搜档网
当前位置:搜档网 › 数模混合电路的PCB设计

数模混合电路的PCB设计

数模混合电路的PCB设计

数模混合电路的PCB设计

高速PCB 设计中,数模混合电路的PCB 设计中的干扰问题一直是一个难题。尤其模拟电路一般是信号的源头,能否正确接收和转换信号是PCB 设计要考虑的重要因素。文章通过分析混合电路干扰产生的机理,结合设计实践,探讨了混合电路一般处理方法,并通过设计实例得到验证。

0 前言

印制电路板(PCB)是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。现在有许多PCB 不再是单一功能电路,而是由数字电路和模拟电路混合构成的。数据一般在模拟电路中采集和接收,而带宽、增益用软件实现控制则必须数字化,所以在一块板上经常同时存在数字电路和模拟电路,甚至共享相同的元件。考虑到它们之间的相互干扰问题以及对电路性能的影响,电路的布局和布线必须要有一定的原则。混合信号PCB 设计中对电源传输线的特殊要求以及隔离模拟和数字电路之间噪声耦合的要求,增加了设计时布局和布线的复杂度。在此,通过分析高密度混合信号PCB 的布局和布线设计,来达到要求的PCB 设计目标。

1 数模混合电路干扰的产生机理

模拟信号与数字信号相比,对噪声的敏感程度要大得多,因为模拟电路的工作依赖连续变化的电流和电压,任何微小的干扰都能影响它的正常工作,而数字电路的工作依赖在接收端根据预先定义的电压电平或门限对高电平或低电平的检测,具有一定的抗干扰能力。但在混合信号环境中,数字信号相对模拟信号而言是一种噪声源。数字电路工作时,稳定的有效电压只有高低电平两种电压。当数字逻辑输出由高电压变为低电压,该器件的接地管脚就会放电,产生开关电流,这就是电路的开关动作。数字电路的速度越快,其开关时间一般也

2016黑龙江大学数模混合报告

逐次逼近寄存器型ADC设计报告课程名称:数模混合集成电路设计 专业(年级):集成电路设计与集成系统(13)组员(学号): 提交日期:2016/11/25

一、课程设计参数要求: 设计一个8 bit逐次逼近寄存器型模数转换器SAR ADC 二、基本结构及原理: 1. 逐次逼近寄存器型模数转换器(SAR ADC)整体结构: 2. 逐次逼近寄存器型模数转换器(SAR ADC)工作原理: SAR ADC其基本结构如图1所示,包括采样保持电路(S/H)、比较器(COMPARE)、数/模转换器(DAC)、逐次逼近寄存器(SAR REGISTER)和逻辑控制单元(SAR LOGIC)。模拟输入电压V IN由采样保持电路采样并保持,为实现二进制搜索算法,首先由SAR LOGIC控制N位寄存器设置在中间刻度,即令最高有效位MSB 为“1”电平而其余位均为“0”电平,此时数字模拟转换器DAC输出电压V DAC为0.5V REF,其中V REF为提供给ADC的基准电压。由比较器对V IN和V DAC进行比较,若V IN>V DAC,则比较器输出“1”电平,N位寄存器的MSB保持“1”电平;反之,若V IN

“1”,其余位置“0”,进行下一次比较,直至最低有效位LSB比较完毕。整个过程结束,即完成了一次模拟量到数字量的转换,N位转换结果存储在寄存器内,并由此最终输出所转化模拟量的数字码。 三、课程设计的内容要求: 1.组员分工:要求分工内容明确合理,体现工作量 2. 各模拟子模块设计内容要求:详实完整,结果准确 (1)给出电路结构原理图(Sedit),并进行工作原理的描述 (2)根据设计要求,运用理论公式进行理论计算,初步确定电路参数 (3)给出各模块完整的仿真网表(Spice) (4)给出对应的仿真结果图,并对结果图中所显示的功能或结果数值进行分析说明(5)给出对应模块的版图(Ledit),要求在版图中标出该模块与外界连接的各端口名称,并用标尺标出版图尺寸值,计算该模块的版图面积 3. 数字子模块设计内容要求:详实完整,结果准确 (1)给出Verilog网表(包括测试模块和调用模块两个网表) (2)给出仿真结果图,并对结果图中所显示的功能或结果数值进行详细说明 4. 结论要求:对整体工作进行总结,对所做课题结果进行说明,给出各设计指标是 否满足设计要求,电路功能是否实现,给出整体电路的功耗、面积值; 对设计过程中存在的问题和不足进行说明 5. 参考文献要求:要求查阅中、英文文献不少于10篇,英文文献需占40%左右 参考文献书写格式如下: [1] 文章名,作者,文章发表的期刊名,期刊的卷号、期号,所参考的页数文章 发表时间。(要求所查文献为近五年内的文章) [2] 书名,作者,出版社,出版时间,所参考的页数。 提示:最终提交报告用A4纸打印,每组提交一份,页数20页左右

数模混合设计实验报告

数模混合设计 实验报告 作者:竹叶听筝 时间:2012年12月05日课程题目:声光报警系统

摘要:声光报警器在实际的生活中可以见到许多,运用于生活的许多方面。声光报警电路可作为防盗装置,在有情况时它通过指示灯闪光和蜂鸣器鸣叫,同时报警。声光报警器可用在危险场所,通过声音和光信号向人们发出示警信息。 Abstract: sound and light alarm can be seen in real life many, used in many aspects of life. Sound and light alarm circuit can be used as anti-theft device, when it lights flash and buzzer tweet, alarm at the same time. Sound and light alarms can be used in hazardous locations, issued a warning to people through sound and light signals. 关键词:报警器声音光信号示警 1、设计原理 根据设定的基准报警电压。当输入电压超出报警值时发出声和光报警信号。当输入电压信号减小恢复到报警值以下时,要求有一定的回程余量才能撤销报警信号。也就是要实现电压信号的迟滞比较功能。LED灯闪烁,蜂鸣器报警。 2、方案比较 方案一:通过单片机控制进行AD采样计算,当采样电压超过,设定输入电压时,通过单片机控制LED闪烁,蜂鸣器报警,当输入电压小于设定Vh电压时,单片机撤销报警信号。此方案性能稳定,思路清晰,但性价比不高,涉及微处理器,以及软件编程,开发难度较大。 方案二:采用LM311滞回比较器,比较输入电压值,当大于设定电压时,比较器输出端为高电平,通过光电耦合器,进行传递信号,通过555定时器输出1HZ频率脉冲,是LED灯闪烁,同时蜂鸣器报警,当输入电压小于阈值电压时,LM311输入低电平,撤销报警信号。此方案采用纯硬件方法实现神声光报警,具有成本低,调试容易且通过光耦合器进行数字电路和模拟电路的隔离,同样也具有较高的稳定性。三、系统总体方案描述

仿真操作流程

仿真操作流程: 1,选择机床:按下机床工具按钮,出现机床选择对话框,选FANUC系统—FANUC-0I----车床-----标准(平床身前置刀架)------OK 2,定义毛坯:按下“毛坯选择按钮”出现毛坯选择对话框,根据零件标注尺寸,确定毛坯直径和长度,OK 3,安装零件:按下“零件安装按钮”出现零件安装对话框,鼠标箭头指向所选毛坯(变蓝)------点击“零件安装”出现零件安装对话框------点击向右“+”使零件向右走到极限位置。 4,安装刀具:按下“选择刀具”按钮----确定刀位号-----选择刀片形状----刀柄形状(左向)主偏角95度,刀尖半径设为0度---OK 5,启动机床:按下“绿色”启动按钮,按下红色“急停”(只能按下奇次数,否则“机床报警灯”亮,不能操作) 6,机床回原点(或叫回参考点):点亮“回原点灯”按下“X”,再按下“+”,按下

“Z”再按下“+”,待“X原点灯”和 “Z原点灯”都亮以后。OK 7,对刀操作:将手动灯点亮,按亮X轴再按“-”使刀架靠近工件,再按亮Z轴再 按“-”使刀具靠近工件,如果想加速, 按下中间带螺纹的快速键。 Z轴对刀:在端面切削少量至中心,沿X 轴退出,离开工件,按系统面板OFFSET 按键,打开工具补正/并把(摩耗变成形状),在缓冲区输入:Z0,按下软键“测量”对应刀号Z下方出现正直,如果出现负值,说明刀具没有回原点, X轴对刀:手动在外圆处切削少量毛坯,沿Z轴退出,停止主轴,按下拉菜单“测量”保留小余1的圆弧半径,出现工件测量对话框,将鼠标箭头指向刚切削的外圆处,点击变黄,记下变蓝标号X下方的X值,输入此值到工具补正/形状的缓冲区X某值,点击软键“测量”X下方出现正值,如果出现负值,说明开始没有完成回原点工作。 8,编辑程序:点亮“编辑”工作灯,按下系统面板“PROG程序”按钮,输入

数模混合设计报告

数模报告 时钟电路的设计与制作 成都理工大学工程技术学院 专业:电子信息科学与技术 学号: 指导教师: 姓名: 日期:

计时电路设计原理与制作 一、设计任务 设计并制作一个60秒计时电路,要求自制直流稳压电源,能够提供给数字时钟+5V的电压。同时具有手动复位的功能,能够产生一个1Hz的秒计时脉冲。并且具有进位功能能够显示出完整的24小时制的时钟电路,同时具有手动校时电路,能够对计时电路手动校正时间,校时电路包括对分、时校时。设计并仿真出时、分电路。 1、模拟电路部分设计要求 (1)制作输出电压可调的直流稳压电源,输出电压范围为 1.25~15V,通过电位器调节至5V。 (2)该直流稳压电源可供数字电路正常工作。 2、数字电路部分设计要求 (1)设计一个具有“时”、“分”、“秒”显示的电子钟(23小时59分59

秒)如图,应具有校时功能。 时分秒 . . . . 二、设计思路 1、直流稳压电源:为时钟电路提供一个+5V 的电压,驱动时 钟电路的正常工作。 2、脉冲产生模块:能够产生秒脉冲信号,从而实现对计时模块的控制。 3、计时循环模块:能够对时钟脉冲计数,并且能够对计数电路自动复位。

4、译码显示模块:用数码管将计数循环电路模块的状态转换为数字显示出来。 5、秒控制模块:实现对秒计时器的复位功能。 6、时、分校时模块:能够实现对电路中的时、分显示进行校时。 三、设计方案 1、直流稳压电源:通过变压器将220V的家庭用电降为电压更低的正弦交流电(如22V),然后通过电桥(整流电路,利用单向导电性能的整流元件)将正负交替变化的正弦交流电压转换成单方向的脉动直流电压,通过滤波电路尽可能的将单向脉动直流电压中的脉动部分(交流分量)减小,使输出电压成平滑的直流电压。再通过稳压芯片使输出的直流电压在电源发生波动或负载变化时保持稳定。常用的稳压芯片有7815、7805、7809、LM317等。 2、多谐振荡电路:多谐振荡器是一种能够产生矩形波的自激振荡器,也称矩形波形发生器。多谐指矩形波中除了基波成分外,还有高次谐波成分。多谐振荡器没有稳态,只有两个暂稳态,在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。具体地说,如果开始时多谐振荡处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。通过对电容、电阻的计算来确定1秒的脉冲信号,实现对计数器的时钟控制,多谐振荡器在接通电源以后,不需要外触发信号,便能够自动产生矩形脉冲。多谐振荡器又很多种,例如对称

第九章:数模和模数转换器

第九章:数模和模数转换器 一、单选题 1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 2:下面抑制电网公频干扰能力强的A/D转换器是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 3:不适合对高频信号进行A/D转换的是()。 A 并联比较型 B 逐次逼近型 C 双积分型 D 不能确定 4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。 A 并联比较型 B 逐次逼近型 C 双积分型 D 不能确定 8.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题 1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。()2:D/A转换器的转换精度等于D/A转换器的分辨率。() 3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。() 4:在A/D转换过程中量化误差是可以避免的。() 5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。() 6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。() 7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。() 8.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。()9.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。()

数模混合设计

数模混合课程设计 实践报告 题目:FM发射机设计 指导老师:徐灵飞 系别:电子信息与信息工程系 班级:电子信息工程1班 姓名:周荣 学号:201320107104 2015年4月13日

摘要: 该实验主要包括三个电路:电源电路、数字电路、模拟电路;其中电源电路有以LM7805为主要所构成的电源电路以及以单片机STC89C52为主要所构成的电源电路两部分组成,数字电路由复位、晶振及按键电路以及LED电路两部分组成,模拟也由FM调制电路以及音频检测电路两部分组成;通过三部分的同步合作,最终实现了由发射者通过调解频率使之接受者能够接收到发射者覆盖的相应频率的信息,方便实用。 系统设计 1.总体框图 单片机独立按键 输入电压 在此可设定 FM输出频 率FM调制电 路 光电报警 5V线性整流稳 压电路 12V输入 LED数码管显 示 音频输入 音频检测 音频信号强度 LED灯显示

2.系统各部分电路图

PCB图

设计内容及要求 1.(1)单片机里面的程序烧写,需要在单片机实验室借一台开发板,直接进 行烧写。 2.元器件和跳线都在电路板正面安装。绘制PCB时一定要注意元件引脚的极性如,二极管及电解电容。对于三极管,最好查阅对应的数据手册,确定正反面(对于TO-92A封装的器件来讲,一般平的一面是正面)及PCB封装引脚的顺序。 3.调试时应采用分步调试方法,先焊接电源电路,调出5V输出电压,再焊接数字电路部分(单片机及相关外围电路)的元件,调出按键和LED数码管电路(等够通过按键改变LED显示内容-FM频率)。然后再焊接模拟电路部分的元件(音频检测电路和FM调制电路),调FM调制电路。在调试过程中按步骤尽心,谁是排除出现的故障,直至最后整体电路板调试成功。 元器件清单

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真 ——模拟通信系统 姓名:XX 完成时间:XX年XX月XX日

一、实验原理(调制、解调的原理框图及说明) AM调制 AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。AM调制原理框图如下 AM信号的时域和频域的表达式分别为 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。 AM解调 AM信号的解调是把接收到的已调信号还原为调制信号。 AM信号的解调方法有两种:相干解调和包络检波解调。 AM相干解调原理框图如下。相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。 AM包络检波解调原理框图如下。AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成。 DSB调制 在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号 中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。DSB调制原理框图如下

DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为 DSB解调 DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图 SSB调制 SSB调制分为滤波法和相移法。 滤波法SSB调制原理框图如下所示。图中的为单边带滤波器。产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。产生上边带信号时即为,产生下边带信号时即为。 滤波法SSB调制的频域表达式 相移法SSB调制的原理框图如下。图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

数模混合电路的PCB设计

数模混合电路的PCB设计 高速PCB 设计中,数模混合电路的PCB 设计中的干扰问题一直是一个难题。尤其模拟电路一般是信号的源头,能否正确接收和转换信号是PCB 设计要考虑的重要因素。文章通过分析混合电路干扰产生的机理,结合设计实践,探讨了混合电路一般处理方法,并通过设计实例得到验证。 0 前言 印制电路板(PCB)是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。现在有许多PCB 不再是单一功能电路,而是由数字电路和模拟电路混合构成的。数据一般在模拟电路中采集和接收,而带宽、增益用软件实现控制则必须数字化,所以在一块板上经常同时存在数字电路和模拟电路,甚至共享相同的元件。考虑到它们之间的相互干扰问题以及对电路性能的影响,电路的布局和布线必须要有一定的原则。混合信号PCB 设计中对电源传输线的特殊要求以及隔离模拟和数字电路之间噪声耦合的要求,增加了设计时布局和布线的复杂度。在此,通过分析高密度混合信号PCB 的布局和布线设计,来达到要求的PCB 设计目标。 1 数模混合电路干扰的产生机理 模拟信号与数字信号相比,对噪声的敏感程度要大得多,因为模拟电路的工作依赖连续变化的电流和电压,任何微小的干扰都能影响它的正常工作,而数字电路的工作依赖在接收端根据预先定义的电压电平或门限对高电平或低电平的检测,具有一定的抗干扰能力。但在混合信号环境中,数字信号相对模拟信号而言是一种噪声源。数字电路工作时,稳定的有效电压只有高低电平两种电压。当数字逻辑输出由高电压变为低电压,该器件的接地管脚就会放电,产生开关电流,这就是电路的开关动作。数字电路的速度越快,其开关时间一般也

数模混合仿真详细文档

用SpectreVerilog进行模数混仿,以Sigma-Delta ADC为例 SpectreVerilog模数混仿, 模拟部分用Spectre, 数字部分用Verilog-XL. 所以还需要安装Cadence LDV软件, 其内含Verilog-XL仿真器. 这里以自行设计的二阶全差分Sigma-Delta ADC为例, 详细介绍用SpectreVerilog的仿真过程. 所用工艺库为TSMC 0.18u,电源电压:1.8V. 1. 准备 Sigma-Delta ADC分模拟和数字部分两块, 其中模拟部分为调制器, 数字部分为数字滤波器. 如下图. 其中out为调制器的输出, 这里是1位0,1数据流. 数字滤波器为Verilog RTL级代码. Schematic: Symbol:

Verilog Code: module DigitalFilter (in2out, out, clk, clr, in); output in2out; output [`wordsize-1:0] out; input clk; input clr; input in; reg in2out; wire clk_half1, clk_half2; …… Endmodule 同时为了直观的观看输出结果,因此把输出的数字字转化为模拟量,这里用Verilog-A做一个理想的DA转换器。 因此最好事先用Spectre仿真模拟部分, 用ModelSim或Verilog-XL等仿真数字部分. 这里假定我们已有: 1) 模拟部分的原理图(包括Symbol); 2) 数字部分的Verilog代码,DigitalFilter.v, 模块名:DigitalFilter(in2out,out,clk, clr,in); 3) 数字部分的TestBench代码, DigitalFilter_TB.v, 模块名: DigitalFilter_TB. 下图为最终的系统图:

数模及模数转换电路设计问答

ADC/DAC设计经典问答 (上) 1. 什么是小信号带宽(SSBW)? 小信号带宽(Small Signal Bandwidth (SSBW))是指在指定的幅值输入信号及特定的频率下,它的输出幅值比低频时的输出幅值下降指定值时,该特定频率为小信号带宽。 2. 什么是共模电压(VCM)? 共模电压(Common Mode Voltage (VCM ))是差动输入的两个引脚上相同的直流输入电压。 3. 什么是MSB(最高有效位)? MSB(最高有效位(Most Significant Bit)),是具有最大的值或权重的位。它的值是满量程的一半。 4. 什么是采样(孔径)延时? 采样(孔径)延时(Sampling (Aperture) Delay)是时钟输入的后边缘到采样开关打开所需的时间。采样/保持电路有效地停止输入信号捕获,并进入“保持”模式,确定时钟延时后的采样。 5. 什么是满量程(FS)输入范围? 满量程输入范围(Full Scale Input Range),是指模数转换器上数字化的输入电压的输入范围,既不低于这个范围也不超过这个范围。比如V REF + = 3.5V 和VREF - = 1.5V, FS = (VREF + )-(VREF - ) = 2.0V。 6. 什么是时钟占空比? 时钟占空比(Clock Duty Cycle)是时钟波形高电平时间和一个时钟周期总时间的比值。 7. 什么是位的有效数(ENOB ,或有效位)? 位的有效数(ENOB ,或有效位)(Effective Number of Bits (ENOB, 或Effective Bits))是信噪比和失真的比率,或SINAD的另一种表达方法。ENOB定义为(SINAD -1.76)/ 6.02,这个位数(ENOB)表示转换器是与理想的模数转换器等效。 8. 什么是增益误差? 增益误差是在第一个代码和最后一个代码发生转换时,实际输人电压与理想输人电压之差。即,这个差值是:满量程- 2 LSB。 9. 许多模数转换器在数据手册中提供的应用,在Va, Vd 和Vref引脚上出现了三个电容。这三个电容器都是必须的吗?

数模混合IC设计流程

数模混合IC设计流程 1.数模混合IC设计 近十年来,随着深亚微米及纳米技术的发展,促使芯片设计与制造由分离IC、ASIC 向SoC转变,现在SoC芯片也由数字SoC全面转向混合SoC,成为真正意义上的系统级芯片。如今人们可以在一块芯片上集成数亿只晶体管和多种类型的电路结构。此时芯片的制造工艺已经超越了传统制造理论的界限,对电路的物理实现具有不可忽略的影响。因此,片上系统所依赖的半导体物理实现方式,面临着多样化和复杂化的趋势,设计周期也越来越长。目前越来越多的设计正向混合信号发展。最近,IBS Corp做过的一个研究预测,到2006年,所有的集成电路设计中,有73%将为混合信号设计。目前混合信号技术正是EDA业内最为热门的话题。设计师在最近才开始注意到混合信号设计并严肃对待,在他们意识到这一领域成为热点之前,EDA公司已经先行多年。EDA业内领头的三大供应商Mentor Graphics、Synopsys和Cadence在几年前即开始合并或研发模拟和混合信号工具和技术。其中Mentor Graphics是第一个意识到这一点,并投入力量发展混合信号技术的EDA供应商。 我们先分析数模混合IC设计的 流程,简单概括如图: 首先要对整个IC芯片进行理论 上的设计。对于模拟部分,可以直接 在原理图的输入工具中进行线路设 计;而对于数字部分,主要通过各种 硬件描述语言来进行设计,比如通用 的VHDL及Verilog,数字部分的设 计也可以直接输入到原理图工具中。 当完成原理图的设计时,必须对设计 及时的进行验证。如果原理设计没有 问题,就说明设计是可行的,但这还 停留在理论的阶段,接下来必须将它 转换为实际的产品。这时需要用版图 工具将电路设计实现出来,对于模拟 电路部分,可以使用定制版图工具; 对于数字电路部分,也可以采用P&R (自动布局布线)工具实现。在完成 整个电路各个模块的版图后,再将它 们拼装成最终的版图。这时的版图并 不能最终代表前面所验证过的设计, 必须对它进行验证。首先版图要符合 流片工艺的要求,这时要对版图做DRC(Design Rule Check)检查;而版图的逻辑关系是不是代表原理图中所设计的,同样要进行LVS(Layout Versus Schematic)检查;最后,由于在实现版图的过程中引入了许多寄生效应,这些寄生的电阻电容有可能对我们的设计产生致

数模转换器和模数转换器实验报告

实验报告 课程名称微机原理与接口技术 实验项目实验五 数/模转换器和模/数转换器实验实验仪器 TPC-USB通用微机接口实验系统 系别计算机系 专业网络工程 班级/学号 学生 _ 实验日期 成绩_______________________ 指导教师王欣

实验五数/模转换器和模/数转换器实验 一、实验目的 1. 了解数/模转换器的基本原理,掌握DAC0832芯片的使用方法。 2. 了解模/数转换器的基本原理,掌握ADC0809的使用方法。 二.实验设备 1.PC微机系统一套 2.TPC-USB通用微机接口实验系统一套 三.实验要求 1.实验前要作好充分准备,包括程序框图、源程序清单、调试步骤、测试方法、对运行结果的分析等。 2.熟悉与实验有关的系统软件(如编辑程序、汇编程序、连接程序和调试程序等)使用方法。在程序调试过程中,有意识地了解并掌握TPC-USB通用微机接口实验系统的软硬件环境及使用,掌握程序的调试及运行的方法技巧。 3.实验前仔细阅读理解教材相关章节的相关容,实验时必须携带教材及实验讲义。 四.实验容及步骤 (一)数/模转换器实验 1.实验电路原理如图1,DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),编程产生以下锯齿波(从Ua和Ub输出,用示波器观察) 图1 实验连接参考电路图之一 编程提示: 1. 8位D/A转换器DAC0832的口地址为290H,输入数据与输出电压的关系为:

(UREF表示参考电压,N表示数数据),这里的参考电压为PC机的+5V电源。 2. 产生锯齿波只须将输出到DAC0832的数据由0循环递增。 3. 参考流程图(见图2): 图2 实验参考流程图之一 (二)模/数转换器 1. 实验电路原理图如图3。将实验(一)的DAC的输出Ua,送入ADC0809通道1(IN1)。 图3 实验连接参考电路图之二 2. 编程采集IN1输入的电压,在屏幕上显示出转换后的数据(用16进制数)。编程提示: 1. ADC0809的IN0口地址为298H,IN1口地址为299H。 2. IN0单极性输入电压与转换后数字的关系为:

微机原理及其应用报告:数模转换器DAC0832双缓冲输出设计

本科生实验报告 实验名称:数模转换器DAC0832双缓冲输出设计 一、实验目的 1)了解DAC0832芯片引脚、内部结构及工作原理; 2)掌握应用单片机I/O端口控制DAC0832实现数模转换的方法; 3)掌握DAC0832单缓冲和双缓冲控制技术及编程设计方法; 二、实验原理 DAC0832是8位分辨率的数模转换集成芯片,内部采用倒T形网络,电流型输出模式,电流输出稳定时间为1us,采用单电源供电。 片内部由一个8位输入锁存器、一个8位DAC寄存器和一个8位D/A转换器构成,内部具有双缓冲结构,可以实现单缓冲、双缓冲数字输入。 双缓冲同步控制方式: 针对多个模拟量需要同时输出的控制系统,可以采用双缓冲同步控制方式。D/A转换数据的输入锁存和D/A转换输出分两步完成。首先,CPU分时向各路D/A转换器输入要转换的数字量并锁存在各自的输入锁存器中,然后,CPU同时对所有D/A转换器发出输入所存数据打入DAC寄存器的控制信号,即可实现

多通道的同步模拟量数据输出。 应用双缓冲方式,可以在输出模拟信号的同时采集下一个数字量,有效地提高转换速度。另外,可以在多个D/A转换器同时工作时,利用双缓冲模式实现多路D/A的同步输出。 三、实验内容 通过单片机I/O端口控制两路DAC0832实现数模转换,控制方式采用双缓冲控制方式。 1.阅读理解双缓冲控制电路图,分析双缓冲模式下DAC0832与单片机接口电路的设计及两次DA转换实验在控制电路上的异同。 2.设计程序,实现双缓冲模式下DA转换的同步输出。 首先,CPU分时向各路D/A转换器输入要转换的数字量并锁存在各自的输入锁存器中,然后,通过按键控制,同时对两个DAC0832锁存数据进行数模转换,同步产生三角波、正弦波模拟输出信号。 四、实验过程 1,实验原理图 2,实验源程序 #include sbit DAC1_WR1=P2^0; sbit DAC2_WR1=P2^1; sbit DAC_SW1=P2^2; sbit DAC_SW2=P2^3;

20120523-数模混合电路设计流程

数模混合电路设计流程 马昭鑫 2012/5/23 本文主要面向模拟电路设计者,讲解了从行为级代码形式的数字电路到数模混合版图之间的流程,默认模拟版图和数字电路的行为级代码、testbench已经完成。阅读者需确定自己会编写Verilog或Spice格式的网表,熟悉Linux的文件操作,了解Spectre、Virtuoso、Calibre、Modelsim、Design Compiler(dc)、Astro等EDA工具的使用方法。 由于本人才疏学浅,经验不足,难免会在文中出现一些错误,恳请高手给予指正。 数模混合电路的仿真方法 一般的设计流程中数字电路和模拟电路是分开进行设计的,但有些时候希望能将数字电路和模拟电路放在一起仿真来验证设计,这就需要用到混合电路的仿真方法。在Cadence 工具中有专门用作混合电路仿真的仿真器spectreVerilog,其实现方法是首先将模拟模块与数字模块区分开并设置接口电平,然后在ADE中设置数字电路的测试代码,调用不同的仿真器分别对数字模块和模拟模块进行仿真,最后将结果汇总显示或输出。 下面将以一个简单实例的形式讲解混合电路的仿真方法。 一、建立数字模块 ①在命令行中输入下面的命令设置NC-Verilog和Cadence并启动Cadence; setdt ldv setdt ic icfb& ②建立Library的方法不再累述,创建Cell view时注意Tool选择Verilog-Editor,View Name 填写functional;

③点击OK后会弹出有模块代码框架的vi窗口,将设计需要的代码输入或粘贴进去; ④保存并关闭后如果没有错误会弹出创建Symbol View的询问对话框,确定后会进入Symbol编辑器,并自动生成了Symbol(注意在Cadence中总线用尖括号<>表示); ⑤保存并关闭Symbol编辑器。 至此已经完成了数字模块的创建。 二、建立模拟模块 模拟电路的创建方法无需赘述,这里搭建了一个输出频率为10MHz的环形振荡器。

数模混合仿真详细文档.

用 SpectreVerilog 进行模数混仿,以 Sigma-Delta ADC为例 SpectreVerilog 模数混仿 , 模拟部分用 Spectre, 数字部分用 Verilog-XL. 所以还需要安装 Cadence LDV软件 , 其内含 Verilog-XL 仿真器 . 这里以自行设计的二阶全差分 Sigma-Delta ADC为例 , 详细介绍用SpectreVerilog 的仿真过程 . 所用工艺库为 TSMC 0.18u,电源电压:1.8V. 1. 准备 Sigma-Delta ADC分模拟和数字部分两块 , 其中模拟部分为调制器 , 数字部分为数字滤波器 . 如下图 . 其中 out 为调制器的输出 , 这里是 1位 0, 1数据流 . 数字滤波器为 Verilog RTL级代码 . Schematic : Symbol :

Verilog Code: module DigitalFilter (in2out, out, clk, clr, in; output in2out; output [`wordsize-1:0] out; input clk; input clr; input in; reg in2out; wire clk_half1, clk_half2; …… Endmodule 同时为了直观的观看输出结果,因此把输出的数字字转化为模拟量,这里用Verilog-A 做一个理想的 DA 转换器。 因此最好事先用 Spectre 仿真模拟部分 , 用 ModelSim 或 Verilog-XL 等仿真数字部分 . 这里假定我们已有 :

模数与数模转换

3. 模数转换器 (1) 模/数(A/D )转换器 A/D 转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。在工业控制和数据采集及其它领域中,A/D 转换器是不可缺少的重要组成部分。 1) 逐次逼近型A/D 转换器 逐次逼近型A/D 转换器又称逐次渐近型A/D 转换器,是一种反馈比较型A/D 转换器。逐次逼近型A/D 转换器进行转换的过程类似于天平称物体重量的过程。天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。这样就以一系列二进制码的重量之和表示了被称物体的重量。例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。用下表7.1表示整个称重过程。 表7.1 逐次逼近法称重物体过程表 图7.7 逐次逼近型A/D 转换器方框图 利用上述天平称物体重量的原理可构成逐次逼近型A/D 转换器。 逐次逼近型A/D 转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A 转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。 逐次逼近型A/D 转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。转换开始前先将寄存器清零,即送给D /A 转换器的数字量为0,三个输出门G 7、G 8、G 9被封锁,没有输出。转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。这个数码被D/A 转换器转换成相应的模拟电压U o ,送到比较器与待转换的输入模拟电压U i 进行比较。若U o >U i ,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若U o ≤U i ,说明寄存器输出数码还不够大,则应将这一位的1 保留。数码的取舍通过电压比较器的输出经控制器来完成的。依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。此时寄存器里保留下来的数码即为所求的输出数字量。 2) 并联比较型A/D 转换器 并联比较型A/D 转换器是一种高速A/D 转换器。图8-9所示是3位并联型A/D 转换器,

设计数模混合电路抗干扰的秘密

设计数模混合电路抗干扰的秘密 数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。 作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK 信号,Reset等信号。除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。 无论电压型还是电流型的干扰源,在耦合到被干扰对象时,既可能通过电路传导耦合,也可能通过空间电磁场耦合,或者二者兼有。然而一般的仿真分析工具,往往由于功能所限,只能分析其中一种。例如在传统的SPICE电路仿真工具中,只考虑电路传导型的干扰,并不考虑空间电磁场的耦合;而一般的PCB 信号完整性(SI)分析工具,只考察空间电磁场耦合,将所有的电源、地都看作理想DC直流,不予分析考虑。耦合路径提取的不完整,也是困扰数模混合噪声分析的重要原因。 数模混合设计中,电源和地的划分,是业内争论的焦点。传统的设计中,数字模拟部分被严格分开;然而随着系统越来越复杂,数模电路集成度不断提高,分割又会造成数字信号跨分割,信号回流不完整,进而影响信号完整性,另外,电源的分割还造成电源分配系统的阻抗过高;有人提出“单点连接”:还是做分割,但是在跨分割的信号下方单点连接以避免跨分割问题;但是如果数模之间信号很多,难于分开,这种“单点连接”也存在困难,因而又有人提出不分割,只是保持数字和模拟部分不要交叉;还有一些资料介绍,在跨分割的信号旁边包地线或者并联的电容,用来提供完整回流路径。无论哪种方法,似乎都有一定道理,而且都有成功的先例,然而所有这些分割方案的有效性以及可能存在的问题,一直没有检验的标准。 数模混合电路的仿真,还存在模型的问题。业界普遍接受的模拟电路仿真模型还是SPICE 模型,数字电路信号完整性分析使用IBIS模型。多家EDA公司的仿真软件已经推出支持多种模型的混合模型仿真器,然而摆在设计师案头的主要困难是器件模型,特别是模拟器件模型很难得到。在数字设计看来,时域的瞬态分析,即某一时间点上确定的电压值,是仿真的主要手段,就像调试中的示波器那样直观。没有精确的模型,瞬态分析就无法实现。然而对模拟设计,特别是噪声分析,激励源在时间轴上难于描述或很难预测,只知道他的频率带宽范围和大致幅度,这时候我们通常会引入频域扫频分析,考察扫频信号在关注点的变化,如同频谱分析仪的作用。或者干脆如网络分析仪(NA)那样考察信号或噪声通过的通道的频域SYZ参数,进而预测干扰发生的频率和幅度。可见,数模混合噪声分析,既需要支持混合模型的仿真器,也需要仿真器同时支持时域分析和频域分析。

2018年高性能数模混合多媒体芯片行业分析报告

2018年高性能数模混合多媒体芯片行业分析报告 2018年3月

目录 一、行业主管部门、监管体制、主要法律法规及政策 (5) 1、行业主管部门和监管体制 (5) 2、主要法律法规及政策 (5) 二、集成电路行业情况 (9) 1、集成电路行业产业链情况 (9) 2、集成电路行业整体发展情况 (9) (1)全球集成电路行业整体发展情况 (9) (2)我国集成电路行业发展情况 (10) 三、外部显示接口行业情况 (12) 1、外部显示接口行业产业链情况 (12) 2、外部显示接口行业发展情况 (12) (1)外部显示接口种类 (12) ①有线显示传输标准 (13) A.VGA (13) B.DVI (14) C.HDMI (14) D.DisplayPort (15) E.MHL (16) F. Thunderbolt (17) ②无线传输技术 (17) A. WiGig技术 (17) B. WirelessHD (18) C. WHDI技术 (19) E. WIDI技术 (19) (2)外部显示接口行业未来发展趋势 (20)

①显示接口与其他接口功能融合 (20) ②接口标准统一化 (21) ③在接口功能融合、接口标准统一的USB Type-C时代,Displayport传输标准在有 线显示传输领域的市场前景最为广阔 (23) ④有线传输仍占据领导地位 (24) 四、显示面板时序控制器行业情况 (25) 1、显示面板时序控制器介绍 (25) 2、显示面板时序控制器的发展趋势 (25) (1)eDP将成为TCON的主流 (25) ①eDP TCON具有更高的传输速度及更薄的设计 (26) ②eDP TCON具有较少的电磁干扰和无线电频率干扰问题 (27) ③eDP TCON更省电并延长电池使用寿命 (27) (2)设计难度加大,市场门槛提高 (27) 五、行业未来市场空间 (28) 1、智能手机 (28) 2、电脑(PC) (29) 3、平板电脑 (30) 4、4K液晶显示面板(LCD) (31) 5、VR (32) 六、行业主要企业简况 (33) 1、Texas InstrumentsInc.(德州仪器公司) (33) 2、NXP SemiconductorsN.V.(恩智浦半导体公司) (33) 3、Lattice Semiconductor Corporation(莱迪思半导体公司) (34) 4、Cypress Semiconductor Corporation(赛普拉斯半导体公司) (35) 5、Fairchild Semiconductor International, Inc.(仙童半导体/飞兆半导体公司)

相关主题