总结,望在同仁中起到抛砖引玉的作用。

一、形态与颜色:双凹型结构、红色。如下图:

二、产生:由骨髓中的造血干细胞分裂、分化形成。其分化的示意图如下:

三、基因突变——镰刀型细胞贫血症:

1、病因:造血干细胞分裂分化形成红细胞的过程中还要不断地分裂形成新的干细胞,

若这个过程发生基因突变,则可能诱发镰刀型细胞贫血症。其示意图如下:

、概述:是一种隐性基因遗传病。患病者的血液红细胞表现为镰刀状,其携带氧的功能只有

正常红细胞的一半。

3、诊断:

(1)细胞水平:取血液制装片,光学显微镜观察红细胞的形态;

(2)分子水平:利用β—珠蛋白基因做成的探针进行检测。

典型考题:

例、(江苏高考生物试卷题)单基因遗传病可以通过核酸杂交技术进行早期诊断。镰刀型细胞贫血症是一种在地中海地区发病率较高的单基因遗传病。已知红细胞正常个体的基因型为、,镰刀型细胞贫血症患者的基因型为。有一对夫妇被检测出均为该致病基因的携带者,为了能生下健康的孩子,每次妊娠早期都进行产前诊断。下图为其产前核酸分子杂交诊断和结果示意图。

()从图中可见,该基因突变是由于引起的。巧合的是,这个位点的突变使得原来正常基因的限制酶切割位点丢失。正常基因该区域上有个酶切点,突变基因上只有个酶切点,经限制酶切割后,凝胶电泳分离酶片段,与探针杂交后可显示出不同的带谱,正常基因显示条,突变基因显示条。

()或分子探针要用等标记。利用核酸分子杂交原理,根据图中突变基因的核苷酸序列(),写出作为探针的核糖核苷酸序列。

()根据凝胶电泳带谱分析可以确定胎儿是否会患有镰刀型细胞贫血症。这对夫妇次妊娠有胎儿Ⅱ~Ⅱ-4中基因型个体是,的个体是,的个体是。

评析:展示本题的目的不仅在于让学生巩固复习利用探针来诊断疾病的方法,同时让学生了解整个过程的梗概,因为近些年高考题中,有关电泳的考题并不少见,可藉此机会向学生简述。

答案:()碱基对改变(或变成) ()放射性同位素(或荧光分子等)

……()Ⅱ一和Ⅱ一Ⅱ一Ⅱ一

4、治疗:骨髓移植,即向患者移植正常人的造血干细胞。

骨髓库:骨髓库并不是把供者的骨髓或造血干细胞存到库里。骨髓库里保存的只是志愿捐献造血干细胞人们的名字、年龄、性别、健康状况、详细地址、基因检查结果等。

如果有一个患者需要做造血干细胞移植,患者的基因与所有志愿者的基因进行配对,配对相合,便通知该志愿者捐献造血干细胞。因此骨髓库参加的志愿者越多,库容量越大,患者找到相合捐献者的机会就越多。

属于器官移植,会产生排斥反应;

为了移植成功,供体与受体的主要要有一半以上相同才可,但此时还有排斥反应,为

了提高成功率,还要长期服用抑制免疫的药物;

移植后,患者的血型可能会发生改变。

四、细胞膜:

1、组成成分:以磷脂双分子层为基本支架,蛋白质分子以不同的方式与其结合,同时

还含有一些糖类。在各种生物膜中,红细胞膜中糖类的含量较高。

典型考题:

例、

从表中可见,人红细胞膜上糖类的含量远远高于其他几种膜,这些糖类与蛋白质结合形成,膜中有些蛋白质构成与物质运输有关的。

答案:糖蛋白载体

2、结构特点:具有一点的流动性。

3、功能特点:人的红细胞中的浓度比血浆中高出倍,而红细胞中的浓度却是血浆中的。

这说明细胞膜具有选择透过性。

4、应用:

用于研究生物膜的材料:年, 德国科学家和用丙酮酸抽提人红细胞膜的磷脂成分,并在水面的铺展成单层分子,结果测定它的面积为红细胞表面积的两倍。原因为哺乳动物成熟的红细胞没有内膜系统。

典型考题:

例、将下列细胞的磷脂分子抽提出来,在水平上铺成单分子层,该层分子膜面积为细胞膜面积两倍的是:()

.根尖细胞.神经细胞.哺乳动物成熟红细胞.支原体细胞

答案:、

在水平上形成的结构:

知识延伸:

例、磷脂是组成细胞膜的重要成分,这与磷脂分子的头部亲水、尾部疏水的性质有关。某研究小组发现植物种子细胞以小油滴的方式贮存油,每个小油滴都由磷脂膜包被着,该膜最可能的结构是()

.由单层磷脂分子构成,磷脂的尾部向着油滴内

.由单层磷脂分子构成,磷脂的头部向着油滴内

.由两层磷脂分子构成,结构与细胞膜完全相同

.由两层磷脂分子构成,两层磷脂的头部相对

答案:

思维拓展:

磷脂分子在水相中还能形成哪些结构?

答案:图示如下

、应用:制成细胞陷阱,为治疗带来新曙光:

典型考题:

例、年月日出版的《生态学通讯》报道,美国耶鲁大学的生物学家称,他们正在从事将病毒引诱到能导致其死亡的栖息地或生活环境方面的实验研究。他们期望将病毒群引诱到人体陷阱细胞中,以防止病毒发生繁殖,该方法将给人们战胜很多疾病(如)带来希望。

通过细胞表面的识别细胞(如图甲),如果给患者注射大量用修饰过的红细胞(如图乙),也会被所识别入侵。在红细胞内无法完成复制增殖,最后随红细胞的死亡而被清除,该方法目前已经在小鼠体内获得阶段性成果。

()病毒入侵人体后,主要由免疫系统将其清除,人体的免疫系统是由免疫器官、免疫细胞和、等免疫活性物质组成。

()免疫细胞细胞在特异性免疫中的作用是,细胞与红细胞共同来源于细胞。

()人类成熟的红细胞之所以能成为“细胞陷阱”,从结构角度看原因是其不具备

,无法提供增殖的条件。

()是识别细胞的重要特征物质,该物质最可能的成分是。

()衰老的红细胞成为,由人类的免疫系统清除。

答案:()抗体淋巴因子(溶菌酶)()识别和呈递抗原骨髓造血干细胞()核糖体(细胞核)等结构()糖蛋白()抗原

五、细胞质:不成熟的红细胞有细胞核,细胞质中有各种细胞器,可以转录、翻译,从而形

成血红蛋白与呼吸作用相关的酶等。成熟后细胞核、细胞器退化,细胞质中绝大部分成分为血红蛋白。血红蛋白()可与结合,从而使红细胞具有运输的能力。含蛋白质与元素。营养不良或缺会导致贫血。

典型考题:

例、“朴雪”乳酸亚铁口服液可以有效地治疗人类缺铁性贫血症,这是因为其中的进入人体后能()

、调节血液的酸碱平衡、调节血液的渗透压

、构成中的血红蛋白、促使更多红细胞的产生

答案:

例、严重缺铁的病人可能会出现()

.丙酮酸中毒.乳酸中毒.尿素中毒中毒

答案:

六、细胞核:刚形成的红细胞有细胞核、各种细胞器,可以转录、翻译,从而形成血红蛋白

与呼吸作用相关的酶等基因表达的产物。但成熟以后细胞核退化,各种细胞器消失,从而不能再进行转录和翻译。

七、呼吸方式:高度特化前可以进行有氧呼吸,成熟后因线粒体退化,只能时行无氧呼吸产

生乳酸。

例、有人从某种哺乳动物体内提取出一种成熟细胞,经化学分析,细胞中不含有而有红色含铁的蛋白质,请分析最可能发生在该细胞中的生理活动是()

→→蛋白质

.葡萄糖→2C能量

.丙酮酸→[]

.氨基酸甲氨基酸乙氨基酸丙……→蛋白质

答案:

八、功能:血红蛋白()可与氧气结合,故其主要功能为运输氧气。

典型考题:

红细胞中的氧气被肝细胞中线粒体利用要穿过几层生物膜

层层层层

答案:

九、衰老:

典型考题:

例、细胞的衰老和死亡是一种正常的生命现象。下列属于衰老红细胞特征的是( ) ①水分减少,细胞萎缩②新陈代谢的速度减慢③某些酶的活性降低④呼吸速率上升⑤色素积累增多⑥细胞的呼吸速率减慢⑦细胞核体积增大⑧细胞膜的通透性改变

.①②③④⑤⑥.①②③⑤⑥⑦⑧.①②③⑥⑧.①②③④⑤⑧

答案:

十、死亡:红细胞的寿命为约天,死亡后被白细胞吞噬消化。

典型考题:

例、人的红细胞和精子的寿命都很短,这一事实体现了()

、环境因素的影响、功能对寿命的决定

、核质相互依存的关系、遗传因素的作用

答案:

例、人体白细胞能吞噬入侵的细菌,细胞碎片和衰老的红细胞,在白细胞中与这些物质消化有密切关系的细胞器为

.溶酶体.核糖体.液泡.中心体

答案:

《生理学》各章知识点 总结

精心整理 生理学基础总结 绪论 I.人体生理学是研究机体正常生命活动规律的科学。 2.生命的基本特征有新陈代谢、兴奋性及生殖。 3.兴奋性是指活的组织或细胞对刺激发生反应的 4.胞外液。 5.信息,使反债调节与控制部分的原发作用一致,意义在于使生理过程不断加强,直至最终完成。 负反馈调节是指受控部分的活动通过发出回馈信息,使回馈调节与控制部分的原发作用相反.意义在于维持机体内环境的稳态。 细胞的基本功能 1.细胞膜对物质的转运方式主要有:单纯扩散、易化扩散、主动转运、 单纯扩散是只取决于膜两例物质浓度差进行转运的一种方式出胞和入胞作用 易化扩散是物质借助细胞膜上特珠蛋白质的帮助,顺浓度梯度或电一化学梯度的转运过程。分为载体转运和通道转运两种。 载体转运具有特异性、饱和性和争议抑制性; 通道转运具有离子选择性和门控特性,又可分为化学门控信道、电压门控信道和机械门拉信.吞饮 动。它是细胞兴奋的标志. 由去极化和复极化构成,是Na +内流与K +的外流及Na +—K +泵转运共同形成的、其引起取决于阈电位, 阈电位是使膜上Na +通道突然大量开放的临界膜电位值。 动作电位以局部电流的形式进行传导。动作电位具有“全或无”特性和不衰减的可传播性。 3.肌肉收缩是指肌肉的长度缩短或张力增加.其过程包括肌细饱的兴奋、兴奋一收缩耦联,收缩三部分,主要步骤如下图

血液 1. 占体重的 2. 透压) 3. 对保持红细胞的正常形态具有重要作用; 血浆蛋白产生胶体渗透压,主要成分是白蛋白,具有免疫功能。 作用是:能使组织液中的水分渗入毛细血管以维持血容量及调节血管内外水分的交换。 等渗溶液是0.9%Nacl,5%葡萄糖溶液。 4.血浆的正常酸碱度:PH7.35-7.4 5.低于7.35为酸中毒,高于7.45为碱中毒。 5.血细胞包括红细胞、白细胞和血小板。 我国成年男性红细胞数为(4.0-5.5)x1012/L;成年女性为(3.5-5.0)x1012/L。6.红细胞内的主要成分是血红蛋白(Hb)。 成年男性血红蛋白浓度为120一160g/L,成年女性为110-150g/L。 血液中红细胞数量和血红蛋白浓度低于正常,称为贫血。 7.红细胞的生理特性包括可塑变形性、悬浮稳定性(血沉,红细胞叠连)、渗透脆性(溶血,低渗溶液)。 红细胞的生理功能主要是运愉O2和CO2以及调节体内的酸碱平衡。 红细胞原料是蛋白质和铁(缺铁性贫血),成熟因素是维生素B12,叶酸。 8.正常成人的白细胞:其主要功能是吞噬作用和 免疫作用。 9.正常成人血小板有(100一 其主要功能为维持血管内皮完整性和生理性止 A抗原与 。 )和 也是由于K+外流产生的电一化学平衡电位。 动作电位由去极化和复极化两个过程组成,但复极化比较复杂,持续时间较长动作电位共分为五个期,即 去极化期(Na+内流形成)、 复极化l期(快速复极初期,K+外流形成)、 2期(缓慢复极期也称平台期,K+外流和Na+内流形成)、 3期(快速复极末期,K+外流形成) 4期(静息期,离子泵转运形成)

哺乳动物红细胞专题知识总结

哺乳动物红细胞专题知识总结 生物组赵鹏 高中阶段关于红细胞的知识一再出现,尤其是哺乳动物红细胞,历年各省高考题、全国高考题多次以红细胞为知识背景考查学生的能力水平,由此也凸现了红细胞知识的重要性。在此做以总结,望在同仁中起到抛砖引玉的作用。 一、形态与颜色:双凹型结构、红色。如下图: 二、产生:由骨髓中的造血干细胞分裂、分化形成。其分化的示意图如下: 三、基因突变——镰刀型细胞贫血症: 1、病因:造血干细胞分裂分化形成红细胞的过程中还要不断地分裂形成新的干细胞, 若这个过程发生基因突变,则可能诱发镰刀型细胞贫血症。其示意图如下: 2、概述:是一种隐性基因遗传病。患病者的血液红细胞表现为镰刀状,其携带氧的功能只

有正常红细胞的一半。 3、诊断: (1)细胞水平:取血液制装片,光学显微镜观察红细胞的形态; (2)分子水平:利用β—珠蛋白基因做成的探针进行检测。 典型考题: 例、(07江苏高考生物试卷38题)单基因遗传病可以通过核酸杂交技术进行早期诊断。镰刀型细胞贫血症是一种在地中海地区发病率较高的单基因遗传病。已知红细胞正常个体的基因型为BB、Bb,镰刀型细胞贫血症患者的基因型为bb。有一对夫妇被检测出均为该致病基因的携带者,为了能生下健康的孩子,每次妊娠早期都进行产前诊断。下图为其产前核酸分子杂交诊断和结果示意图。 (1)从图中可见,该基因突变是由于________引起的。巧合的是,这个位点的突变使得原来正常基因的限制酶切割位点丢失。正常基因该区域上有3个酶切点,突变基因上只有2个酶切点,经限制酶切割后,凝胶电泳分离酶片段,与探针杂交后可显示出不同的带谱,正常基因显示________条,突变基因显示________条。 (2)DNA或RNA分子探针要用________等标记。利用核酸分子杂交原理,根据图中突变基因的核苷酸序列(---ACGTGTT---),写出作为探针的核糖核苷酸序列________。 (3)根据凝胶电泳带谱分析可以确定胎儿是否会患有镰刀型细胞贫血症。这对夫妇4次妊娠有胎儿Ⅱ-1~Ⅱ-4中基因型BB个体是____________,Bb的个体是________,bb的个体是_______________。 评析:展示本题的目的不仅在于让学生巩固复习利用探针来诊断疾病的方法,同时让学生了解整个过程的梗概,因为近些年高考题中,有关电泳的考题并不少见,可藉此机会向学生简述。 答案:(1)碱基对改变(或A变成T) 2 1 (2)放射性同位素(或荧光分子等) …UGCACAA…(3)Ⅱ一l和Ⅱ一4 Ⅱ一3 Ⅱ一2 4、治疗:骨髓移植,即向患者移植正常人的造血干细胞。 ○1骨髓库:骨髓库并不是把供者的骨髓或造血干细胞存到库里。骨髓库里保存的只是志愿捐献造血干细胞人们的名字、年龄、性别、健康状况、详细地址、HLA基因检查结果等。如果有一个患者需要做造血干细胞移植,患者的HLA基因与所有志愿者的HLA基因进行配对,配对相合,便通知该志愿者捐献造血干细胞。因此骨髓库参加的志愿者越多,库容量越大,患者找到相合捐献者的机会就越多。 ○2属于器官移植,会产生排斥反应;

红细胞成熟过程哺乳类动物红细胞在成熟过程中要经历一系列的变化

第三章红细胞 一、红细胞成熟过程 哺乳类动物红细胞在成熟过程中要经历一系列的变化: 早幼红细胞具有分裂繁殖的能力,细胞中含有细胞核、内质网、线粒体等细胞器; 从骨髓进入尚未完全成熟的红细胞称为网织红细胞,细胞仍有合成血红蛋白的功能,另外也可见有少量线粒体; 红细胞进入外周血1~3天后。核蛋白体等细胞器消失,成为成熟红细胞。 二、红细胞的基本结构 成熟红细胞是结构功能高度特化的细胞,无细胞核,也无细胞器。 红细胞内的主要成分是血红蛋白。血红蛋白是含卟啉铁的蛋白质。约占红细胞重量的33%,易与酸性染料结合,染成橘红色。 成熟红细胞直径7.5~8.5um,呈双凹圆盘状,表面光滑,中央较薄,约1um,周边较厚。约1.9um,在血涂片标本上显示,中央染色较浅周边较深。这一形态结构特点增加了红细胞的表面积,与体积相同的球形结构相比表面积增大约25%,还可使细胞内任何一点距细胞表面的距离都不超过0.85um。由于胞质细胞内充满了血红蛋白,最大限度地增强了气体交换的功能。 红细胞的数量及血红蛋白的含量随生理功能而政变。婴儿高于成人,运动时多于安静状态,高原地区居民高于平原地区居民。红细胞形态和数量以及血红蛋白的质与量的改变超出正常范围,则表现为病理现象。一般认为红细胞计数<3.0×1012/L,血红蛋白<100g/L,则为贫血(anemia)。红细胞计数>7.0×1012/L、血红蛋白>180g/L,则为红细胞和血红蛋白增多。 单个红细胞在新鲜时为淡黄绿色,大量红细胞使血液呈猩红色。多个红细胞常叠连在一起呈緡钱状。 红细胞有一定弹性和形态可变性,它能通过自身的变形而顺利通过直径更小的毛细血管。红细胞正常形态的维持需足够的ATP供能以及细胞内外渗透压的平衡。当缺乏ATP供能时,其形态由圆盘状态变为棘球状,当ATP供能状态改善后亦可恢复。当血浆渗透压降低时,血浆中的水分进入红细胞内,细胞肿胀呈球形甚至破裂,称为溶血,残留的红细胞膜囊称为血影;若血浆渗透压升高,红细胞内水分析出胞外,致使红细胞皱缩,也可导致膜破坏而溶血。 三、红细胞膜的结构 红细胞膜是成熟红细胞存留的唯一细胞器,它对保持红细胞的形态和维持红细胞的生命具有重要的意义。红细胞对外界的所有联系及反应,包括物质运输、免疫反应、信号转导、药物反应等,都由红细胞膜来完成。 人的红细胞膜是由蛋白质(约占49.3%)、脂质(约占42%)、糖类(约占8%)和无机离子等组成,蛋白质与脂质的比值约为1:1。电镜下观察红细胞膜呈三层(暗-明=暗):外层含糖脂、糖蛋白、蛋白质,为亲水性;中间层含磷脂、胆固醇与胆固醇酯、蛋白质具有疏水性;内层主要包含蛋白质,呈亲水性。即红细胞膜基本结构与其他细胞一样以脂双层为主体,蛋白质镶嵌在脂双层中。蛋白质大多与脂质及糖类结合以脂蛋白或糖蛋白的形式存在。这些蛋白质既有维持红细胞结构的作用,又有各自特定的功能。 1、红细胞膜蛋白 发现红细胞膜上有10种主要蛋白和一些少量蛋白质。 红细胞膜在包膜内表面可见一网状结构支撑着整个细胞,称为膜骨架,主要由血影蛋白、锚定蛋白、肌动蛋白、原肌球蛋白、肌球蛋白、加合素、4.1蛋白、4.2蛋白、4.9蛋白相连接构成。这种网状结构通过锚蛋白固定在细胞膜上。 膜骨架系统对维持红细胞的形状、稳定性起着重要作用。

精简心电图知识点整理

①p波、P-R间期②P-P→心率、节律③QRS振幅/宽度、主波方向、电轴(I 、III看)、异常Q波④ST段、T波⑤预激波 【QRS波宽大畸形可见于】三度房室传导阻滞、室性心动过速、室性早搏、房颤伴预激 第一节心电图的检测内容和正常数据 (一)P波:

(三)ST-T段: 第二节心房、心室肥大 第三节心肌缺血与心肌梗死 一、心肌缺血与ST-T改变 缺血性:①心内膜→T波高大②心外膜→T波倒置 损伤性:①心内膜损伤/典型心绞痛→ST段压低②心外膜损伤/变异型心绞痛→ST段抬高【鉴别】冠心病、心肌病、电解质紊乱,药物、心室肥大、束支传导阻滞、预激综合征

第三节心律失常 二、窦性心律失常 1.窦性心动过速:“窦P在,心律快,RR小于3大格,PR少于3小格” 【其他】心率多在100~180bpm,逐渐开始逐渐停止,可伴发继发性ST-T改变 2.窦性心动过缓:“窦P在,心律慢,RR超过5大格,PR大于3小格” 常伴窦性心律不齐 3.窦性停搏:长的时间内无P波发生、无QRS波群(可出现逸搏QRS)、长P-P与窦律周期不呈整倍数关系 4.病态窦房结综合征(SSS):①持续窦缓(心率<50bpm)②窦性停搏或窦房阻滞③过缓-过速综合征 ④房室交界区逸搏心律或传导障碍(双结病变)

六、心脏传导异常(一)病理性传导障碍

二度II型A VB易发展为高度或完全性A VB,是安置心脏起搏器的适应证三度 【定义】又称为完全性房室传导阻滞,心房激动完全被阻滞不能下传到心室,阻滞部位可位于房室结、 希氏束或双束支或三分支 【心电图特点】 ①P波与QRS波群无固定关系,各自保持固有心律(房室分离) ②P波频率(心房率)较心室率快(必须特征) ③如果完全阻滞在房室结内,其下位起搏点多在希氏束,QRS波群不宽,心室率在40~60bpm ④如果完全阻滞在希氏束或三束支,起搏点在心室内,QRS宽大变形,心室率20~40bpm 【notice】在III度房室传导阻滞中,如果偶尔出现P波下传到心室者,称为几乎完全房室传导阻滞 【治疗】安置心脏起搏器 【可发生房室分离的疾病】三度房室传导阻滞、室性心动过速、干扰与脱节、房颤 束支 与分 支传 导阻 滞 概述 一侧束支发生阻滞时,激动从健侧心室越过室间隔后再缓慢激动阻滞一侧的心室,在时间上可延长达 40~60ms。在心电图上根据QRS时限是否≥0.12s分为完全性与不完全性束支阻滞 右束支 传导阻 滞 【右束支阻滞常见,其原因有】由单侧冠脉供血、右束支细长、其不应期较左束支长 【临床意义】右束支阻滞常见于健康人,也常见于心脏病病人 【机制】RBBB时,室间隔从左向右除极,然后除极左室,最后除极右室,QRS前半部正常,后半部 QRS时间延长、形态改变 【完全性右束支阻滞心电图特点】 “PR正常QRS后半宽,QRS还比3格宽;V1V2 M型,S-T下移T倒转” ①V1、V2导联出现rSR’波或出现宽大切迹的R波 ②V5、V6及Ⅰ导联的S 波增宽粗纯≥0.04秒 ③avR导联出现终末R波,R波宽且有切迹 ④V1 或V2导联R峰时间(V ATV1)≥0.06秒 ⑤QRS波时限≥0.12秒 ⑥继发性ST-T改变:方向与QRS波终末向量方向相反 【不完全性右束支阻滞特点】与完全性右束支传导阻滞相似,唯有QRS的时间<0.12s R’>r 左心室除极 房间隔开始除极,方向为向右,由于右束支 阻滞,故方向改变向左传,形成小r

贫血知识点归纳

贫血知识点归纳 一、概论 (一)诊断标准 贫血是指外周血液在单位体积中的血红蛋白浓度、红细胞计数和(或)血细胞比容低于 正常低限,以血红蛋白浓度较为重要。贫血常是一个症状,而不是一个独立的疾病,各系统 疾病均可引起贫血。依据我国的标准,血红蛋白测定值成年男性低于120g/L、成年女性低于110g/L及血细胞比容分别低于0.42、0.37,可诊断为贫血。 (二)分类 1.根据病因及发病机制分类 (1)红细胞生成减少 1)干细胞增生和分化异常: 造血干细胞:再生障碍性贫血、范可尼贫血。 红系祖细胞:纯红细胞再生障碍性贫血,肾衰引起的贫血。 2)细胞分化和成熟障碍: DNA合成障碍:维生素B12缺乏,叶酸缺乏,嘌呤和嘧啶代谢缺陷(巨幼细胞贫血)。 Hb合成缺陷:血红素合成缺陷(缺铁性贫血和铁粒幼细胞贫血)。 3)原因不明或多种机制:骨髓浸润性贫血,慢性病性贫血。 (2)红细胞破坏过多(溶血性贫血) 1)内源性: 遗传性红细胞膜异常:遗传性球形细胞增多症,遗传性椭圆形细胞增多症。 获得性血细胞膜异常:阵发性睡眠性血红蛋白尿(PNH)。 红细胞酶异常:葡萄糖-6-磷酸脱氢酶缺乏症,丙酮酸激酶缺乏症。 珠蛋白合成异常:镰状细胞贫血,地中海贫血,其他血红蛋白病。 2)外源性 机械性:行军性血红蛋白尿,人造心脏瓣膜溶血性贫血,微血管病性溶血性贫血。 化学、物理或微生物因素:化学毒物及药物性溶血,大面积烧伤,感染性溶血。 免疫性:自身免疫性溶血性贫血、新生儿同种免疫性溶血病、药物免疫性溶血性贫血。 单核巨噬细胞系统破坏增多:脾功能亢进

(3)丢失过多(失血性贫血):急性失血性贫血、慢性失血性贫血(即缺铁性贫血)。 2.根据细胞形态学分类(表9-10)。 3.根据骨髓增生程度分类 (1)增生性贫血:如溶血性贫血、失血性贫血、巨幼细胞贫血和缺铁性贫血。 (2)增生减低性贫血:如再生障碍性贫血。 (三)临床表现及病理生理基础 红细胞的主要功能是携氧,因此贫血可出现因组织缺氧引起的一系列症状及缺氧所致的代偿表现。贫血的表现与贫血的严重程度、发生速率、主要脏器的原有功能状况及机体的代偿能力有密切关系。除有引起贫血的原发病的表现外,贫血的临床表现如下: 1.一般表现疲乏无力、精神萎靡是最多见的症状,皮肤黏膜苍白是贫血的主要体征。 2.心血管系统表现活动后心悸、气短最为常见部分严重者可以出现心绞痛、心力衰竭。查体可以有心脏扩大,心尖部出现收缩期吹风样杂音。 3.神经系统表现头痛、头晕、耳鸣、易倦以及注意力不集中。维生素B12缺乏时可有麻木、感觉障碍及行走不稳等症状。 4.消化系统表现食欲减退、恶心较常见舌炎、舌乳头萎缩见于营养性贫血,黄疸及脾大常见于溶血性贫血患者。 3泌尿生殖系统表现肾脏浓缩功能减退,表现为多尿、尿比重降低。部分患者可有蛋白尿、月经失调和性功能减退。 (四)诊断步骤 可分以下三步: 1.确立贫血的诊断。 2.明确贫血的类型包括细胞形态学分类、骨髓增生程度(增生性贫血或增生减低性贫血)分类以及病

关于心电图的知识点

关于心电图的知识点 P波:代表心房除极,ⅠⅡaVF、V4~V6向上,aVR向下。 振幅肢导<0.25mv 胸导<0.2mv 时间<0.12s PR间期:P波起点到QRS起点,代表心房除极到心室开始除极的时间,0.12-0.20s QRS:代表心室除极,一般0.06-0.10s,大于0.12s视为异常。 Q波:除aVR以外,正常人Q波时间小于0.04s,振幅小于同导联R波的1/4。J点:QRS终末与ST段起始之交为J点。大多在等电位线上,通常随ST段的偏移而发生移位。 ST段:自QRS波群的终点至T波起点间的线段,代表心室缓慢复极。 ST段一般在等电位线上。上抬:V1 V2一般不超过0.3mv,V3不超过 0.5mv,V4-V6及肢体导联不超过0.1mv。 下移:所有导联一般不超过0.05mv。 T波:大多与主波方向一致。在ⅠⅡV4~V6导联向上,avR向下。 若V1的方向向上,则V2-V6就不应再向下。 QT间期:指QRS起点到T波终点,代表心室除极和复极的全过程。正常范围 0.32-0.44s。心率越慢,QT间期越长;心率越快,QT间期越短。 U波:T波之后0.02-0.04s出现的振幅很小的U波,方向大体与T波一致。V3 V4较易见到,U波明显增高-----血钾过低。 心房肥大 1 右房肥大P波尖而高耸,≥0.25mv,但是P波不增宽。ⅡⅢavF最为突出, 称为肺性P波。 2 左房肥大P波增宽,时限≥0.12s,且常呈双峰,两峰间距≥0.04s,ⅠⅡaVL 导联明显,又称二尖瓣型P波。 心室肥大 左室肥大Rv5+Sv1〉4.0mv(男性)或者〉3.5mv 电轴左偏 右室肥大V1导联R/S≥1,Rv1+Sv5〉1.05mv 电轴右偏 心肌梗死 1 超急性期梗死发生后数分钟高大的T波,ST段斜形抬高,尚未出现Q波。 2 急性期梗死后数小时或数日坏死性Q波(时间≥0.04s 振幅≥1/4R),损 伤性ST段升高,缺血性T波倒置。 3亚急性期梗死后数周至数月,ST段恢复至基线,缺血型T波由倒置较深逐渐变浅,坏死型Q波持续存在。 4陈旧期梗死后3-6个月或更久,ST段和T波恢复正常,残留下坏死性Q 波。 (心电图定位:前间壁V1 V2 V3;前壁V3 V4;前侧壁V5 V6;高侧壁ⅠavL; 广泛前壁V1-V6;下壁ⅡⅢavF;后壁V7 V8 V9) 心房扑动:正常P波消失,代之连续的大锯齿状扑动波(F波),F波在ⅠⅢavF 导联中可见。室律规则,QRS一般不增宽。 心房颤动:正常P波消失,代以大小不等、形状各异的颤动波,V1最明显。室

18、“红细胞”专题复习

“红细胞”专题复习 红细胞不仅在动物体内起着非常重要的生理作用,还作为生物科学某些领域研究的好 材料, 且课本涉及的地方有多处。因此,有关红细胞知识点常成为高考命题的切入点。本文精选与红细胞有关的高考或模拟试题进行例析,便于同学们较系统地掌握有关红细胞的知识考点。 例1、“朴雪”乳酸亚铁口服液可以有效地治疗人类缺铁性贫血症,这是因为其中的Fe2+进入人体后能() A、调节血液的酸碱平衡 B、调节血液的渗透压 C、构成中的血红蛋白 D、促使更多红细胞的产生 [解析] 此题考查红细胞内血红蛋白特有的无机盐组成和无机盐的生理作用。某些无机盐可以用来构造细胞内某些复杂化合物的重要组成部分,如Fe2+进入人体后构成血红蛋白的主要成分,Mg2+是叶绿素分子必需的成分。故答案选C。 例2、青蛙红细胞的分裂方式是() A、二分裂 B、无丝分裂 C、有丝分裂 D、减数分裂 [解析] 此题考查非哺乳类动物红细胞的结构和蛙的红细胞独特的分裂方式。无丝分裂是最早发现的一种细胞的分裂方式,早在1841年就在鸡胚的的血细胞中看到了。其过程是:一般细胞核先延长,从中部内凹缢裂为二,接着整个细胞从中部缢裂为二,形成两个子细胞 ...。因为在分裂开过程中核膜、核仁并不消失,也无染色体变化和纺锤体丝出现,所以叫无丝分裂,它是真核细胞的一种分裂方式,如蛙的红细胞分裂方式就是这样。二分裂是指单细胞生物(如细菌)一种常见的繁殖方式,进行分裂生殖时,先是核逐渐延长,然后逐渐分成两个 新个体 ...。虽然两者都要“一分为二”,但分裂的机理和本质有所不同。顺便提醒一句,人和哺乳动物成熟红细胞无细胞器和细胞核等结构,而非哺乳类动物红细胞如鸟类成熟红细胞仍然有细胞核,难怪我们用鸡血细胞作为提取DNA的材料。故答案选B 。 例3、为从成熟的红细胞上获取细胞膜,可用来处理细胞的试剂是() A、10%盐酸 B、蛋白酶 C、磷脂酶 D、清水 [解析] 此题考查成熟红细胞膜的化学物质组成和分离出纯细胞膜的方法。获取细胞膜就是让其破裂,让内部物质释放出。10%盐酸浓度高,使红细胞皱缩甚至杀死;脂类和蛋白质是细胞膜的主要组成物质,故蛋白酶、磷脂酶均使膜结构遭破坏;清水使细胞渗透吸水胀破,内部物质流出只剩细胞膜。故选D。 例4、在下列物质中,不属于人体内环境组成成分的是() A、血红蛋白 B、氨基酸 C、葡萄糖 D、CO2和O2 [解析] 此题考查红细胞的成分和内环境的概念。血红蛋白是红细胞内部的成分,不在细胞外液(相对人体外部环境来说,又称为内环境),即血红蛋白不属于人体内环境组成成分。故答案选A。 例5、人的红细胞和精子的寿命都很短,这一事实体现了() A、环境因素的影响 B、功能对寿命的决定 C、核质相互依存的关系 D、遗传因素的作用 [解析] 此题考查红细胞的寿命和细胞的完整性。细胞的各个部分不是彼此孤立的,而是互相紧密联系、协调一致的,实际上一个细胞就是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。例如人体成熟的红细胞、人工去核的细胞和丢弃大部分细胞质的精子细胞,一般不能存活多久,有力地说明细胞完整性的重要意义。故答案选C。例6、当氧气含量升高时,下列哪一项所包含的内容是不可能发生的()

哺乳动物成熟红细胞的呼吸方式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 哺乳动物成熟红细胞的呼吸方式 哺乳动物的成熟红细胞结构很特殊,既没有细胞核也无线粒体、核糖体等各种细胞器,却富含血红蛋白,这种结构特点与其运输O2的功能是相适应的。 因为无线粒体,红细胞进行无氧呼吸供能。有些学生对此产生疑问:红细胞本身携带O2,却进行无氧呼吸供能,有O2存在时,其无氧呼吸不会受抑制吗?并列举如下理由:①很多种厌氧型的细菌若生活在空气中,其无氧呼吸受到抑制,不能正常生存。②酵母菌等兼性厌氧型的生物生活在氧气充足的环境中进行有氧呼吸,在缺氧的条件下才进行无氧呼吸。 首先明确并不是所有厌氧型的生物都不能生活在有氧环境中,只有那些严格厌氧菌才不能生活在空气中(如光合细菌,产甲烷杆菌等),而耐氧性厌氧菌是可以生活在空气中的。厌氧菌能否生活在空气中,与其体内是否含有超氧化物歧化酶(SOD)和过氧化氢酶(或过氧化物酶)有关。细胞代谢过程中会产生自由基,自由基是指那些带有奇数电子数的化学物质,它们都带有未配对的自由电子,具有高度的化学活性。在O2存在时还会产生超氧阴离子自由基,它是活性氧的形式之一,性质极不稳定,化学反应能力极强,在细胞内可破坏各种重要生物大分子和膜结构,还可形成其他活性氧化物,故对生物体极其有害。好氧性生物或耐氧性厌氧菌细胞内可合成SOD和过氧化氢酶(或过氧化物酶),超氧阴离子自由基在SOD作用下被歧化成H2O2,在过氧化氢酶作用下H2O2又进一步转变成无毒的H2O,而严格厌氧菌不能合成SOD,在有O2存在时,由于无法歧化超氧阴离子自由基而身受毒害,无法生存。 红细胞内存在这两种酶(红细胞未成熟前已合成),生活在有氧环境中,不会受自由基的危害而抑制其代谢活动。 酵母菌等兼性厌氧型的生物,在缺氧的条件下进行无氧呼吸,当氧气充足时进行有氧呼吸,其无氧呼吸将会受到抑制。为什么在O2充足时,酵母菌的无氧呼吸会受到抑制呢?已知磷酸果糖激酶是无氧呼吸(糖酵解)过程中关键的限速酶,ATP对磷酸果糖激酶具有抑制作用,在有柠檬酸、脂肪酸时会加强抑制效应,而ADP、AMP、无机磷则对此酶有激活作用,酵母菌有氧呼吸会产生较多的ATP,使ATP/ADP比值增高,无机磷相对减少,有

高中生物教材人红细胞知识点总结归纳及精题15题含解析

高中物教材人红细胞知识点总结归纳及精题15题含解析 1、红细胞形态 人类成熟红细胞双凹圆盘状,红细胞的这种形态使它具有较大的表面积,有利于与周围血浆充分进行气体交换,从而 能最大限度地运送O2。 2、红细胞的细胞结构 人类红细胞由于有特殊的运输O2功能,没有细胞核,其细胞内细胞器在分化中都退化了,无任何细胞器,即无线粒体 和核糖体等。这种结构特点可使红细胞自身的代谢率大大降低,利于相关气体运输。 哺乳动物成熟的红细胞一般没有细胞核,寿命较短,且没有DNA,不具有各种基因。 人成熟的红细胞中由于没有各种细胞器,生物膜除了细胞膜外,没有其它的生物膜(如线粒体膜、内质网膜、高尔基 体膜等)。正因为如此血影实验中往往用血细胞作为实验材料。 注意:并不是所有生物的红细胞都没有细胞核,只是人和哺乳类成熟红细胞是无核的, 也无细胞器,只有细胞膜和除细 胞器之外的细胞质。常用于研究细胞膜的材料。而鸟类、两栖类、鱼类的红细胞都是有核的,和正常的细胞结构一样, 常用于生物学实验中的DNA粗提取与鉴定。教材中无丝分裂以蛙的红细胞为例,无丝分裂中具有染色体复制(没有染色体形态变化),可知蛙红细胞中也具有细胞核。 质疑:人体成熟的红细胞内无核,能算真核细胞吗? 哺乳动物所有的细胞都是真核细胞,也就包括成熟的红细胞!它之所以没有细胞核,是因为在进化过程中,红细胞的功能逐渐演化为运输.所以细胞核就慢慢消失了. 还有,并不是所有的真核细胞都有细胞核,成熟植物的筛管细胞也是没有细胞 核的! 3、成熟红细胞代谢问题 成熟红细胞不仅无细胞核,而且也无线粒体等细胞器,不能进行有氧呼吸。血糖是其唯一的能源。成熟红细胞保留的 代谢通路主要是葡萄糖的酵解,即无氧呼吸。所以红细胞是少数几种在需氧型生物中进行无氧呼吸的组织细胞之一。 特别应注意:原核生物虽没有线粒体,但部分原核生物可以通过有氧呼吸获得能量,场所在细胞膜。(注意:细胞吸收葡萄糖的方式是协助扩散,这与小肠上皮细胞吸收葡萄糖的方式(主动运输)相异。) 4、人成熟红细胞中无核糖体,其血红蛋白来源 人成熟红细胞无细胞核,也无核糖体,但胞质内充满血红蛋白。这些血红蛋白是在核退化前合成的,核退化后不能再合成。 5、人体红细胞来源 红细胞本身不能分裂增殖,红细胞的产生都是由骨髓中的造血干细胞直接分化而来。红细胞的形成过程是核幼稚红细胞 到无核网织红细胞再到成熟红细胞发育过程。 6、人体红细胞寿命 人体成熟红细胞由于无细胞核和一些细胞器,它们的寿命相对较短,平均约120天。 7、人红细胞物质跨膜计算 大气中的氧气要与人成熟红细胞中的血红蛋白结合,至少要穿过几层细胞膜? 至少要穿过5层细胞膜。即从肺泡细胞一进一出为2层,通过毛细血管壁细胞一进一出为2层,再进入血红细胞为1层。 8、与人红细胞有关的疾病 缺铁性贫血,镰刀型细胞贫血症 1.下图是人红细胞形态变化的图解。请结合图解回答下面的问题: (1)人正常红细胞生活环境的无机盐浓度约为%。 (2)人成熟的红细胞没有细胞核,应属于原核细胞还是真核细胞?。

pGL3-Promoter哺乳动物表达载体说明

pGL3-Promoter 编号 载体名称 北京华越洋生物VECT6010 pGL3--‐Promoter pGL3--‐Promoter载体基本信息 载体名称: pGL3-promoter, pGL3promoter 质粒类型: 荧光素酶报告系统载体 高拷贝/低拷贝: 高拷贝 启动子: SV40 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5010bp 5' 测序引物及序列: RV primer3:CTAGCAAAATAGGCTGTCCC 3' 测序引物及序列: GLprimer2: CTTTATGTTTTTGGCGTCTTCCA 载体标签: -- 载体抗性: 氨苄 筛选标记: -- 备注: 用于快速定量评估影响哺乳动物细胞特定基因表达的因子及其影响能力。 稳定性: 稳定 组成型: 非组成型 病毒/非病毒: 非病毒 pGL3--‐Promoter载体质粒图谱和多克隆位点信息

pGL3--‐Promoter载体序列 ORIGIN 1 GGTACCGAGC TCTTACGCGT GCTAGCCCGG GCTCGAGATC TGCGATCTGC ATCTCAATTA 61 GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG CCCCTAACTC CGCCCAGTTC 121 CGCCCATTCT CCGCCCCATC GCTGACTAAT TTTTTTTATT TATGCAGAGG CCGAGGCCGC 181 CTCGGCCTCT GAGCTATTCC AGAAGTAGTG AGGAGGCTTT TTTGGAGGCC TAGGCTTTTG

心电图知识点总结

右心房肥大:1.P波高尖,电压≥0.25mV,在II、Ⅲ、aVF导联最明显。2.在V1导联上P波前部高尖,起始P波指数IPI>0.03 mm.s。 左心房肥大:1.P波增宽≥0.12S,常呈前底后高的双峰P波,双峰间距≥0.04S,Ⅰ、Ⅱ、aVL导联较明显。2.在V1导联上,Ptf≤-0.04mm.s(ptfV1为P波终末电势)。 左心室肥大:1RV5≥2.5mV;RV5+SV1>4.0mV(男)或 3.5mV(女)。2QRS时间略延长,达0.10-0.11s,v5导联VAT≥0.05s。3ST-T段改变:V5、V6等以R波为主的导联中,ST段下移>0.05mV,T波低平、双向或倒置。4心电轴左偏但不超过-30。 右心室肥大:1QRS波群电压增高:RV1>1mV,RV1+SV5>1.2mV,RaVR>0.5mV。2 QRS 波群形态改变:V1导R/S>1,V5导R/S<1。3 心电轴右偏,尤其是>110者。4 V1导VAT>0.03S,但QRS波群并不延长。 心肌梗死的基本图形:缺血性T波改变,损伤型ST段改变,坏死型Q波改变(1.Q波时间大于或等于0.04S;2.Q波电压>同导R波的1/4。) 心肌缺血 心绞痛:典型心绞痛:发作持续时间多在15分左右,面对缺血区出现的导联上出现S-T段水平型或下垂型下移≥0.1mV,T波倒置低平或双向。变异型心绞痛:ST段抬高,常伴T 波高耸,对应导联则表现为S-T段下移。 慢性冠状动脉供血不足:1,S-T段下移,呈水平或下垂型下移,幅度≥0.05mV。2,T波改变,表现为低平、双向(尤其是先负后正)、倒置。3,U波持续倒置。 室性早搏:1,提早出现的QRS-T波群,其前无提早出现的异位P'波;2,QRS波群宽大畸形,时间≥0.12S;3,T波方向与QRS波群主波方向相反;4,有完全性代偿间期,即室早前后两个窦性P波的时距等于两个窦性P-P间距。 阵发性室上性心动过速:1,连续3次或3次以上的房性或房室交界性早搏,频率大多为160-250次/分,节律快而规则。2,QRS波群形态基本正常,时间≤0.10S。 室性心动过速:1,连续3个或3个以上的室性早搏,频率多在140-200次/min,室律可略有不齐;2,QRS波群增宽畸形,时间≥0.12S,T波方向相反;3,如能发现窦性P波,可见窦性P波的频率比QRS波群的频率缓慢,可发生心室夺获或室性融合波,这是诊断室速最可靠的依据。 心房颤动:1,P波消失,代之以大小不等、形态不同、间距不匀齐的房颤波(f波),频率在350-600次/min,V1导联最清楚,其次是Ⅱ、Ⅲ、aVF。2,心室律绝对不规则。3,QRS波群形态正常。 I度房室传导阻滞:窦性P波后均伴有QRS波群;P-R间期延长≥0.21S。 II度房室传导阻滞:A,Ⅱ度1型,又称莫氏1型或文氏型:P波规律地出现;P-R间期进行性延长,直到出现一次心室漏搏。B,Ⅱ度Ⅱ型:P波有规律地出现,P-R间期恒定;QRS 波群成比例地脱漏,形态正常或增宽、畸形。 III度房室传导阻滞:P波与QRS波群无固定关系,P-P间距与R-R间距各有其固定的规律性;心房率大于心室率,即P波频率高于QRS波群频率;QRS波群形态取决于异位起搏点的位置。 右束支传导阻滞:QRS波群时间≥0.12S;V1、V2导联QRS波群呈rSR'(M)型或宽大而有切迹的R波,S-T段压低,T波倒置;Ⅰ、V5、V6导联呈宽而有切迹的S波,时间≥0.4S。 左束支传导阻滞:QRS波群时间≥0.12S;QRS波群V1、V2导联常呈rS型或QS型,Ⅰ、V5、V6导联q波减小或消失,呈宽大、有切迹或顶部粗钝的R波。 预激综合征:P-R间期<0.12S,P波一般为窦性型;QRS波群时间≥0.12S;QRS波群起始部粗钝,形成所谓的预激波;继发性ST-T段改变。 血钾过低或缺钾:S-T段压低>0.05mV,T波低平或倒置;U波增高,以V2、V3明显,可达0.1mV以上。 血钾过高:1,最初表现T波高尖,基底狭窄,双支对称而呈"帐篷样";2,血钾>6.5mmol/L 时,QRS波群增宽,R波降低,S波加深,S-T段压低;3,血钾>7.0mmol/L时,P波消失(窦室传导),QRS波群增宽、畸形,P-R延长,心室率缓慢。血钾过高的最后阶段可发生室速、室扑、室颤甚至心室停搏。 低血钙:S-T段延长,QT间期延长,直立T波变窄低平或倒置。

细胞的结构和功能知识点归纳

《细胞的结构和功能》知识点归纳 《细胞的结构和功能》知识点归纳 第一节、细胞的结构和功能名词:1、显微结构:在普通光学显微镜中能够观察到的细胞结构。2、亚显微结构:在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。3、原核细胞:细胞较小,没有成形的细胞核。组成核的物质集中在核区,没有染色体,DNA 不与蛋白质结合,无核膜、无核仁;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。4、真核细胞:细胞较大,有真正的细胞核,有一定数目的染色体,有核膜、有核仁,一般有多种细胞器。5、原核生物:由原核细胞构成的生物。如:蓝藻、绿藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。6、真核生物:由真核细胞构成的生物。如:酵母菌、霉菌、食用菌、衣藻、变形虫、草里履虫、疟原虫等。7、细胞膜的选择透过性:这种膜可以让水分子自由通过,细胞要选择吸收的离子和小分子(如:氨基酸、葡萄糖)也可以通过,而其它的离子、小分子和大分子(如:信使RNA、蛋白质、核酸、蔗糖)则不能通过。8、膜蛋白:指细胞内各种膜结构中蛋白质成分。9、载体蛋白:膜结构中与物质运输有关的一种跨膜蛋白质,细胞膜中的载体蛋白在协助扩散和主动运输中都有特异性。10、细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。11、细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。12、细胞器:细胞质中具有特定功能的各种亚细胞结构的总称。 13、细胞壁:植物细胞的外面有细胞壁,主要化学成分是纤维素和果胶,其作用是支持和保护。其性质是全透的。语句: 1、地球上的生物,除了病毒以外,所有的生物体都是由细胞构成的。(生物分类也就有了细胞生物和非细胞生物之分)。2、细胞膜由双层磷脂分子镶嵌了蛋白质。蛋白质可以以覆盖、贯穿、镶嵌三种方式与双层磷脂分子相结合。磷脂双分子层是细胞膜的基本支架,除保护作用外,还与细胞内外物质交换有关。3、细胞膜的结构特点是具有一定的流动性;功能特性是选择透过性。如:变形虫的任何部位都能伸出伪足,人体某些白细胞能吞噬病菌,这些生理的完成依赖细胞膜的流动性。4、

哺乳动物细胞蛋白表达FAQ

哺乳动物细胞蛋白表达FAQ 1、什么是质粒超螺旋,超螺旋对提高表达量有什么帮助?答:闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA ,超螺旋比例90%以上是比较理想的真核表达质粒,较低的超螺旋比例会降低表达量近50%以上。 2、CHO细胞与293细胞有什么区别? 答:CHO细胞即中国仓鼠卵巢细胞,是目前表达外源蛋白最多最成功的细胞之一。该细胞属于成纤维细胞,是一种非分泌型细胞,自身很少分泌内源蛋白,因此有利于目的蛋白的纯化分离;相较于其他细胞类型,CHO细胞是治疗性蛋白生产的主要宿主细胞的原因如下:(1)能在化学成分限定和无血清悬浮培养中稳定生长, (2)该细胞基因组信息明确,在人类致病病毒应答方面表现出合理的安全性, (3)能够表达与人相似的翻译后修饰。 此外,CHO细胞表达系统的最重要优势之一是能够容易的得到基因改造的细胞。然而,因为糖基化模式与人类不完全相同,导致CHO细胞产生的重组蛋白在某些时候仍然表现出免疫原性。 HEK293细胞是真核蛋白表达常用的细胞之一,它具有以下优势:更快的生长速度,更高的生长密度、转染效率高,表达后修饰更接近人体蛋白的结构,可能会有潜在的人病毒污染。

3、常用的哺乳动物细胞蛋白表达系统是什么?原理是什 么? 答:我们常用的系统是2936e细胞配套PTT5(pAZ5)载体 HEK2936E 是在细胞的基因组中整合了EBV病毒的 nuclear antigen 1 (EBNA1), 该蛋白可以保证含有EBV病毒复制原点(EBV ori)的质粒在HEK293E 细胞株中复制,提高质粒的拷贝数,进而提高克隆在此种质粒上的外源基因的表达水平。该系统比常规的293F细胞表达量要高。 4、导致哺乳动物细胞蛋白表达低或者不表达的原因有哪些?哪类蛋白不容易表达? 答:基因是否优化,有的蛋白稀有密码子较多,需要对应表达细胞进 行优化密码子。 蛋白本身就比较难做,比如细胞因子类的,衣壳蛋白类的,膜蛋白。质粒质量:内毒素水平、有无蛋白和核酸污染、超螺旋比例、无盐苯酚等试剂 分子量较大或者太小:大于150KD表达会有一定的难度,小于5KD也会有难度。 有的表达量不低,但是纯化得率低(可溶性差,不挂住,不稳定,易降解) 难表达蛋白:细胞因子、激素、抗菌肽、衣壳蛋白、膜蛋白

细胞增殖知识点汇总

细胞增殖知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

染色体的着丝点排列在细胞赤道板上 染色体形态、数目清晰 中期 着丝点分裂,染色单体分开,形成子染色体 (染色体数目暂时加倍) 纺锤丝牵引两组染色体向两极称移动 染色体解旋成染色质形态 纺锤体解体消失 核膜重新形成,核仁重新出现 细胞质分裂,形成两个子细胞 (植物形成细胞壁,动物直接从中部凹陷) 意义:细胞增殖是生物体生长、发育、繁殖和遗传的基础 无丝分裂 一种特殊方式的有丝分裂(染色体数目减半) 与有性生殖的生殖细胞的形成有关 只有特定的生殖器官内的特定细胞才能进行 减数分裂 分裂方式 概念:从一次分裂完成时开始,到下一次分裂前。 主要变化:DNA 复制、蛋白质合成 分裂间期 分裂期 出现染色体:染色质螺旋变粗变短的结果 核仁逐渐解体,核膜逐渐消失 纺锤丝形成纺锤体 前期 后期 有丝分裂 细胞分裂 细胞周期 两个阶段 概念:连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止 末期 意义:亲代细胞中的染色体复制后精确地均分到两个子细胞中 去,使亲、子代间保持了遗传物质的稳定性 实例:蛙的红细胞 过程 核延长→核缢裂→二子核 质缢裂→两个细胞 特点:不出现纺锤体和染色体(但DNA 仍然要复制) 知识网络整理 动、植物细胞有丝分裂的比较 相同点:染色体的规律性变化 前期:纺锤体的来源不同 末期:一个细胞分为两个子细胞的方式不同 不同点 考点6 细胞增殖(有丝分裂) 考点7 减数分裂 一、减数分裂的概念 1.概念:细胞连续分裂两次,而染色体在整个过程只复制一次的细胞分裂方式。 2.减数分裂是特殊的有丝分裂,其特殊性表现在: ①从分裂过程上看:(在减数分裂全过程中)连续分裂两次,染色体只复制一次 ②从分裂结果上看:形成的子细胞内的遗传物质只有亲代细胞的一半 知识网络整理

哺乳动物成熟红细胞的呼吸方式讲解学习

精品文档 精品文档哺乳动物成熟红细胞的呼吸方式 哺乳动物的成熟红细胞结构很特殊,既没有细胞核也无线粒体、核糖体等各种细胞器,却富含血红蛋白,这种结构特点与其运输O2的功能是相适应的。 因为无线粒体,红细胞进行无氧呼吸供能。有些学生对此产生疑问:红细胞本身携带O2,却进行无氧呼吸供能,有O2存在时,其无氧呼吸不会受抑制吗?并列举如下理由:①很多种厌氧型的细菌若生活在空气中,其无氧呼吸受到抑制,不能正常生存。②酵母菌等兼性厌氧型的生物生活在氧气充足的环境中进行有氧呼吸,在缺氧的条件下才进行无氧呼吸。 首先明确并不是所有厌氧型的生物都不能生活在有氧环境中,只有那些严格厌氧菌才不能生活在空气中(如光合细菌,产甲烷杆菌等),而耐氧性厌氧菌是可以生活在空气中的。厌氧菌能否生活在空气中,与其体内是否含有超氧化物歧化酶(SOD)和过氧化氢酶(或过氧化物酶)有关。细胞代谢过程中会产生自由基,自由基是指那些带有奇数电子数的化学物质,它们都带有未配对的自由电子,具有高度的化学活性。在O2存在时还会产生超氧阴离子自由基,它是活性氧的形式之一,性质极不稳定,化学反应能力极强,在细胞内可破坏各种重要生物大分子和膜结构,还可形成其他活性氧化物,故对生物体极其有害。好氧性生物或耐氧性厌氧菌细胞内可合成SOD和过氧化氢酶(或过氧化物酶),超氧阴离子自由基在SOD作用下被歧化成H2O2,在过氧化氢酶作用下H2O2又进一步转变成无毒的H2O,而严格厌氧菌不能合成SOD,在有O2存在时,由于无法歧化超氧阴离子自由基而身受毒害,无法生存。 红细胞内存在这两种酶(红细胞未成熟前已合成),生活在有氧环境中,不会受自由基的危害而抑制其代谢活动。 酵母菌等兼性厌氧型的生物,在缺氧的条件下进行无氧呼吸,当氧气充足时进行有氧呼吸,其无氧呼吸将会受到抑制。为什么在O2充足时,酵母菌的无氧呼吸会受到抑制呢?已知磷酸果糖激酶是无氧呼吸(糖酵解)过程中关键的限速酶,ATP对磷酸果糖激酶具有抑制作用,在有柠檬酸、脂肪酸时会加强抑制效应,而ADP、AMP、无机磷则对此酶有激活作用,酵母菌有氧呼吸会产生较多的ATP,使ATP/ADP比值增高,无机磷相对减少,有氧呼吸过程中还会使柠檬酸等物质增多,最终抑制了磷酸果糖激酶的活性,同时NADH进入线粒体中被有氧呼吸消耗,不能还原乙醛生成乙醇,还会使糖酵解过程中的NAD和NADH不能发生周转,也影响了糖酵解速度。 由以上可知,抑制无氧呼吸的直接原因,是生物细胞进行了有氧呼吸,在有氧呼吸的过程中发生的物质变化抑制了无氧呼吸的进行,并不是由于O2的存在直接抑制了无氧呼吸。成熟的红细胞内由于缺乏有氧呼吸酶系,不能进行有氧呼吸,所以红细胞尽管携带较多的O2也不会抑制其无氧呼吸。 红细胞进行无氧呼吸是与其运输O 2的功能相适应的,因其结合和携带O 2 的过 程中并不消耗O 2,从而有效地提高了运输O 2 的效率。红细胞自身生命活动所消 耗能量并不多,其无氧呼吸产生能量主要是保证细胞膜上离子泵的正常运转,使红细胞维持细胞内高钾、低钙和低钠的状态,还能保证低铁血红蛋白不被氧化。(若血红蛋白中的Fe2+被氧化为Fe3+,形成高铁血红蛋白,高铁血红蛋白中的Fe3+

相关主题