搜档网
当前位置:搜档网 › 小波包分解下的多窗谱估计语音增强算法

小波包分解下的多窗谱估计语音增强算法

小波包分解下的多窗谱估计语音增强算法
小波包分解下的多窗谱估计语音增强算法

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

小波实验报告一维Haar小波2次分解

一、题目:一维Haar 小波2次分解 二、目的:编程实现信号的分解与重构 三、算法及其实现:离散小波变换 离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈? 本实验实现对信号的分解与重构: (1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。在本实验中使用小波函数db1来实现单尺度小波分解,即: [cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。 (2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即: A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。 四、实现工具:Matlab 五、程序代码: %装载leleccum 信号 load leleccum; s = leleccum(1:3920); %用小波函数db1对信号进行单尺度小波分解 [cA1,cD1]=dwt(s,'db1'); subplot(3,2,1); plot(s); title('leleccum 原始信号'); %单尺度低频系数cA1向上一步的重构信号 A1 = upcoef('a',cA1,'db1'); %单尺度高频系数cD1向上一步的重构信号 D1 = upcoef('a',cD1,'db1'); subplot(3,2,3); plot(A1); title('单尺度低频系数cA1向上一步的重构信号'); subplot(3,2,5); plot(D1); title('单尺度高频系数cD1向上一步的重构信号'); [cA1,cD1]=dwt(cA1,’db1'); subplot(3,2,2); plot(s); title('leleccum 第一次分解后的cA1信号'); %第二次分解单尺度低频系数cA2向上一步的重构信号 A2= upcoef('a',cA2,'db1',2); %第二次分解单尺度高频系数cD2向上一步的重构信号 D2 = upcoef('a',cD2,'db1',2); subplot(3,2,4); plot(A2);

红外谱图峰位分析方法

红外谱图分析(一) 基团频率和特征吸收峰 物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1 氢键区 2 500~2 000 cm-1 产生吸收基团有O—H、C—H、N—H; 叁键区 2 000~1 500 cm-1 C≡C、C≡N、C═C═C 双键区 1 500~1 000 cm-1 C═C、C═O等 单键区 按吸收的特征,又可划分为官能团区和指纹区。 一、官能团区和指纹区 红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。 4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。由于基团的特征吸收峰一般位于高频围,并且在 该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。 在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区 对于区别结构类似的化合物很有帮助。 指纹区可分为两个波段 (1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振 动和C═S,S═O,P═O等双键的伸缩振动吸收。

小波包能量谱程序

wpt4=wpdec(y4,n,'db30'); %对数据进行小波包分解 for i=1:2^n %wpcoef(wpt4,[n,i-1])是求第n层第i个节点的系数 disp('每个节点的能量E1(i)'); E4(i)=norm(wpcoef(wpt4,[n,i-1]),2)*norm(wpcoef(wpt4,[n,i-1]),2)%求第i个节点的范数平方,其实也就是平方和 end 请教各位,小波包能量如何求? 我的理解 假设信号x,对齐进行n层分解: wpt=wpdec(x,n,wname); 然后各小波包系数重构分量信号: dp(i,: )=(wprcoef(wpt,i)); 小波包能量为: Edp(i)=sum(dp(i,: ).^2); 这样对吗,谢谢大虾指点! 1.小波分析中,原始信号被分解为逼近部分和细节部分。逼近部分再分解为另一层的逼近和细节,这样的过程重复进行,直到设定的分阶层。然而,在小波包分解中,细节部分也进行相同的分解。小波包分解具有任意多尺度特点,避免了小波变换固定时频分解的缺陷(如高频段频率分辨率低),为时频分析提供了极大的选择余地,更能反映信号的本质和特征。你理解也算是对的。 2. s%为已知信号源 for i=1:4 wpt=wpdec(s,i,'db3'); e=wenergy(wpt); E=zeros(1,length(e)); for j=1:2^i E(j)=sum(abs(wprcoef(wpt,[i,j-1])).^2); end figure(5) subplot(4,1,i); bar(e); axis([0 length(e) 0 130]); title(['第',num2str(i), ' 层']); for j=1:length(e) text(j-0.2,e(j)+20,num2str(e(j),'%2.2f')); end end 这段程序也是从网上下载的,一起学习一下吧。

NMR常见溶剂峰和水峰

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值

常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 DMSO CD3OD D2O CD3COCD3

05 基于小波包能量谱分析的电机故障诊断要点

应用天地 2008年 2月第 27卷第 2期 基于小波包能量谱分析的电机故障诊断 唐友怀张海涛罗珊姜喆 (工程兵工程学院南京 210007 摘要 :小波包是继小波分析后提出的一种新型的多尺度分析方法 [1], 解决了小波分析在高频部分分辨率差的缺点 , 体现了比小波分析更好的处理效果。文章描述了小波包分析方法的基本原理及其实现算法 , 并从能量分布的角度出发 , 阐述了在电机故障诊断中 , 利用小波包分析方法将模糊故障信号进行量化、分解 , 从而便于用单片机进行处理、判断的一种新的应用途径 , 在实验室中模拟各种电机故障进行了实验验证 , 实验进一步表明基于小波包能量谱分析的电机故障诊断方法是一种方便灵活并且准确度很高的故障诊断方法。关键词 :小波包 ; 故障诊断 ; 能量谱 ; 电机中图分类号 :TP182文献标识码 :A B ased on w avelet p acked energy motor fau lt diagnosis Haitao L uo Shan Jiang Zhe (College of Engineering Corps , Nanjing 210007 Abstract :The wavelet packed is presented as a new kind of multiscale analysis technique followed Wavelet analysis. it re 2solved t he wavelet analysis disadvantage on t he part of high frequency resolution lower , showed better treat ment effect t han wavelet analysis. The f undamental and it s realization arit hmetic of t he wavelet packed analysis met hod are described in t his paper. A new application approach of t he wavelet packed met hod on t he motor fault diagnosis from energy distrib 2uting angle is expatiated. And given t he experimental met hod and t he conclusion. and a new application approach which is convenient for t he microchip to process and judge by using t he wavelet packed analysis met hod to make the f uzzy motor fault diagnosis signals quantized and analyzed

核磁谱图NMR常见溶剂峰杂质峰分析(中文版)

核磁谱图NMR常见溶剂峰杂质峰分析 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰— 1.56 2.84 3.33 0.40 2.13 4.87 —乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯—7.36 7.36 7.37 7.15 7.37 7.33 —叔丁醇 CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 ——叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.268.028.32 6.157.587.90—环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 —1,2-二氯甲烷— 3.73 3.87 3.90 2.90 3.81 3.78 —二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 —乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺 CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75

小波分析及小波包分析

小波分析及小波包分析 在利用matlab做小波分析时,小波分解函数和系数提取函数的结果都是分解系数。我们知道,复杂的周期信号可以分解为一组正弦函数之和,及傅里叶级数,而傅里叶变换对应于傅里叶级数的系数;同样,信号也可以表示为一组小波基函数之和,小波变换系数对应于这组小波基函数的系数。 多尺度分解是按照多分辨分析理论,分解尺度越大,分解系数的长度越小(是上一个尺度的二分之一)。我们会发现分解得到的小波低频系数的变化规律和原始信号相似,但要注意低频系数的数值和长度与原始信号以及后面重构得到的各层信号是不一样的。 小波分解:具体实现过程可以分别设计高通滤波器和低通滤波器,得到高频系数和低频系数,并且每分解一次数据的长度减半。小波重构,为分分解的逆过程,先进行增采样,及在每两个数之间插入一个0,与共轭滤波器卷积,最后对卷积结果求和。在应用程中,我们经常利用各层系数对信号进行重构(注意虽然系数数少于原信号点数,但是重构后的长度是一样的),从而可以有选择的观看每一频段的时域波形。从而确定冲击成分所在频率范围。便于更直观的理解,小波分解,利用各层系数进行信号重构过程我们可以认为是将信号通过一系列的不同类型的滤波器,从而得到不同频率范围内的信号,及将信号分解。 小波消噪:运用小波分析进行一维信号消噪处理和压缩处理,是小波分析的两个重要的应用。使用小波分析可以将原始信号分解为一系列的近似分量和细节分量,信号的噪声主要集中表现在信号的细节分量上。使用一定的阈值处理细节分量后,再经过小波重构就可以得到平滑的信号。 小波常用函数 [C,L]=wavedec(s,3,'db1');%用小波函数db1对信号s进行3尺度分解 其中C为分解后低频和高频系数,L存储低频和高频系数的长度。 X=wrcoef(‘type’,C,L,’wname’,N)%对一维小波系数进行单支重构,其中N表示对第几层的小波进行重构 X=wrcoef(‘a’,C,L,’wname’,3)%对第三层的低频信号进行重构,如果a变为d的话,表示对低频分量进行重构。注意重构后数据的长度于原来数据的长度一致。 ca1=appcoef(C,L,'db1',1);%从前面小波3尺度分解结构[C,L]中提取尺度1的低频系数 高频系数提取类似。 选择合适的阈值,小波分解后,重构可以达到去除噪声的目的。 小波包分解,可以将信号分在不同的频带,且不同的频带宽度是一样的。小波分析,只将低

红外谱图解析基本知识

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。 不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。 苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。 叁键oCH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 (2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CoC、-CoN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。 对于炔烃类化合物,可以分成R-CoCH和R¢-C oC-R两种类型: R-CoCH的伸缩振动出现在2100~2140 cm-1附近; R¢-C oC-R出现在2190~2260 cm-1附近; R-C oC-R分子是对称,则为非红外活性。 -C oN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C oN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C oN基越近,-C oN基的吸收越弱,甚至观察不到。

小波包及能量频谱的MATLab算法

一根断条: >> %采样频率 fs=10000; nfft=10240; %定子电流信号 fid=fopen('duantiao.m','r');%故障 N=2048; xdata=fread(fid,N,'int16'); fclose(fid); xdata=(xdata-mean(xdata))/std(xdata,1); %功率谱 figure(1); Y=abs(fft(xdata,nfft)); plot((0:nfft/2-1)/nfft*fs,Y(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); %3层小波包分解 T=wpdec(xdata,3,'db4'); %重构低频信号 y1=wprcoef(T,[3,1]); %y1的波形

figure(2); subplot(2,2,1); plot(1:N,y1); xlabel('时间t/n'); ylabel('电流I/A'); %y1的功率谱 Y1=abs(fft(y1,nfft)); subplot(2,2,2); plot((0:nfft/2-1)/nfft*fs,Y1(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因

8.2 小波分解与重构

8.2信号分解与合成的Mallat算法 一、一维信号的分解与合成 1. 正交镜像滤波器 2. 一维信号的小波分解与重构算法 (Mallat’s herringbone算法)

二、二维信号的分解与重构

三、用Matlab实现图像的分解与合成 1.dwt2与idwt2 dwt2为一层二维离散小波分解函数,调用格式: [cA,cH,cV,cD]=dwt2(X,’wname’) % 用指定小波基对图像X进行一层二维离散小波 变换分解。’wname’为小波基的名称,cA为近似 (低频)图像矩阵,cH, cV, cD分别为小波分解的水 平方向细节系数,垂直方向细节系数,对角线方向 细节系数。 [cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) % 用指定的低通分解滤波器Lo_D和高通分解滤波器Hi_D对图像X进行二维离散小波分解。Lo_D与

Hi_D的长度必须一致。 idwt2为一层二维离散小波重构函数,调用格式为:X=idwt2(cA,cH,cV,cD,’wname’) % 用指定小波重构图像X,wname为小波基的名称。 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) % 用指定低通重构滤波器Lo_R和高通重构滤波器 Hi_R重构图像X,Lo_R与Hi_R的长度必须一致。 2.wavedec2与vaverec2 wavedec2为多层二维离散小波分解函数,其调用 格式为: [C,S]=wavedec2(X,N,’wname’) % 用指定小波基对图像X进行N层二维离散小波分解。N为正整数,C为小波分解矢量,S为相应 的标记矩阵。 C = [ A(N) | H(N) | V(N) | D(N) | ... H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ]. A = approximation coefficients H = horizontal detail coefficients V = vertical detail coefficients D = diagonal detail coefficients 矩阵S形如 S(1,:) = size of approximation coefficients(N)

小波分析实验:二维离散小波变换(Mallat快速算法)

小波分析实验:实验2二维离散小波变换(Mallat快速算法) 实验目的: 在理解离散小波变换原理和Mallat快速算法的基础上,通过编程对图像进行二维离散小波变换,从而加深对二维小波分解和重构的理性和感性认识,并能提高编程能力,为今后的学习和工作奠定基础。 实验工具: 计算机,matlab6.5

分解算法: 重构算法: “"二工必(刃- 2上*[十三g (刃- 2k )d [ * 分解算法写成矩阵的形式! (lb g 的长度为4) 4[0]如]力⑵ h[3] 0 0 0 ' [勺【0】? 记" h[0] h[\]h[2]山⑶ … ? ????? ? ? C J = 勺【1] ? ? 申[2] h[3] 0 0 0 -.^[0] ^[1]_ .勺[乃-1】_ >[0] g[l] g ⑵ g[3] 0 ? ? ? e= ? 0 ? g[0] g[l]g ⑵ ? ? g[3] ■ ? ?? ■ 0 ? D J = <[i] ■ ? 目2] ■ g[3] 0 0 …茎0] 畀] |g[0] g[l] g[2] g[3] 0 0 0 I 0 0 g[0] g[l]g[2] S [3] - 0 ? ????? ? ? ?????■ ? ? g[2] g[3] 0 0 0 ...g[0] g[l]J |_勺4-1[ 叨] I 二 ?(2?

于是Mallat分解公式为矩阵变换?丄 Cj- = PC^................. ⑶卩 D j = Q D J-L..... .......... ⑷ 重构算法写成矩阵变换:- C J_I =C$ + Dj------------------------------------ (5) 4 M N PPq. 一片『峰值信噪比计算公式:P沁沁逻竺皿E卢H耿V 屈E M {皿,00分别表示原始图像和重建图像,且 本实验采取的一些小技乐P (I)分SW法…

最新核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)知识讲解

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。 为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰— 1.56 2.84 3.33 0.40 2.13 4.87 — 乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯—7.36 7.36 7.37 7.15 7.37 7.33 — 叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 —— 叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 — 环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 — 1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 — 二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 — 乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺 CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75

如何分析红外谱图

如何分析红外谱图 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度(Ω)= 1+F+(T-O)/2 其中,F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800 cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000 cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000 cm-1一般为饱和C-H伸缩振动吸收; 3)若在稍高于3000 cm-1有吸收,则应在2250~1450 cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm-1;烯1680~1640 cm-1;芳环1600, 1580, 1500, 1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm-1的频区,以确定 取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm-1的三个峰,说明醛基的存在。 常用健值: a. 烷烃:C-H伸缩振动(3000-2850 cm-1);C-H弯曲振动(1465-1340 cm-1);一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收; b. 烯烃:烯烃C-H伸缩(3100~3010 cm-1);C=C伸缩(1675~1640 cm-1);烯烃C-H面外弯曲振动(1000~675 cm-1); c. 炔烃:伸缩振动(2250~2100 cm-1);炔烃C-H伸缩振动(3300 cm-1附近); d.芳烃:3100~3000 cm-1 芳环上C-H伸缩振动;1600~1450 cm-1 C=C 骨架振动。 2. 推测C4H8O2的结构 解:1)Ω=1-8/2+4=1 2)峰归属 3)可能的结构H C O2CH2CH3 O H3C C O2CH3 O H3CH2C C O CH3 O 1180 1240 1160

小波包分解

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%小波包分解程序%% m=load('300_30.txt'); 导入文件名为300_30的txt文件N=length(m); for i=1:N-1 ; q(i,1)=m(i,1); end; d=q'; s1=d; change=1000; [c,l] = wavedec(d,3,'db4'); %提取小波分解后的低频系数 ca3=appcoef(c,l,'db4',3); %提取各层小波分解后的高频系数cd3=detcoef(c,l,3); cd2=detcoef(c,l,2); cd1=detcoef(c,l,1); %对信号强制消噪 cdd3=zeros(1,length(cd3));%第三层高频系数cd3全置0 cdd2=zeros(1,length(cd2));%第二层高频系数cd2全置0 cdd1=zeros(1,length(cd1));%第一层高频系数cd1全置0 c1=[ca3,cdd3,cdd2,cdd1];%建立新的系数矩阵 s2=waverec(c1,l,'db4')%为新的分解结构 %[thr,sorh,keepapp]=ddencmp('den','wv',d); %s2=wdencmp('gbl',c,l,'db4',4,thr,sorh,keepapp); %subplot(413) %plot(1:change,s2(1:change)); %title('默认软阈值消噪后信号') figure(1) subplot(9,2,1) plot(1:change,s1(1:change)) title('原始信号') ylabel('S1') subplot(9,2,2) plot(1:change,s2(1:change)) title('强制消噪后信号') ylabel('S2') wpt=wpdec(s1,3,'db1','shannon'); %plot(wpt); %重构第三层个节点小波系数 s130=wprcoef(wpt,[3,0]);

小波分析第二次作业——分解重构算法的实现

小波分析第二次作业——分解重构算法的实现 郭欣仪 精仪学院2015级仪器科学与技术一班(博)学号:1015202034 1 理论分析 本次分解重构算法的演示将采用MATLAB中的小波工具实现。分解与重构算法是小波分析中最重要的工具之一,几乎大部分的工程应用,如信号去噪、图像处理等,都离不开这一算法。这里,我们使用的是MATLAB中的离散小波变换wavedec函数。下图1介绍了这一函数进行小波分解重构的原理: 图1 离散小波变换wavedec分解过程 图中所示的过程解释如下:原始信号S进行低通、高通滤波和下抽样,得到两部分结果:低频近似系数CA1和高频细节系数CD1,这是小波变换的一级分解过程。在此基础上,对一级分解的近似系数CA1进一步分解成CA2和CD2,以此类推,就得到了小波变换的多级分解。图中所示为三级分解,最终得到了近似系数CA3和三个细节系数CD1、CD2、CD3。信号的重构则是一个逆过程,对获得的近似系数和细节分量进行上抽样、低通和高通滤波处理,得到重构后的函数。 MATLAB中的wavedec函数与dwt函数功能类似,只不过一个是多层分解,一个是单层分解,wavedec函数就是dwt函数的叠加。所以,直接使用wavedec函数,和多次使用dwt函数结果是一样的。各自的函数参量表示如下: [CA,CD]=dwt(S,'wavename'):dwt函数,使用小波'wavename'对信号S进行单层分解,求得的近似系数存放在CA中,细节系数存放在CD中。 [C,L]=wavedec(S,N,' wavename '):wavedec函数,使用小波' wavename '对信号S进行N层分解,所得的近似系数存放在数组C中,细节系数存放在数组L中。 在我们的程序中,还会用到以下几个函数:

基于小波包的图像压缩及matlab实现

基于小波包的图像压缩及matlab实现 摘要:小波包分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用,它在信号处理、模式识别、图像分析、数据压缩、语音识别与合成等等许多方面都取得了很有意义的研究成果。平面图像可以看成是二维信号,因此,小波包分析很自然地应用到了图像处理领域,如在图像的压缩编码、图像消噪、图像增强以及图像融合等方面都很好的应用。本文将对小波包分析在图像处理中的应用作以简单介绍。 关键词:小波包图像处理消噪 1.小波包基本理论 1.1 小波包用于图像消噪 图像在采集、传输等过程中,经常受到一些外部环境的影响,从而产生噪声使得图像发生降质,图像消噪的目的就是从所得到的降质图像中去除噪声还原原始图像。图像降噪是图像预处理中一项应用比较广泛的技术,其作用是为了提高图像的信噪比突出图像的期望特征。图像降噪方法有时域和频域两种方法。频率域方法主要是根据图像像素噪声频率范围,选取适当的频域带通过滤波器进行滤波处理,比如采用Fourier变换(快速算法FFT)分析或小波变换(快速算法Mallat 算法)分析。空间域方法主要采用各种平滑函数对图像进行卷积处理,以达到去除噪声的目的,如邻域平均、中值(Median)滤波等都属于这一类方法。还有建立在统计基础上的lee滤波、Kuan滤波等。但是归根到底都是利用噪声和信号在频域上分布不同进行的:信号主要分布在低频区域。而噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。所以,图像降噪的一个两难问题就是如何在降低图像噪声和保留图像细节上保持平衡,传统的低通滤波方法将图像的高频部分滤除,虽然能够达到降低噪声的效果,但破坏了图像细节。如何构造一种既能够降低图像噪声,又能保持图像细节的降噪方法成为此项研究的主题。在小波变换这种有力工具出现之后,这一目标已经成为可能。 基于小波包变换消噪方法的主要思想就是利用小波分析的多尺度特性,首先对含有噪声的图像进行小波变换,然后对得到的小波系数进行阈值化处理,得到

小波包变换 matlab

小波包分解与重构 function wpt= wavelet_packetdecomposition_reconstruct( x,n,wpname ) %% 对信号进行小波包分解,得到节点的小波包系数。然后对每个节点系数进行重构。% Decompose x at depth n with wpname wavelet https://www.sodocs.net/doc/789497439.html,ing Shannon entropy. % % x-input signal,列向量。 % n-the number of decomposition layers % wpname-a particular wavelet.type:string. % %Author hubery_zhang %Date 20170714 %% wpt=wpdec(x,n,wpname); % Plot wavelet packet tree (binary tree) plot(wpt) %% wavelet packet coefficients.default:use the front 4. cfs0=wpcoef(wpt,[n 0]); cfs1=wpcoef(wpt,[n 1]); cfs2=wpcoef(wpt,[n 2]); cfs3=wpcoef(wpt,[n 3]); figure; subplot(5,1,1); plot(x); title('原始信号'); subplot(5,1,2); plot(cfs0); title(['结点',num2str(n) ' 1',' 系数']) subplot(5,1,3); plot(cfs1); title(['结点',num2str(n) ' 2',' 系数']) subplot(5,1,4); plot(cfs2); title(['结点',num2str(n) ' 3',' 系数']) subplot(5,1,5); plot(cfs3); title(['结点',num2str(n) ' 4',' 系数']) %% reconstruct wavelet packet coefficients. rex0=wprcoef(wpt,[n 0]); rex1=wprcoef(wpt,[n 1]); rex2=wprcoef(wpt,[n 2]); rex3=wprcoef(wpt,[n 3]); figure; subplot(5,1,1);

红外谱图分析方法总结

红外谱图分析方法总结 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2其中: F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300-2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250-1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200-2100cm-1、烯1680-1640cm-1、芳环1600,1580,1500,1450cm-1。若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700cm-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100-3010cm-1)C=C伸缩(1675-1640cm-1)烯烃C-H面外弯曲振动(1000-675cm1)。 3.炔烃:伸缩振动(2250-2100cm-1)炔烃C-H伸缩振动(3300cm-1附近)。 4.芳烃:3100-3000cm-1芳环上C-H伸缩振动、1600-1450cm-1C=C骨架振动、880-680cm-1C-H面外弯曲振动、芳香化合物重要特征:一般在1600、1580、1500和1450cm-1可能出现强度不等的4个峰。 880-680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,O-H自由羟基O-H的伸缩振动:3650-3600cm-1,为尖锐的吸收峰,分子间氢键O-H伸缩振动:3500-3200cm-1,为宽的吸收峰;C-O伸缩振动:1300-1000cm-1O-H面外弯曲:769-659cm-1 6.醚:特征吸收:1300-1000cm-1的伸缩振动,脂肪醚:1150-1060cm-1一个强的吸收峰;芳香醚:两个C-O伸缩振动吸收:1270-1230cm-1(为Ar-O伸缩) 1050-1000cm-1(为R-O伸缩) 7.醛和酮:醛的主要特征吸收:1750-1700cm-1(C=O伸缩)2820,2720cm-1(醛基C-H伸缩);脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低 8.羧酸:羧酸二聚体:3300-2500cm-1宽,强的O-H伸缩吸收1720-1706cm-1,C=O 吸收1320-1210cm-1C-O伸缩,920cm-1成键的O-H键的面外弯曲振动。 9.酯:饱和脂肪族酯(除甲酸酯外)的C=O吸收谱带:1750-1735cm-1区域饱和酯C-C(=O)-O谱带:1210-1163cm-1区域,为强吸收 10.胺:3500-3100cm-1,N-H伸缩振动吸收,1350-1000cm-1,C-N伸缩振动吸收。

相关主题