搜档网
当前位置:搜档网 › 第三章 回归预测法

第三章 回归预测法

第三章 回归预测法
第三章 回归预测法

第三章 回归预测法

基本内容

一、一元线性回归预测法

是指成对的两个变量数据分布大体上呈直线趋势时,运用合适的参数估计方法,求出一元线性回归模型,然后根据自变量与因变量之间的关系,预测因变量的趋势。由于很多社会经济现象之间都存在相关关系,因此,一元线性回归预测具有很广泛的应用。进行一元线性回归预测时,必须选用合适的统计方法估计模型参数,并对模型及其参数进行统计检验。 1、建立模型

一元线性回归模型: i i i x b b y μ++=10

其中,0b ,1b 是未知参数,i μ为剩余残差项或称随机扰动项。 2、用最小二乘法进行参数的估计时,要求i μ满足一定的假设条件: ①i μ是一个随机变量;

②i μ的均值为零,即()0=i E μ;

③在每一个时期中,i μ的方差为常量,即()2

σμ=i D ;

④各个i μ相互独立; ⑤i μ与自变量无关; 3、参数估计

用最小二乘法进行参数估计,得到的0b ,1b 的公式为: ()()()

∑∑---=

2

1

x x y y x x b x b y b 10-=

4、进行检验

①标准误差:估计值与因变量值间的平均平方误差。其计算公式为:()2

?2

--=

∑n y y SE 。

②可决系数:衡量自变量与因变量关系密切程度的指标,在0与1之间取值。其计算公式

为:()()()()

()()∑∑∑∑∑---=???

???

?

?

----=222

2

2

2

?1y y y

y y y x x y y x x R 。

③相关系数;计算公式为:()()()()

∑∑∑----=2

2

y y x x y y x x r 。

④回归系数显著性检验

i 检验假设:0:10=b H ,0:11≠b H 。 ii 检验统计量:b

S b t 1

=

~()2-n t ,其中()

∑-=2

x x SE

S b 。

iii 检验规则:给定显著性水平α,若αt t >,则回归系数显著。 ⑤回归模型的显著性检验

i 检验假设::0H 回归方程不显著 ,:1H 回归方程显著。

ii 检验统计量:()()()

2??2

2

---=

∑∑n y

y y y

F ~()2,1-n F 。

iii 检验规则:给定显著性水平α,若()2,1->n F F α,则回归方程显著。 ⑥得宾—沃森统计量(D —W ):检验i μ之间是否存在自相关关系。

()∑∑==--=

-n

i i

n

i i i W D 1

222

μμ,其中i i i y

y ?-=μ。 5、进行预测

小样本情况下,近似的置信区间的常用公式为:置信区间=tSE y

±?。 二、多元线性回归预测法

社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归成为多元回归。多元回归与医院回归类似,可以用最小二乘法估计模型参数。也需对模型及模型参数进行统计检验。选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。

1、 建立模型—以二元线性回归模型为例

二元线性回归模型:222110i i x b x b b y μ+++=。类似使用最小二乘法进行参数估计。 2、 拟合优度指标

①标准误差:对y 值与模型估计值之间的离差的一种度量。其计算公式为:

()3

?2

--=

∑n y y SE

②可决系数:()()

∑∑---

=2

22

?1y y y

y R

。02

=R 意味着回归模型没有对y 的变差做出任

何解释;而12=R 意味着回归模型对y 的全部变差做出解释。 3、 置信范围

置信区间的公式为:置信区间=SE t y

p ±?,其中p t 是自由度为k n -的t 统计量数值表中的数值,n 是观察值的个数,k 是包括因变量在内的变量的个数。

4、自相关和多重共线性问题

①自相关检验:()∑∑==--=

-n i i n

i i i W D 12

2

2

1μμμ,其中i i i y

y ?-=μ。 ②多重共线性检验

由于各个自变量所提供的是各个不同因素的信息,因此假定各自变量同其他自变量之间是无关的。但是实际上两个自变量之间可能存在相关关系,这种关系会导致建立错误的回归模型以及得出使人误解的结论。为了避免这个问题,有必要对自变量之间的相关与否进行检验。任何两个自变量之间的相关系数为:()()

()()

∑∑∑----=

2

2

y y x x y y x x r ,经验法则认为相

关系数的绝对值小于0.75,或者0.5,这两个自变量之间不存在多重共线性问题。

三、非线性回归预测法 在社会现实经济生活中,很多现象之间的关系并不是线性关系,对这种类型现象的分析预测一般要应用非线性回归预测,通过变量代换,可以将很多的非线性回归转化为线性回归。因而,可以用线性回归方法解决非线性回归预测问题。 选择合适的曲线类型不是一件轻而易举的工作,主要依靠专业知识和经验。常用的曲线类型有幂函数,指数函数,抛物线函数,对数函数和S 型函数。

四、应用回归预测法时应注意的问题

应用回归预测法时应首先确定变量之间是否存在相关关系。如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果。 正确应用回归分析预测时应注意:

①用定性分析判断现象之间的依存关系; ②避免回归预测的任意外推; ③应用合适的数据资料;

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

计量经济学 一般估计方法 NLS GLS GMM 逐步筛选 对数极大似然

10 *一般估计方法 回归方程的估计在特定的条件下选择适当的估计方法会使得结果更加接近实际,更具有说服力。满足古典线性回归模型的基本假设条件下,利用普通最小二乘法(OLS )估计出来的系数具备优良的线性无偏最小方差(BLUE )的性质。如果一些条件不能满足,例如出现非线性模型、异方差、序列相关等情形,就无法得到这样的性质。并且在面对因变量有影响而难以取舍或特殊的计量模型时,就需要改进估计方法以获得更加满意的估计结果。下面依次介绍几种常见的一般估计方法:非线性最小二乘法(NLS )、广义最小二乘法(GLS )、广义矩阵法(GMM )、逐步筛选最小二乘法、对数极大似然估计法。 10.1 非线性最小二乘法 最小二乘法适用的古典假设之一是回归模型是线性的,然而社会经济现象是极其复杂的,有时被解释变量与解释变量之间的关系不一定是线性的。例如柯布.道格拉斯(Cobb-Dauglass )生产函数模型: 321t t t t y L K u ααα=+ , t=1,2,...,T (10.1.1) 对此方程(10.1.2)进行对数变换,如下式 123ln ln ln t t t t y L K u ααα=+++ (10.1.2) 虽然式(10.1.2)的变量是非线性形式,此时我们仍能采用估计线性模型的方法,因此模型是参数线性的。反之,就是参数非线性的,我们就要采用非线性的估计方法。 构建下面的非线性模型: (,)t t t y f x u α=+ ,t=1,2,…,T (10.1.3) 式中,y 是被解释变量,x 为解释变量(向量),t u 为误差项,α为待估计的K 维参数向量12(,,...,)k αααα'=,T 是样本个数。此处讨论的是,f 关于参数α的导数仍含参数α本身,即参数非线性模型。 非线性最小二乘估计是要选择参数向量α的估计值?α 使残差平方和S(?α)

MATLAB回归预测模型

MATLAB---回归预测模型 Matlab统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,用法是:b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha) Y,X为提供的X和Y数组,alpha为显着性水平(缺省时设定为0.05),b,bint为回归系数估计值和它们的置信区间,r,rint为残差(向量)及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,第二个是F,第三个是与F对应的概率 p ,p <α拒绝 H0,回归模型成立,第四个是残差的方差 s2 。 残差及其置信区间可以用 rcoplot(r,rint)画图。 例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表 1。 先画出散点图如下: x=0.1:0.01:0.18; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]; plot(x,y,'+') 可知 y 与 x 大致上为线性关系。 设回归模型为y =β 0+β 1 x

用regress 和rcoplot 编程如下: clc,clear x1=[0.1:0.01:0.18]'; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]'; x=[ones(9,1),x1]; [b,bint,r,rint,stats]=regress(y,x); b,bint,stats,rcoplot(r,rint) 得到 b =27.4722 137.5000 bint =18.6851 36.2594 75.7755 199.2245 stats =0.7985 27.7469 0.0012 4.0883 即β 0=27.4722 β 1 =137.5000 β 的置信区间是[18.6851,36.2594], β 1 的置信区间是[75.7755,199.2245]; R2= 0.7985 , F = 27.7469 , p = 0.0012 , s2 =4.0883 。可知模型(41)成立。

最新整理第五章回归分析预测法.doc

第一节一元线性回归分析预测法 一、概念(思路) 根据预测变量(因变量)Y和影响因素(自变量)X的历史统计数据,建立一元线性回归方程,然后代入X的预测值,求出Y的预测值的方法。 基本公式:y=a+bx 其中:a、b为回归系数,是未知参数。 基本思路: 1、利用X,Y的历史统计数据,求出合理的回归系数:a、b,确 定出回归方程 2、根据预计的自变量x的取值,求出因变量y的预测值。 二、一元线性回归方程的建立 1、使用散点图定性判断变量间是否存在线性关系 例:某地区民航运输总周转量和该地区社会总产值由密切相关关系。

2、使用最小二乘法确定回归系数 使实际值与理论值误差平方和最小的参数取值。 对应于自变量x i,预测值(理论值)为b+m*x i,实际值y i, min∑(y i-b-mx i)2,求a、b的值。 使用微积分中求极值的方法,得: 由下列方程代表的直线的最小二乘拟合直线的参数公式: 其中 m 代表斜率,b 代表截距。 一元线性回归.xls 三、回归方程的显著性检验 判断X、Y之间是否确有线性关系,判定回归方程是否有意义。 有两类检验方法:相关系数检验法和方差分析法 1、相关系数检验法 构造统计量r 相关系数的取值范围为:[-1,1],|r|的大小反映了两个变量间线性关系的密切程度,利用它可以判断两个变量间的关系是否可以用直线方程表示。

两个变量是否存在线性相关关系的定量判断规则: 对于给定的置信水平α,从相关系数临界值表中查出r临(n-2),把其与用样本计算出来的统计量r0比较: 若|r0|〉r临(n-2)成立,则认为X、Y之间存在线性关系,回归方程在α水平上显著。差异越大,线性关系越好。反之则认为不显著,回归方程无意义,变量间不存在线性关系。 其中:n为样本数。 2、方差分析法: 方差分析的基本特点是把因变量的总变动平方和分为两部分,一部分反映因变量的实际值与用回归方程计算出的理论值之差,一部分反映理论值与实际值的平均值之差。 Y的总变差=Y的残余变差+Y的说明变差,SST=SSE+SSR 或:总离差平方和=剩余平方和+回归平方和 回归平方和U与剩余平方和Q相比越大,说明回归效果越好。

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法 标签:机器学习回归分析 2015-08-24 11:29 4749人阅读评论(0) 收藏举报 分类: 机器学习(5) 目录(?)[+]转载:原文链接:7 Types of Regression Techniques you should know!(译者/刘帝伟审校/刘翔宇、朱正贵责编/周建丁) 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它: 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。具体如下: 1.它表明自变量和因变量之间的显著关系;

2.它表明多个自变量对一个因变量的影响强度。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法: 1. Linear Regression线性回归 它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

SPSS第五章 回归分析

一元回归分析 在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。 其回归模型为 y 称为因变量,x称为自变量,称为随机误差,a,b 称为待估计的回归参数,下标i表示第i个观测值。 如果给出a和b的估计量分别为,,则经验回归方程: 一般把称为残差,残差可视为扰动的“估计量”。 例子: 湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。 表1-1 三月上旬平均温度与越冬代二化螟发蛾盛期的情况表 数据保存在“DATA6-1.SAV”文件中。 1)准备分析数据 在数据编辑窗口中输入数据。建立因变量历期“历期” 在SPSS数据编辑窗口中,创建“年份”、“温度”和“发蛾盛期”变量,并把数据输入相应的变量中。或者打开已存在的数据文件“DATA6-1.SAV”。

2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图1-1所示的线性回归过程窗口。 图1-1 线性回归对话窗口 3) 设置分析变量 设置因变量:本例为“发蛾盛期”变量,用鼠标选中左边变量列表中的“发蛾盛期”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就自动调入“Dependent”显示栏里。 设置自变量:选择一个变量作为自变量进入“Independent(S)”框中。用鼠标选中左边变量列表中的“温度”变量,然后点击“Independent(S)”栏左边的向右拉按钮,该变量就自动调入“Independent(S)”显示栏里。 注:SPSS中一元回归和多元回归以及多元逐步回归都是使用同一过程,所以该栏可以输入多个自变量。 设置控制变量 “Selection Variable”为控制变量输入栏。控制变量相当于过滤变量,即必须当该变量的值满足设置的条件时,观测量才

最小平方法在回归分析和趋势预测中的应用最新

最小平方法在回归分析和趋势预测中的应用 最小平方法,又称最小二乘法。其方法的计算依据是利用算术平均数的数学性质,在我们介绍算术平均数的数学性质时,有两条性质分别是:一、各个变量值与平均数的离差之和等于零,用表达式表示即0)(=-∑x x ;二、各个变量值与平均数的离差平方之和为最小值,用表达式表示为最小值 =-∑2 ) (x x 。这两条数学性质已证明过,我们把它们应用到 回归分析和趋势预测中来。回归分析和时间序列趋势预测中,主要是为求得回归方程或趋势方程,但在求得方程的参数时,就要用到上面的两条数学性质。 最小平方法的数学依据是实际值(观察值)与理论值(趋势值)的离差平方和为最小。据此来拟合回归方程或趋势方程。 1、利用最小平方法拟合直线回归方程 拟合直线回归方程的主要问题就在于估计待定参数a 和b 之值,而用最小平方法求出的回归直线是原有资料的“最佳”拟合直线。 假设直线回归方程为:bx a y c +=,其中a 是直线的截距,b 是直线的斜率,称回归系数。a 和b 都是待定参数。将给定的自变量x 之值代入上述方程中,可求出估计的因变量 y 之值。这个估计值不是一个确定的数值,而是y 许多可能取值的平均数,所以用c y 表示。当x 取某一个值时,y 有多个可能值。因此,将给定的x 值代入方程后得出的c y 值,只能 看作是一种平均数或期望值。配合直线方程的具体方法如下: ∑=-= 最小值 2 )(c y y Q (1) 用直线方程bx a y c +=代入式(1)得: 最小值 =--= ∑2 ) (bx a y Q (2) 分别求Q 关于a 和Q 关于b 的偏导,并令它们等于0: ?????=---=??=---=??∑∑0 ))((20)1)((2x bx a y b Q bx a y a Q 整理后得出由下列两个方程式所组成的标准方程组: ???+=+=∑∑∑∑∑2 x b x a xy x b na y (3) 根据已知的或样本的相应资料x 、y 值代入式(3),可求出a 和b 两个参数:

回归预测方法

第3章回归预测方法 思考与练习(参考答案) 1.简要论述相关分析与回归分析的区别与联系。 答:相关分析与回归分析的主要区别: (1)相关分析的任务是确定两个变量之间相关的方向和密切程度。回归分析的任务是寻找因变量对自变量依赖关系的数学表达式。 (2)相关分析中,两个变量要求都是随机变量,并且不必区分自变量和因变量;而回归分析中自变量是普通变量,因变量是随机变量,并且必须明确哪个是因变量,哪些是自变量; (3)相关分析中两变量是对等的,改变两者的地位,并不影响相关系数的数值,只有一个相关系数。而在回归分析中,改变两个变量的位置会得到两个不同的回归方程。 联系为: (1)相关分析是回归分析的基础和前提。只有在相关分析确定了变量之间存在一定相关关系的基础上建立的回归方程才有意义。 (2)回归分析是相关分析的继续和深化。只有建立了回归方程才能表明变量之间的依赖关系,并进一步进行预测。 2.某行业8个企业的产品销售额和销售利润资料如下: (1)计算产品销售额与利润额的相关系数; r=,说明销售额与利润额高度相关。 解:应用Excel软件数据分析功能求得相关系数0.9934 (2)建立以销售利润为因变量的一元线性回归模型,并对回归模型进行显着性检验(取α=);

解:应用Excel 软件数据分析功能求得回归方程的参数为: 7.273,0.074a b =-= 据此,建立的线性回归方程为 ?7.2730.074Y x =-+ ① 模型拟合优度的检验 由于相关系数0.9934r =,所以模型的拟合度高。 ② 回归方程的显着性检验 应用Excel 软件数据分析功能得0.05 ?=450.167(1,6) 5.99F F >=,说明在α=水平下回归效果显着. ③ 回归系数的显着性检验 0.025?=21.22(6) 2.447t t >=,说明在α=水平下回归效果显着. 实际上,一元线性回归模型由于自变量只有一个,因此回归方程的显着性检验与回归系数b 的 显着性检验是等价的。 (3)若企业产品销售额为500万元,试预测其销售利润。 根据建立的线性回归方程 ?7.2730.074Y x =-+,当销售额500x =时,销售利润?29.73Y =万元。 3.某公司下属企业的设备能力和劳动生产率的统计资料如下: 企业代号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 设备能力 (千瓦/人) 劳动生产率(万元/人) 该公司现计划新建一家企业,设备能力为千瓦/人,试预测其劳动生产率,并求出 其95%的置信区间。 解:绘制散点图如下: 散点图近似一条直线,计算设备能力和劳动生产率的相关系数为,故可以采用线性回归模型进行拟合。 应用Excel 软件数据分析功能求得回归方程的参数为: 3.115, 1.43a b ==

第三章 回归预测法

第三章 回归预测法 基本内容 一、一元线性回归预测法 是指成对的两个变量数据分布大体上呈直线趋势时,运用合适的参数估计方法,求出一元线性回归模型,然后根据自变量与因变量之间的关系,预测因变量的趋势。由于很多社会经济现象之间都存在相关关系,因此,一元线性回归预测具有很广泛的应用。进行一元线性回归预测时,必须选用合适的统计方法估计模型参数,并对模型及其参数进行统计检验。 1、建立模型 一元线性回归模型: i i i x b b y μ++=10 其中,0b ,1b 是未知参数,i μ为剩余残差项或称随机扰动项。 2、用最小二乘法进行参数的估计时,要求i μ满足一定的假设条件: ①i μ是一个随机变量; ②i μ的均值为零,即()0=i E μ; ③在每一个时期中,i μ的方差为常量,即()2 σμ=i D ; ④各个i μ相互独立; ⑤i μ与自变量无关; 3、参数估计 用最小二乘法进行参数估计,得到的0b ,1b 的公式为: ()()() ∑∑---= 2 1 x x y y x x b x b y b 10-= 4、进行检验 ①标准误差:估计值与因变量值间的平均平方误差。其计算公式为:()2 ?2 --= ∑n y y SE 。 ②可决系数:衡量自变量与因变量关系密切程度的指标,在0与1之间取值。其计算公式 为:()()()() ()()∑∑∑∑∑---=??? ??? ? ? ----=222 2 2 2 ?1y y y y y y x x y y x x R 。

③相关系数;计算公式为:()()()() ∑∑∑----=2 2 y y x x y y x x r 。 ④回归系数显著性检验 i 检验假设:0:10=b H ,0:11≠b H 。 ii 检验统计量:b S b t 1 = ~()2-n t ,其中() ∑-=2 x x SE S b 。 iii 检验规则:给定显著性水平α,若αt t >,则回归系数显著。 ⑤回归模型的显著性检验 i 检验假设::0H 回归方程不显著 ,:1H 回归方程显著。 ii 检验统计量:()()() 2??2 2 ---= ∑∑n y y y y F ~()2,1-n F 。 iii 检验规则:给定显著性水平α,若()2,1->n F F α,则回归方程显著。 ⑥得宾—沃森统计量(D —W ):检验i μ之间是否存在自相关关系。 ()∑∑==--= -n i i n i i i W D 1 222 1μ μμ,其中i i i y y ?-=μ。 5、进行预测 小样本情况下,近似的置信区间的常用公式为:置信区间=tSE y ±?。 二、多元线性回归预测法 社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归成为多元回归。多元回归与医院回归类似,可以用最小二乘法估计模型参数。也需对模型及模型参数进行统计检验。选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。 1、 建立模型—以二元线性回归模型为例 二元线性回归模型:222110i i x b x b b y μ+++=。类似使用最小二乘法进行参数估计。 2、 拟合优度指标 ①标准误差:对y 值与模型估计值之间的离差的一种度量。其计算公式为: ()3 ?2 --= ∑n y y SE

回归分析方法总结全面

一、什么是回归分析 回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。 回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。 二、回归分析的种类 1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。 2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析 若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。 若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。 三、回归分析的主要内容 1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。 2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。

作业4-回归模型的函数形式 (1)

习题4 回归模型的函数形式 姓名:____万瑜________;学号:______1157120_________ 9.下面的模型是参数线性的吗?如果不是用什么方法可以使他们成为参数线性模型? A .i i X B B Y 211 += b .221i i i X B B X Y += 14表5-13给出了德国1971年~1980年消费者价格指数Y (1980年=100)及货币供给X (10亿德国马克)的数据。 A 做如下回归: 1.Y 对X 2.lnY 对lnX 3。lnY 对X 4.Y 对lnX 解: 1.Y 对 X 2.lnY 对 lnX

3. lnY 对X 4.Y 对lnX 解:1.X Y ??=1 ?β斜率说明X 每变动一个单位,Y 的绝对变动量;

2. E X X Y Y =??=//?1 β斜率便是弹性系数; 3. X Y Y ??=/?1 β斜率表示X 每变动一个单位,Y 的均值的瞬时增长率; 4,. X X Y /?1 ??=β斜率表示X 的相对变化对Y 的绝对量的影响。 C 对每一个模型求Y 对X 的变化率 解:1. 2609.0?1=??=X Y β; 2. X Y X Y X Y 5890.0?1=?=??β; 3. Y Y X Y 0028.0?1=?=??β; 4. X X X Y /2126.54/?1==??β. D 对每一个模型求Y 对X 的弹性,对其中的一些模型,求Y 对X 的均值弹性。 解:1. Y X Y X X X Y Y E 2609.0?//1 =?=??= β; 均值弹性=5959.096.41176 220.19 2609.02609.0=?=?Y X 2. 5890.0?//1 ==??= βX X Y Y E ; 3. X X X X Y Y E 0028.0?//1=?=??=β; 均值弹性=6165.0220.190028.00028.0=?=?X 4. Y Y X X Y Y E /2126.54/?//1==??= β. 均值弹性=5623.096.41176 1 2126.5412609.0=?=?Y . E 根据这些回归结果,你将选择那个模型?为什么? 解:无法判断,因为只有当模型的解释变量的类型相同时,才可比较拟合优度检验数2 R ,对模型的选择还取决于模型的用途。 25表5-16给出了1995~2000年间Qualcom 公司(数字无线电信设计和制造公司)每周股票价格的数据。 a 做收盘价格对时间的散点图。散点图呈现出什么样的模式?

生产函数估计与预测方法介绍

生产函数估计与预测方法介绍 一、生产函数的估计 1.含义 我们在《经济学》课程的学习中已经知道,产量是由生产要素的投入数量和组合关系决定的。那么生产函数的估计实际就是客观反映生产量与各生产要素投入量之间的函数关系。 2.方法与步骤 估计生产函数最常用的方法是利用实际收集到的一组数据进行回归分析,这种方法较为客观,通过它得到的信息比较完全和精确。 为了完成回归分析,我们必须首先构造一个生产函数并确定函数的具体形式;然后再在收集数据的基础上用回归分析方法求出函数的具体参数值;最后,我们还需要检验回归结果对数据的拟合程度,以及回归分析的前提条件是否成立,因为一个没有显著函数关系或回归分析前提条件不成立的回归分析结果是没有意义的。 (1)影响变量的选取 就一个具体的回归分析而言,各个变量必须具有特定的含义。在进行回归分析时,我们应该对于研究对象具有深入的了解,否则在函数构造这一步可能会漏掉一些很重要的解释变量。在进行回归分析时应注意不要漏掉重要的解释变量,但这并不意味着解释变量越多越好,因为在模型中包括一些并不重要的解释变量反而会引起一些统计上的问题,一般来说,当解释变量超过5至6个时,就可能降低模型的自由度,甚至引起多重共线性问题,这些都会影响到模型的解释力。对于一些属性因素,如年龄、季节、性别等,如不同的属性表现对被解释变量有明显不同的影响时,还需设计虚拟变量。 (2)生产函数形式的确定 上面所构造的生产函数只涉及了变量的选取,但为了完成回归分析,我们必须确定生产函数的具体形式。生产函数可采用多元线性的,但一般最常用的是柯布—道格拉斯生产函数 2 211b b X AX Y = (3)数据的收集 当模型的具体形式已经确定下来之后,我们需要针对模型中的变量收集样本数据。数据类型包括时序数据和截面数据。回归分析中也会碰到数据不足的情况,这时我们就不得不做一些理论上简化, (4)建立回归方程及参数估计 1)一元线性回归模型 ①总体回归模型 如果两个变量在总体上存在线性回归关系,可以用下式表示 ε++=bx a Y —随机误差

你应该要掌握的7种回归分析方法

. 种回归分析方法7你应该要掌握的标签:机器学习回归分析 2015-08-24 11:29 4749人阅读评论(0) 收藏举报 分类: (5)机器学习 目录(?)[+] :原文:7 Types of Regression Techniques you should know!(译者/帝伟审校/翔宇、周建丁)责编/朱正贵 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它: 文档Word . 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数

据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。具体如下: 1.它表明自变量和因变量之间的显著关系; 它表明多个自变量对一个因变量的影响强度2.。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法: 1. Linear Regression线性回归 它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。文档Word . 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

应用回归分析,第5章课后习题参考答案

第5章自变量选择与逐步回归 思考与练习参考答案 自变量选择对回归参数的估计有何影响 答:回归自变量的选择是建立回归模型得一个极为重要的问题。如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。 自变量选择对回归预测有何影响 答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了m-p个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。当选模型(p元)正确采用全模型(m 元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣 C统计量达到最小的准则来衡量回答:如果所建模型主要用于预测,则应使用 p 归方程的优劣。 试述前进法的思想方法。 答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm建立m 个一元线性回归方程, 并计算F检验值,选择偏回归平方和显着的变量(F值最大且大于临界值)进入回归方程。每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显着的两变量变量(F 值最大且大于临界值)进入回归方程。在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显着的三个变量(F值最大)进入回归方程。不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值

一元线性回归分析预测法与多元回归分析报告

第一节 一元线性回归分析预测法 一、 概念(思路) 根据预测变量(因变量)Y 和影响因素(自变量)X 的历史统计数 据,建立一元线性回归方程x b a y ???+=,然后代入X 的预测值, 求出Y 的预测值的方法。 基本公式:y=a+bx 其中:a 、b 为回归系数,是未知参数。 基本思路: 1、 利用X ,Y 的历史统计数据,求出合理的回归系数:a 、b , 确定出回归方程 2、 根据预计的自变量x 的取值,求出因变量y 的预测值。 二、 一元线性回归方程的建立 1、 使用散点图定性判断变量间是否存在线性关系 例:某地区民航运输总周转量和该地区社会总产值由密切相关关系。

2、使用最小二乘法确定回归系数 使实际值与理论值误差平方和最小的参数取值。 对应于自变量x i,预测值(理论值)为b+m*x i,实际值y i, min∑(y i-b-mx i)2,求a、b的值。 使用微积分中求极值的方法,得:

由下列方程代表的直线的最小二乘拟合直线的参数公式: 其中 m 代表斜率 ,b 代表截距。 一元线性回归.xls 三、 回归方程的显著性检验 判断X 、Y 之间是否确有线性关系,判定回归方程是否有意义。 有两类检验方法:相关系数检验法和方差分析法 x m y b x x n y x y x n m b mx y i i i i i i ??) (?2 2 -=--=+=∑∑∑∑∑

1、 相关系数检验法 构造统计量r ∑∑∑∑∑∑∑∑∑∑--?-= ?=-?---=] )(][)([) ()())((22222 2 i i i i i i i i yy xx xy i i i i y y n x x n y x y x n s s S y y x x y y x x r 相关系数的取值围为:[-1,1],|r|的大小反映了两个变量间线性关系的密切程度,利用它可以判断两个变量间的关系是否可以用直线方程表示。

均生函数与自回归模型的详细介绍

一、自回归模型定义 以上介绍的回归模型是根据与其它变量之间的关系来预测一个变量的未来的变化,但是在时间序列的情况下,严格意义上的回归则是根据该变量自身过去的规律来建立预测模型,这就是自回归模型。自回归模型在动态数据处理中有着广泛的应用。 自回归模型的一个最简单的例子是物理中的单摆现象。设单摆在第个摆动周期中最大 摆幅为,在阻尼作用下,在第()个摆动周期中的最大摆幅将满足关系式 ,(3-7-1) 其中为阻尼系数。如果此单摆还受到外界环境的干扰,则在单摆的最大幅值上叠加一个新的随机变量,于是(3-7-1)式为 ,(3-7-2) 上式称为一阶自回归模型。当式中满足时,为平稳的一阶自回归模型。将这些概念推广到高阶,有自回归模型 (3-7-3)

式中为模型变量,为模型的回归系数,为模型的随机误差,为模型阶数。 二、自回归模型参数的最小二乘估计 设有按时间顺序排列的样本观测值,阶自回归模型的误差方程为 …… , 记 ,,,, 得 ,(3-7-4) 的最小二乘解为 (3-7-5)

三、自回归模型阶数的确定 建立自回归模型,需要合理地确定其阶数,一般可先设定模型阶数在某个 范围内,对此范围内各种阶数的模型进行参数估计,同时对参数的显著性进行检验,再利用定阶准则确定阶数,下面采用的§2-4的线性假设法来进行模型定阶。其原理是: 设有观测数据,先设阶数为,建立自回归模型, (3-7-6) 再考虑模型,将 (3-7-7) 作为(3-7-6)式的条件方程,联合(3-7-6)、(3-7-7)两式,就是模型。 先对(3-7-6)式单独平差,可求得模型参数估计及其残差平方和,记为 ,再联合(3-7-6)、(3-7-7)两式,也就是对阶模型进行平差,求得 阶模型参数估计及其残差平方和,记为。按线性假设法的(2-4-14)式,它们的关系可写成 (3-7-8) 在§2-4线性假设法中已证明,在假设成立时,可作分布统计量为

回归分析预测法

什么是回归分析预测法 回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。它是一种具体的、行之有效的、实用价值很高的常用市场预测方法。 [编辑] 回归分析预测法的分类 回归分析预测法有多种类型。依据相关关系中自变量的个数不同分类,可分为一元回归分析预测法和多元回归分析预测法。在一元回归分析预测法中,自变量只有一个,而在多元回归分析预测法中,自变量有两个以上。依据自变量和因变量之间的相关关系不同,可分为线性回归预测和非线性回归预测。 [编辑] 回归分析预测法的步骤 1.根据预测目标,确定自变量和因变量 明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。 2.建立回归预测模型

依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。 3.进行相关分析 回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。 4.检验回归预测模型,计算预测误差 回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。 5.计算并确定预测值 利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。[编辑] 应用回归预测法时应注意的问题 应用回归预测法时应首先确定变量之间是否存在相关关系。如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果。 正确应用回归分析预测时应注意: ①用定性分析判断现象之间的依存关系; ②避免回归预测的任意外推;

第15章 SPSS回归分析与市场预测

第十五章 SPSS回归分析与市场预测 市场营销活动中常常要用到市场预测。市场预测就是运用科学的方法,对影响市场供求变化的诸因素进行调查研究,分析和预见其发展趋势,掌握市场供求变化的规律,为经营决策提供可靠的依据。预测的目的是为了提高管理的科学水平,减少盲目的决策,通过预测来把握经济发展或者未来市场变化的有关动态,减少未来的不确定性,降低决策可能遇到的风险,进而使决策目标得以顺利实现。 回归分析是研究两个变量或多个变量之间因果关系的统计方法。其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数学模型,以便从一个已知量来推断另一个未知量。 15.1 回归分析概述 相关回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量在预测期变化结果的预测方法。根据市场现象所存在的相关关系,对它进行定量分析,从而达到对市场现象进行预测的目的,就是相关回归分析市场预测法。 相关回归分析市场预测法的种类:根据相关关系中自变量不同分类,有以下几种主要类型:1、一元相关回归分析市场预测法,也称简单相关回归分析市场预测法。它是用相关回归分析法对一个自变量与一个因变量之间的相关关系进行分析,建立一元回归方程作为预测模型,对市场现象进行预测的方法。2、多元相关回归市场预测法,也称复相关回归分析市场预测法。它是用相关分析法对多个自变量与一个因变量之间的相关关系进行分析,建立多元回归方程作为预测模型,对市场现象进行预测的方法。 回归模型的建立步骤: 1)做出散点图,观察变量间的趋势。如果是多个变量,则还应当做出散点图矩阵、重叠散点图和三维散点图。 2)考察数据的分布,进行必要的预处理。即分析变量的正态性、方差齐等问题。并确定是否可以直接进行线性回归分析。如果进行了变量变换,则应当重新绘制散点图,以确保线性趋势在变换后任然存在。

多元线性回归分析预测法

多元线性回归分析预测法 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。

设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b 0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x 1对y的偏回归系数;同理b2为固定时,x2每增加一 个单位对y的效应,即,x 2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b 0为常数项,为回归系数,b1为固定时,x2每增加 一个单位对y的效应,即x 2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b 0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自 变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之 因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b 0,b1,b2的数值。亦可用下列矩阵法求得

相关主题