搜档网
当前位置:搜档网 › 煤层巷道支护设计

煤层巷道支护设计

煤层巷道支护设计
煤层巷道支护设计

五虎山煤矿9号煤层巷道支护设计

姓名:刘晓晨

班级:安全连1201

学号:311201010217

时间:2015年5月1日

我国西部地区的煤炭资源十分丰富,占全国煤炭总量的80%以上,神华集团年煤炭产量超过1亿.t所属矿区煤层埋藏较浅,上覆为风积砂岩,因此顶板管理及围岩支护与其他矿区不同.本文利用RFPA岩石破裂过程分析系统软件,对神华集团乌达矿区五虎山煤矿9号煤层巷道围岩变形和破坏过程进行了动态仿真模拟,并根据模拟结果,分析了随着煤层上山的掘进中上覆岩层的破断过程、特征与来压特点,揭示了煤层顶板的破断及煤壁支撑压力的变化规律.五虎山煤矿隶属于神华集团,由于生产接续的需要,将对9号煤层进行开采. 9号煤层平均厚度3·5 m,煤质松脆,直接顶以泥质页岩为主,中间夹有砂岩,平均厚度4·8 m,节理裂隙发育.老顶以中砂岩和粗砂岩为主,平均厚7·1 m. 9号煤层进风上山是在煤层中掘进,初始的顶板支护方法采用锚杆支护,间排距800 mm×800 mm,不能满足工程需要.为防止顶板垮落,对该巷道的支护方案进行改进,以有效地控制顶板和围岩的变化.

1 支护方案初步设计

9号煤层进风上山是在煤层中掘进,因煤层顶板都具有成层性,所以顶板的破坏基本上是从离层开始.因此煤巷顶板锚杆支护的主要作用就是抑制顶板的离层,其次是将已经离层的顶板围岩悬吊在其上方较稳定的岩层上.当煤层直接顶厚达几米以上时,要将锚杆锚固在稳定岩层内是不可能的,须采用预应力锚索将巷道上部一定范围内的岩石固定在离巷道表面较远的稳定岩石上,这样可提高巷道围岩的整体性和内在抗力,有效控制围岩有害变形的发展,增加围岩的稳定程度.在暗斜井9号煤层下部车场岩巷段(开口段)断面形状为矩形巷道,如

图1所示. 9号煤层进风上山规格如图2所示.断面毛面积Sm=3·50×3·25=11·375 m2,断面净面积Sj=3·5×2·8=9·8 m2.

图1 9号煤层进风上山下部车场断面规格

图2 9号煤层进风上山规格

水沟净尺寸均为上宽400 mm,下宽300 mm,深400 mm.水沟底帮

用混凝土浇灌,厚度50 mm.水沟盖板尺寸为500 mm×400 mm×50 mm.暗斜井9号煤层下部车场岩巷段支护形式为锚喷支护.采用管缝式锚杆的长度为1·8 m,排距680 mm,共4排,间距@ =800 mm.顶帮喷浆厚度为100 mm (图1).交叉点处增加锚索支护,锚索长度6·5 m,排间距为1·6 m,锚索托板用14号槽钢制作,长度为0·5 m.车场加宽处断面支护形式为锚杆支护,采用树脂锚杆,长度为1·8 m,=16mm.排距750mm,共5排,间距@ =800mm.进风上山断面支护形式为锚杆支护,采用树脂锚杆,长度为1·8 m,=16 mm,排距700 mm,共4排,间距@ =800 mm (图2).当前采用锚杆进行支护的巷道断面为矩形,这种断面形式的巷道利用率高且有利于开掘,但围岩支撑能力差,加之本地区存在着东西方向的水平构造应力,增加了支护的难度.如果采用矩形断面,一定要加大支护材料的强度,另外也需要考虑提高围岩的自身支撑能力.根据工程类比法,针对9号煤层进风上山的具体围岩条件提出两种初步设计方案(表1).方案1:锚杆+锚索+金属网联合支护(1个“锚杆断面”+ 1个“锚杆+锚索断面”相间隔布置);方案2:锚杆+锚索+金属网联合支护(1个“锚杆断面”+ 1个“锚索断面”相间隔布置);支护形式:顶板(全长黏结式锚杆+锚索+方形孔金属网+钢带支护),煤壁(端头锚固式锚杆+方形孔金属网);间排距:顶板700 mm×700 mm,煤壁800 mm×800 mm;设计锚固力:锚杆150 kN,锚索200 kN;锚杆规格:22 mm×2 200 mm,16 mm×1 800 mm;锚索规格:15·24 mm×7 000mm;托盘:锚杆100mm×100mm×10mm (铁托板),锚索长度为0·5 m的14号槽钢;金属网: 4 mm×100 mm×

100 mm.

同煤集团巷道支护理论计算设计方法(初稿)详解

汾西矿业集团巷道支护理论计算设计方法 (初稿) 生产技术部 2009年8月

前言 煤矿巷道支护有架棚、料石砌碹、锚杆等一系列支护形式,架棚和料石砌碹等支护是被动支护,由于成本高、进度慢、消耗体力大、支护效果差等原因逐渐被淘汰。而锚杆支护在煤矿巷道支护中占主导地位,是唯一能实现安全、快速、经济的一种支护形式。现在无论在国内还是国外,煤矿巷道都优先采用锚杆支护,锚杆支护已成为巷道支护发展的方向。 支护设计是巷道支护中的一项关键技术,对充分发挥锚杆支护的优越性和保证巷道安全具有十分重要的意义。如果支护形式和参数选择不合理,就会造成两个极端:其一是支护强度太高,不仅浪费支护材料,而且影响掘进进度;其二是支护强度不够,不能有效控制围岩变形,出现冒顶事故。 目前,国内外锚杆支护设计方法主要分为三大类:工程类比法、理论计算法和数值模拟法。工程类比法包括:根据已有的巷道工程,通过类比提出新建工程的支护设计;通过巷道围岩稳定性分类提出支护设计;采用简单的经验公式确定支护设计。 理论计算法基于某种锚杆支护理论,如悬吊理论、组合梁理论及加固拱理论,计算得出锚杆支护参数。由于各种支护理论都存在着一定的局限性和使用条件,而且很难比较准确、可靠地确定计算所需要的一些参数。因此,依据理论计算所做的设计结果很多情况下只能作为参考。 随着数值计算方法在采矿工程中的大量应用,采用数值模拟法进行锚杆支护设计也得到了较快发展。与其他设计方法相比,数值模拟法具有多方面的优点,如可模拟复杂围岩条件、边界条件和各种断面形状巷道的应力场与位移场;可快速进行多方案比较,分析各因素对巷道支护效果的影响;模拟结果直观、形象,便于处理与分析等。数值模拟法已经在美国、澳大利亚及英国等锚杆支护技术先进的国家得到广泛应用。如澳大利亚锚杆支护设计方法就是在巷道围岩地质力学测试与评估的基础上,采用数值模拟分析结合其他方法提出锚杆支护初始设计,然后进行井下监测,根据监测数据验证、修改和完善初始设计。尽管数值模拟法还存在很多问题,如很难合理地确定计算所需的一些参数,模型很难全面反映井下巷道状况,导致计算结果与巷道实际情况相差较大。但是,数值模拟法作为一种有前途的设计方法,经过不断的改进和发展,会逐步接近于实际。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

锚杆支护及其分类

行业资料:________ 锚杆支护及其分类 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

锚杆支护及其分类 锚杆支护实质上是把锚杆安装在巷道的围岩中,使层状的、软质的岩体以不同的形态得到加固,形成完整的支护结构,提供一定的支护抗力,共同阻抗其外部围岩的位移和变形。 (1)木锚杆。我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。 (2)钢筋或钢丝绳砂浆锚杆。以水泥砂桨作为锚杆与围岩的粘结剂。 (3)倒楔式金属锚杆。这种锚杆曾经是使用最为广泛的锚杆形式之一。由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。 (4)管缝式锚杆。是一种全长摩擦锚固式锚杆。这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。 (5)树脂锚杆。用树脂作为锚杆的粘结剂,成本较高。 (6)快硬膨胀水泥锚杆。采用普通硅酸盐水泥或矿渣硅酸盐水泥加入外加剂而成,具有速凝、早强、减水、膨胀等特点。 (7)双快水泥锚杆。是由成品早强水泥和双快水泥按一定比例混合而成的。具有快硬快凝、早强的特点。 锚杆支护安全技术操作规程 第1条本规程适用于各类煤矿在掘进工作面从事锚杆支护作业的 人员。 第 2 页共 8 页

第2条锚杆支护基本支护形式是指巷道单体锚杆支护、锚网支护、锚网带(梁)支护。其他支护形式参照基本支护形式执行。 上岗条件 第3条锚杆支护工必须经过专门培训、考试合格后,方可上岗。 第4条锚杆支护工必须掌握作业规程中规定的巷道断面、支护形式和支护技术参数和质量标准等;熟练使用作业工具,并能进行检查和保养。 安全规定 第5条在支护前和支护过程中要敲帮问顶,及时摘除危岩悬矸。 1.应由两名有经验的人员担任这项工作,一人敲帮问顶,一人观察顶板和退路。敲帮问顶人员应站在安全地点,观察人应站在找顶人的侧后面,并保证退路畅通。 2.敲帮问顶应从有完好支护的地点开始,由外向里,先顶部后两帮依次进行,敲帮问顶范围内严禁其他人员进入。 3.用长把工具敲帮问顶时,应防止煤矸顺杆而下伤人。 4.顶帮遇到大块断裂煤矸或煤矸离层时。应首先设置临时支护,保证安全后,再顺着裂隙、层理敲帮问顶,不得强挖硬刨。 第6条严禁空顶作业,临时支护要紧跟工作面,其支护形式、规格、数量、使用方法必需在作业规程中规定。放炮前最大空顶距不大于锚杆排距,放炮后最大空顶距不大于锚杆排距+循环进度。 第7条煤巷两帮打锚杆前用手镐刷至硬煤,并保持煤帮平整。 第8条严禁使用不符合规定的支护材料: 1.不符合作业规程规定的锚杆和配套材料及严重锈蚀、变形、弯曲、径缩的锚杆杆体。 第 3 页共 8 页

巷道锚杆支护技术参数的合理选择与设计(孙巧龙)

巷道锚杆支护技术参数的合理选择与设计 孙巧龙 (淮北朔里矿业有限责任公司,安徽淮北235052) 【摘要】本文浅析煤矿巷道锚杆支护高应力巷道影响锚杆支护的因素、煤巷锚杆支护的关键问题和煤巷锚杆支护的合理设计。 【关键词】锚杆支护;合理设计;选择;巷道 1引言 在煤矿巷道的锚杆支护中,由于其对破碎岩体的加固效果好,又优于U型钢被动支护,加上劳动强度低、经济效益显著的特点,因而在煤矿中得到了广泛的应用。煤矿软岩地层分布十分广泛,75%以上的采准巷道还要经受采动的频繁影响,所以在设计服务年限内的大部分巷道围岩变形量都比较大,严重的冒落无法再利用。因此,煤矿巷道锚杆支护技术研究的重点应是有效控制高应力、软岩和采动等大变形量围岩特性,以保障煤矿在安全、经济的良好环境下持续生产。 2高应力巷道影响锚杆支护的因素 2.1巷道断面 巷道锚杆支护过程中,对于深部高应力的地点,在进行断面选择时,必须根据顶底板岩性和巷道服务年限原则考虑选择。①对服务年限较长的开拓、准备巷道,应尽量选用承压效果好的圆弧拱断面。②对回采、顶板完整性较好的巷道,可采用梯形断面;复合顶板或破碎顶板的巷道,应采用承压性效果较好的斜切圆拱形断面。 就斜切圆拱形断面来说,斜切圆弧拱高一般应为巷道宽度的2/5—1/4,上肩窝部高度达到煤层顶板,下帮墙高根据设计要求进行设计。拱高控制可在掘进过程中通过控制中部高度实现。根据众多的实验证明,其断面承压效果要比梯形断面好。但是,岩石掘进工作量大是其缺点,并在一定程度上会影响掘进速度。 2.2锚杆性能 在锚杆的种类选择上,主要考虑锚杆的材质、粗度、延伸性、让压性能和预紧力等参数特性比较选择,其次是考虑锚固剂的选择。随着各种锚杆的不断出

巷道锚杆支护管理规定

新光集团有限公司新司发[2007]56号文 巷道锚杆支护管理规定 第一章总则 第1条为提高锚杆支护巷道的施工质量,保证支护效果,实现安全施工,特依据《煤矿安全规程》、上级有关规定、矿区近年锚杆支护实践制定本规定。 第2条各单位必须建立完善锚杆支护管理责任制,建立健全锚杆支护巷道质量保证体系。明确从班组、区队到矿井的各级管理责任,并落实到人,实现全方位、全过程的安全管理。 第3条各单位必须加强对锚杆支护的过程控制及各环节的管理。地测、技术、物管、区队等单位要分工负责、协调配合,切实做好地质资料提供、支护设计、施工机具和材料的供应、质量控制、监测监控、后路级护、支护效果分析、缺陷改正等工作。 第4条各单位必须对管理人员、技术人员及操作工人进行锚杆支护的技术培训。 第5条各单位要依靠技术进步,结合生产实际,积极推广应用新技术、新装备、新材料、新工艺,不断提高锚杆支护水平。 第6条各单位必须严格贯彻执行本规定。本规定未涉及的内容,按上级及集团公司有关规定执行。 第二章锚杆支护设计 第7条锚杆支护设计前,首先要做好地质力学评估工作。内容包括:现场地质条件调查,巷道围岩力学性质测定,围岩应力测定及短锚杆拨拉试验等。以判断其可锚性及支护难易程度,为围岩分类提供一份全面的地质力学资料。并对类似地质条件已掘巷道的支护状况进行分析,有关地质资料、图纸齐全。 第8条煤锚支护设计过程应遵循巷道围岩分类→初步设计→监测分析→优化设计的程序。做到围岩分类准确、设计科学合理。 第9条要贯彻“动态设计”的思想,不能生搬硬套已有设计。根据具体地质条件的不同,同一矿井、同一煤层、同一巷道的不同区域、不同地段,可选择不同的支护形式和参数。 第10条锚杆初步设计基本原则: 1、巷道应尽量采用矩形断面,在满足通风、运输、行人的前提下,巷道

同煤集团巷道支护理论计算设计方法(初稿)

同煤集团巷道支护理论计算设计方法 (初稿) 生产技术部 2009年8月

前言 煤矿巷道支护有架棚、料石砌雀、锚杆等一系列支护形式,架棚和料石砌雀等支护是被动支护,由于成本髙、进度慢、消耗体力大、支护效果差等原因逐渐被淘汰。而锚杆支护在煤矿巷道支护中占主导地位,是唯一能实现安全、快速、经济的一种支护形式。现在无论在国内还是国外,煤矿巷道都优先采用锚杆支护, 锚杆支护已成为巷道支护发展的方向。 支护设计是巷道支护中的一项关键技术,对充分发挥锚杆支护的优越性和保证巷道安全具有十分重要的意义。如果支护形式和参数选择不合理,就会造成两个极端:其一是支护强度太高,不仅浪费支护材料,而且影响掘进进度;其二是支护强度不够,不能有效控制围岩变形,出现冒顶事故。 目前,国內外锚杆支护设计方法主要分为三大类:工程类比法、理论计算法和数值模拟法。工程类比法包括:根据已有的巷道工程,通过类比提出新建工程的支护设计;通过巷道围岩稳定性分类提出支护设计;采用简单的经验公式确定支护设计。 理论计算法基于某种锚杆支护理论,如悬吊理论、组合梁理论及加固拱理论, 计算得出锚杆支护参数。由于各种支护理论都存在着一定的局限性和使用条件,而且很难比较准确、可靠地确定计算所需要的一些参数。因此,依据理论计算所做的设计结果很多情况下只能作为参考。 随着数值计算方法在采矿工程中的大量应用,采用数值模拟法进行锚杆支护设计也得到了较快发展。与其他设计方法相比,数值模拟法具有多方面的优点,如可模拟复杂围岩条件、边界条件和各种断面形状巷道的应力场与位移场;可快速进行多方案比较,分析各因素对巷道支护效果的影响;模拟结果直观、形象,便于处理与分析等。数值模拟法已经在美国、澳大利亚及英国等锚杆支护技术先进的国家得到广泛应用。如澳大利亚锚杆支护设计方法就是在巷道围岩地质力学测试与评估的基础上,釆用数值模拟分析结合其他方法提出锚杆支护初始设计,然后进行井下监测,根据监测数据验证、修改和完善初始设计。尽管数值模拟法还存在很多问题,如很难合理地确定计算所需的一些参数,模型很难全面反映井下巷道状况,导致计算结果与巷道实际情况相差较大。但是,数值模拟法作为一种有前途的设计方法,经过不断的改进和发

巷道锚杆支护安全技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 巷道锚杆支护安全技术措 施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3226-87 巷道锚杆支护安全技术措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 根据我矿工作安排,决定对C8运输顺槽掘进巷道、C8回风顺槽掘进巷道和采区回风巷道进行锚杆喷浆支护。特制定本安全技术措施。 一、锚杆机操作 1、检修锚杆机时必须退至安全地点。 2、按规定数量、型号、周期注油换油;按规定进行油脂过滤;定期清洗液压系统过滤器;严禁用普通棉纱擦试液压元件。 3、打锚杆时,严禁将手放在钻臂防护板与顶板之间,严禁用钻杆或其他物品硬顶锚杆。 4、液压泵工作期间,两钻臂及工作范围内严禁有人;严禁在钻箱和钻臂上爬站。 5、两站摆动时既不能碰撞两帮,也不能靠的太近,

以免钻架相互碰撞。 6、锚杆机工作过程中遇到紧急情况时,必须立即停机。 7、施工中如遇顶板出现淋水或淋水加大、围岩层(节)理发育、突发性片帮掉碴、巷道不易成形、钻孔速度异常、放煤炮顶底板及两帮移近量增加显著等到情况,应立即停止作业,向有关领导及管理部门汇报,并采取加强支护措施,必要时应立即撤出人员。 二、锚杆安装 1、卸下钻杆,安装带托盘及快速预紧力螺母的锚杆,操纵钻机给进阀杆,将锚杆升起使锚杆端头距钻孔口约一卷树脂固剂的长度。 2、按作业规程规定的规格、数量、顺序将锚固剂首尾相接装入钻孔。 3、操纵钻机给进阀杆推动锚杆,使锚杆端头顶住最后一卷锚固剂尾部,将锚固剂缓慢送入孔底。 4、旋转锚杆将其推到孔底位置,达到规定的搅拌

煤矿锚杆支护技术规范标准设计

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b= KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b= 44 .2643.0250 ??=1.48m

3-1煤巷道支护设计技术文件

3-1煤巷道支护设计 为满足3-1煤层巷道的安全、正常使用,提高巷道的掘进速度,降低支护成本,特针对本矿井3-1煤层赋存特征及其顶底板条件开展支护技术研究。 本项目在3-1煤层已掘三种类型巷道:3-1煤东辅运大巷、G3-1105工作面辅运顺槽、G3-1105工作面运输顺槽中开展支护设计研究,通过采取数值模拟及现场矿压观测的手段,对本矿井-1煤层三种类型巷道原有支护设计进行优化,确定合理的支护方案,以指导本煤层其他类似地质条件下的巷道支护。 一、3-1煤东辅运大巷 3-1煤东部辅运大巷是继2015年9月14日停掘的3-1煤东部三条大巷的延伸开拓工程。掘进巷道相对地表为大哈它土沟、铁路高头窑装车站站场(铁路线和站房)和低矮山区。地面标高在+1302.5~+1322.5m,煤层底板标高在+1175.9~+1176.7m之间,煤层埋深125.8-146.6m。 3-1煤东部辅运大巷开口中心点坐标:X=4432285.000,Y=37384100.628,Z=+1177.482(顶板高程),按方位角90°掘进,设计长度290m。 (一)煤层赋存条件。 该煤层为3-1煤层,位于延安组中岩段(J1-2Y2)的顶部,呈西北-南东向展布,巷道附近见煤钻孔1个,为补1孔。 1. 煤层赋存稳定性:3-1煤层赋存稳定,煤层连续性较好。 2. 煤层性质及结构:3-1煤黑色,半暗淡,含丝炭黑色条痕,油脂光泽,内生裂隙,半坚硬,易风化。煤层结构简单,夹石一般为两层,东部区域为一层,上层夹石厚度为0~0.35m,下层夹石厚度为0.34~0.35m。上层夹矸岩性为砂质泥岩,下层夹矸岩性为中砂岩。随着巷道向东掘进,上层夹石逐渐消失,煤层合并。 3. 煤层厚度:煤层厚度变化较小。煤层有益厚度为 3.48~3.71m,平均为 3.6m。f=0.34~0.53,硬度小。 4. 煤层顶、底板:3-1煤层顶板岩性主要为砂质泥岩,灰白色,厚度为14.25m,根据钻孔岩石力学试验结果,抗压强度9.6~23.6MPa,软化系数0.15~0.79。与2-4煤层间距为16.8m。与3~3煤层间距为13.05m。3~1煤层底板岩性主要为砂质泥岩,厚度为13.05m,根据钻孔岩石力学试验结果,抗压强度11.9~29.6MPa,软化系数0.14~0.58。 (二)地质构造。

锚杆支护巷道管理制度示范文本

锚杆支护巷道管理制度示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锚杆支护巷道管理制度示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 开拓巷道普遍推广和应用了锚杆支护工艺,取得了良好 的支护效果,为了从技术上保证锚杆支护的可靠性和安全性, 加强巷道维护,使巷道支护达到标准化标准,特制定锚杆支护 巷道管理制度 1.锚杆巷道的测试结果,技术人员必须填写测试台 帐,及时汇报测试结果。 2.锚杆的锚固力及扭矩,施工队每天测试一次(20 根一组),每组测试不少于3根(顶部2根,帮1根)由 施工员监督,做好测试记录,每天将测试记录汇报生产技 术科一次。 3.锚杆测试标准为顶锚杆固力不少于70kN,帮锚杆 固力不少于50KN,岩石锚杆扭矩不小于(9#煤

10kg/m,,15#煤12kg/m)锚杆的外露长度自托板到螺母外不超过50mm。 4.现场锚杆实行标签管理。每排顶锚杆对锚固力和扭矩测试选1根贴标签,每排帮锚杆对锚固力和扭矩测试后选1根贴标签。贴标签工作由每班的带班长负责。 5.锚杆的测试结果由部门负责人每周汇总后报生产技术科一份,并由生产技术科和安全科每月对锚杆的锚固力,扭矩进行抽查,锚杆的锚固力,扭矩不得小于设计值的90%,否则该锚杆为不合格,合格率达不到100%时,各施工队组必须全部重新锚固。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

巷道支护方案

支护方案 一、概述 二、处理方案 现场勘查后,根据现场各部位情况制定施工方案。下盘运输巷采用喷锚网支护,距已施工完成工作面3米;采矿进路开口5m采用喷锚网,矿体部分采用素喷混凝土;交叉点右侧墙体先施工喷锚网支护,再外部砌护;材料库房钢筋混凝土支护。具体施工方案如下: 1、喷锚网支护 喷锚网支护混凝土强度等级均为C25;喷锚网钢筋网采用∮8 mm钢筋,钢筋网间距100mmx100mm;锚杆采用∮20 mm螺纹钢筋,1m ×1m间距交错布置,锚杆长度2.2m,施工中可根据具体情况调整钢筋网和锚杆的设置参数。喷射混凝土支护、喷锚支护和喷锚网支护断面应按照相应施工规范进行施工。 1)喷射混凝土 喷射混凝土要求凝结硬化快、早期强度高,优先选用硅酸盐水泥和普通硅酸盐水泥。为了保证混凝土强度,防止混凝土硬化后的收缩和减少粉尘,喷射混凝土中的细骨料采用坚硬干净、细度模数宜大于2.5的中砂或粗砂。 为了减少回弹和防止管路堵塞,喷射混凝土的粗骨料粒径应不大于15mm。根据采用的速凝剂性能,通过试验确定其掺量,使喷射混凝土初凝不应大于5min,终凝不应大于10min。 一次喷射厚度。若一次喷射厚度过大,由于重力作用会使混凝土颗粒间的凝着力减弱,混凝土将发生坠落;若喷层厚度太小,石子无法嵌入灰浆层,将会使回弹增大。一次喷射合理厚度,墙50mm,拱

30mm。 分层喷射的间歇时间。当一次喷射厚度达不到设计厚度,需进行分次喷射时,后一层的喷射应在前一层混凝土终凝后进行。在常温15℃~20℃下喷射掺有速凝剂的混凝土时,分层喷射的间歇时间为15~20min。 混和料的存放时间。由于砂、石含有一定水分,与水泥混合后,存放时间应尽量缩短。不掺速凝剂时,存放时间不应超过2h;掺速凝剂时,存放时间不应超过20min,最好随拌随用。 喷射顺序是先墙后拱,自下而上进行。喷射前应埋设控制喷厚的标志,调节好给料速度。在喷射中,喷头应保持不断移动,以便减少回弹,保持喷层厚度均匀。如使喷头按圆形和椭圆形轨迹做螺旋式连续喷射,环形圈应为长轴400~600mm,短轴150~200mm。随时检测喷层厚度,确保达到设计厚度,岩面有较大凹陷处,应予以喷射找平。 2)锚杆施工 锚杆孔的施工应遵守下列规定:钻锚杆孔前,应根据设计要求和围岩情况,定出孔位,做出标记;锚杆孔距的允许偏差为150mm;钻孔的孔深、孔径均应符合设计要求。钻孔深度不宜比规定值大200mm以上,钻头直径不应比规定的钻孔直径小3.0mm以上;钻孔与锚杆预定方位的偏差为1°~3°。 锚杆安装前检查锚杆原材料型号、规格、品种。检查孔内积水和岩粉是否吹洗干净,不合格的锚杆孔要重钻。 采用药卷锚固剂进行锚固,锚杆安装采用先灌后锚法,把锚杆体插入孔眼直到底部,杆体安装后,不得随意敲击。锚杆锚入围岩的长度不低于2米。 要定期对安装好锚杆进行抗拔力测试,锚杆抗拔力可通过拉拔器作拉拔试验测出数值,不合格的锚杆可用加密锚杆的方法予以补强,并分析总结原因。 孔口承压垫座应符合下列要求:钻孔孔口必须设有平整、牢固的承压垫座;承压垫座的几何尺寸、结构强度必须满足设计要求,承压面与锚杆垂直。

锚网巷道支护设计说明书

锚网巷道支护设计说明书 一、地质条件 根据地测科提供22508轨道巷地质说明书及钻孔情况分析,该巷道沿5#煤层掘进,煤厚为3.0-4.0m,煤层顶板多为k4细粒砂岩,局部地段发育厚度约为0.2m的黑色砂质泥岩;煤层底板多为粉砂岩或灰色泥岩,局部地段发育有薄层的石英砂岩。参考煤柱面掘进资料显示,在该段巷道可能遇见断层发育。 二、巷道断面 巷道采用锚网索支护、断面为矩形,设计规格:3.4m*3m(宽*高)巷道支护设计图(见附图1) 三、锚杆支护巷道支护设计 1、支护方式 ①临时支护 锚网索巷道临时支护采用带帽圆木点柱,点柱规格为直径不小于16cm、长3m的新鲜圆木、点柱不少于2根。 ②、永久支护 采用锚网索支护作为永久支护,支护材料为: 顶部:锚杆18mm*2200mm,Q500高强度螺纹钢锚杆,托盘150mm*150mm,厚度8mm 帮部:锚杆16mm*1800mm,Q335矿用螺纹钢锚杆,托盘150mm*150mm,厚度6mm 金属网:采用直径6mm钢筋焊接,网孔规格为70mm*70mm。

菱形铁丝网:采用10铁丝编制、网孔45mm*45mm 塑料网:采用pp180ms矿用塑料网网孔为30*30. 锚索直径17.8*6300mmswrh82b、强度级别1860兆帕钢绞线。托盘300*300*12mm 3、按悬吊理论计算锚杆参数: (1)、锚杆设计长度计算: L= L1+L2+L3 式中 L—锚杆长度2200mm L1—锚杆外露长度0.07m, L2—锚杆有效长度1.50(顶部锚杆取免压拱高b) L3—锚入岩层深度0.6m 根据满足顶板最下一层岩石外表抗拉强度条件确定组合梁厚度,即锚杆有效长度L2,则顶板稳定时应满足 L2≥ 式中:B—巷道开掘宽度,取3.4m ;σ1 ———顶板岩石抗拉强度; K1—顶板岩石坚固安全系数3~5 根据以上数据计算出该长度满足巷道支护设计要求。 (2)、锚杆间、排距计算: 式中:式中 SC ———锚杆间、排距; τ———杆体材料抗剪强度 ,MPa;

锚杆支护设计

组煤 层 号 煤层厚度(m)层间距(m)稳 定 性 煤层 倾角 (平均) 可采 情况 夹矸 层数 煤层 结构 顶板 岩性 底板 岩性最大-最小 平均 最大-最小 平均 太原组 11 1.40-3.87 2.8110.05-31.50 17.01 稳 定 4 全区 可采 0-3 简单至 复杂 砂质 泥岩 泥岩 13 2.45-12.90 11.01 稳 定 4 全区 可采 0-10 简单至 极复杂 砂质 泥岩 泥岩 岩石力学性质试验成果表表6-1 名称岩性 抗压强度 (MPa) 抗拉强度(MPa)抗剪强度(MPa 11号顶板泥岩 12.0-15.4 13.8 0.31-0.59 0.43 1.02-1.73 1.34 11号底板砂岩 7.9-10.8 9.5 0.34-0.52 0.40 0.62-1.19 0.84 13号顶板细砂岩30.7 1.7 13号底板泥岩35.3 1.6 煤质分析: 1. 煤尘爆炸指数=V挥/100-A-W=38.37/100-4.19-9.35=38.37/86.46=44.37% 2. 煤尘爆炸指数=V挥/V挥+C=38.37/38.37+46.67=38.37/85.04=45.11%

1102回风巷支护设计 一、巷道概况 本矿南回风大巷巷道设计长度411m,巷道沿煤层底板掘进,掘进净宽度4740mm,掘进净高度3420mm。本巷道在钻孔ZK1区域(相距80m)。煤层顶底板情况及煤层特征情况分别见表3、表4。 表3 煤层顶底板情况表 名称岩石名称厚度(m) 特征 老顶砂岩,8.9 灰色,中细稳定,石英长石,紧密 直接顶泥岩 4.6 层理较发育、块状、性脆、易冒落 直接底粗纱岩8.3 灰白色、石英、胶结疏散、含砾 表4 煤层特征情况表 项目单位指标备注 煤层平均厚度m 2.75 煤层倾角°3~5 煤层硬度 f 2~3 较稳定 自燃发火期月3--6 绝对瓦斯涌出量 m3/min 1.41 煤尘爆炸指标% 45.11 二、巷道支护设计 1、支护方式及支护理论的选择 该巷道沿煤层底板掘进,直接顶为泥岩,层理较发育,易冒落,平均总厚度4.6m,老顶为坚硬的中细砂岩、泥砂岩,较稳定。采用锚杆、锚索联合支护方式,选用悬吊理论进行设计。 锚杆的作用,是将巷道易冒落的煤、岩直接悬吊在上面稳定的直接顶上,使岩层锚固紧密,防止松散。锚索锚固在深部围岩的老顶里,调动深部围岩的强度,对锚杆锚固

煤矿顶板支护设计

第一章井田概况及地质特征 第一节矿井自然概况 一、位置与交通 XXXX煤矿位于XXXX省西南部、XXXX县城南西,隶属黔西南州XXXX县XXXX乡管辖,地处XXXX县XXXX乡XXXX村。距XXXX县城 km,直距 km,距XXXXX州州政府所在地XXXXX市XXkm,直距XXkm,离XXX市XXX镇XXXkm,直距XXXXkm。XXX铁路、XXX国道从矿区南西部XXX 镇经过,XX至XX高等级公路从矿区西部直距XXkm处通过,XXX省道自矿区北部XXXkm处通过,XXX省道自矿区西部矿界外XXXXm处通过,矿山有公路与XXX省道相通,交通方便。 二、自然地理概况 1.地形地貌 矿区地势总体上中部高四周低,海拔一般1500~1600m,最高点位于矿区西部三棵桩山顶,海拔1738.0m,最低点位于矿区南西部1号拐点,海拔1420.0m,相对高差318m。 矿区总体上属低中山地貌,境内夜朗组地层分布地段地形较陡,含煤地层分布地段地形较缓,多被第四系坡积物覆盖。 2.矿区地表水 矿区内无河流,地表水为山间雨源型小溪,主要受大气降水及地形控制,矿区内小冲沟发育,沟水动态变化极大,季节性变化十分显著,雨季暴涨,旱季流量较小或干枯,一般小于2l/s。 XXXX水库:距矿区西矿界XXXXm左右,长1200m,最宽处170m,储水量约25万m3。 三、矿井历史概况 XXXX煤矿原由原XXXX煤矿、XXXX煤矿整合而成。两个矿井生产规模3万吨/年,现利用XXXX煤矿的井筒进行改造。 XXX年XX月,XXXX省地质矿产勘查开发局X地质大队在区内进行过XX煤矿储量核实工作,提交有《XXXX省XXXX县X乡X村XX煤矿矿产资源储量核实报告》(以下简称"XX报告")。"XX 报告"获保有资源量47万吨(333类XX万吨、334?类17万吨),最低开采标高之下9万吨(333类6万吨、334?类3万吨)。

煤矿井下巷道锚杆支护技术分析

煤矿井下巷道锚杆支护技术分析 发表时间:2019-06-25T14:50:55.663Z 来源:《基层建设》2019年第7期作者:赵仪强李航张海[导读] 摘要:随着我国经济的不断发展,能源需求越来越旺盛,对于煤炭的需求也是不断增加,由此,则带动着对于煤矿相关技术的大发展,而煤矿井下巷道锚杆支护技术就是其中较为重要的一项技术。内蒙古科技大学内蒙古自治区包头 014000摘要:随着我国经济的不断发展,能源需求越来越旺盛,对于煤炭的需求也是不断增加,由此,则带动着对于煤矿相关技术的大发展,而煤矿井下巷道锚杆支护技术就是其中较为重要的一项技术。本文从煤矿井下巷道锚杆支护的理论入手,简要描述煤矿井下巷道锚杆支护理论,为煤矿安全生产提供理论支持。 关键词:煤矿井下巷道;锚杆支护对于我国各地的煤矿而言,其主要是采取的井工开采,大多数而言的生产环境较为复杂。在我国的特厚煤层煤炭资源开采工作中,工作人员通常都会在煤层底板部位掘进一条巷道,以促进特厚煤层煤炭资源的顺利开采,而这些巷道的围岩则可能因为其松软破碎的岩质,而导致离层问题的出现,从而对煤炭资源的生产造成了极大的阻碍。此外,随着煤矿开采强度不断增加,开采技术出现巨大进步,巷道布置发展方向出现转变为:岩巷向煤巷发展、巷道拱形断面向矩形断面发展、岩石顶板煤巷向煤层顶板巷道和全煤巷道发展、巷道从小断面向大断面发展、巷道埋深从浅部向深部发展、单巷布置向多巷发展、简单地质条件巷道向复杂地质条件发展等。 一、锚杆支护理论对于传统的锚杆支护,其理论上有诸如组合梁、悬吊、加固拱等,它们在实际的生产生活中都发挥着巨大的作用,但是,其也有着不小的局限性。在井下实测、数值计算等基础上,针对复杂困难巷道条件,提出高预应力、强力支护理论,要点是:巷道围岩变形主要包括两部分:一是结构面离层、滑动、裂隙张开及新裂纹产生等扩容变形,属于不连续变形;二是围岩的弹性变形、峰值强度之前的塑性变形、锚固区整体变形,属于连续变形。由于结构面的强度一般比较低,因此开巷以后,不连续变形先于连续变形。合理的巷道支护型式是大幅度提高支护系统的初期支护刚度与强度,有效控制围岩不连续变形,保持围岩的完整性,同时支护系统应具有足够的延伸率,允许巷道围岩有较大的连续变形,使高应力得以释放。与传统的“先柔后刚、先让后抗”的支护理念相比,深部及复杂困难巷道支护应该是“先刚后柔、先抗后让”,最大限度地保持围岩完整性,尽量减少围岩强度的降低。对于预应力锚杆支护,它发挥的主要功效在于控制锚固区围岩滑动、离层、产生新裂纹、裂隙张开等,从而达到让围岩受压的状态,更好的抑制围岩弯曲变形、拉伸与剪切破坏,让围岩成为承载主体。锚固区内形成刚度较大的预应力承载结构,阻止锚固区外岩层产生离层,同时改善围岩深部的应力分布状态。锚杆预应力及其扩散对支护效果起着决定性作用。根据巷道条件确定合理的预应力,并使预应力实现有效扩散是支护设计的关键。单根锚杆预应力的作用范围是很有限的,必须通过托板、钢带和金属网等构件将锚杆预应力扩散到离锚杆更远的围岩中。特别是对于巷道表面,即使施加很小的支护力,也会明显抑制围岩的变形与破坏,保持顶板的完整。锚杆托板、钢带与金属网等护表构件在预应力支护系统中发挥极其重要的作用。对于预应力锚杆支护系统而言,其也是有着临界支护刚度,纵然锚固区不会有明显的离层和拉应力区所需支护提供刚度。如果支护刚度在临界支护刚度以下,则围岩将会长期在变形与不稳定的形态下;相反,支护系统刚度如果达到或超过临界支护刚度,围岩变形得到有效抑制,巷道处于长期稳定状态。支护刚度的关键影响因素是锚杆预应力,因此,存在锚杆临界预应力值。当锚杆预应力达到一定数值后,可以有效控制围岩变形与离层,而且锚杆受力变化不大。锚杆支护对巷道围岩石的弹性变形、峰值强度之前的塑性变形、锚固区整体变形等连续变形控制作用不明显,要求支护系统应具有足够的延伸率,使围岩的连续变形得以释放。对于深部及复杂困难巷道,应采用高预应力、强力锚杆组合支护,应尽量一次支护就能有效控制围岩变形与破坏,避免二次支护和巷道维修。 二、锚杆支护设计方法 1、动态信息设计法我们依照煤矿巷道自身的特点,参考国外的先进技术,提出锚杆支护动态信息设计。此种方法有两大特点:设计是动态过程而非一次完成;设计充分用好每个信息,实时做好信息的收集、分析与反馈。此种设计可以分为五部分:巷道围岩地质力学评估、初始设计、井下监测、信息反馈与修正设计。我们围绕着岩地质力学评估包括围岩结构、围岩强度、地应力、井下环境评价及锚固性能测试等内容,为初始设计提供可靠的基础参数;初始设计以数值计算方法为主,结合已有经验和实测数据确定出比较合理的初始设计,目前应用效果比较好的数值计算程序为有限差分软件FLAC和离散单元法软件UDEC;将初始设计实施于井下,进行详细的围岩位移和锚杆受力监测;根据监测结果判断初始设计的合理性,必要时修正初始设计。正常施工后应进行日常监测,保证巷道安全。 2、描杆支护形式和参数选择原则对于不少井下巷道,其生产条件和地质条件都较为复杂,为此,为了能够更为有效地发挥锚杆支护功效,我们需要遵循以下原则:一次支护。对于锚杆支护,其需要尽可能的在第一次支护时就可以有效的控制住围岩的变形,以免出现二次(多次)支护或者是巷道维修。同时,其还能够更好地实现矿井高效、安全生产。而对于回采巷道,加快推进采煤工作面,服务于回采顺槽需要在使用期内稳定;对于大巷和俐室等永久工程,更需要保持长期稳定,不能经常维修。另一方面,这是锚杆支护本身的作用原理决定的。巷道围岩一旦揭露立即进行锚杆支护效果最佳,而在已发生离层、破坏的围岩中安装锚杆,支护效果会受到显著影响;高预应力和预应力扩散原则。预应力是锚杆支护中的关键因素,是区别锚杆支护是被动支护还是主动支护的参数,只有高预应力的锚杆支护才是真正的主动支护,才能充分发挥锚杆支护的作用。一方面,要采取有效措施给锚杆施加较大的预应力;另一方面,通过托板、钢带等构件实现锚杆预应力的扩散,扩大预应力的作用范围,提高锚固体的整体刚度与完整性;“三高一低”原则。即高强度、高刚度、高可靠性与低支护密度原则。在提高锚杆强度、刚度,保证支护系统可靠性的条件下,降低支护密度,减少单位面积上锚杆数量,提高掘进速度;临界支护强度与刚度原则。锚杆支护系统存在临界支护强度与刚度,如果支护强度与刚度低于临界值,巷道将长期处于不稳定状态,围岩变形与破坏得不到有效控制。因此,设计锚杆支护系统的强度与刚度应大于临界值;相互匹配原则。锚杆各构件,包括托板、螺母、钢带等的参数与力学性能应相互匹配,锚杆与锚索的参数与力学性能应相互匹配,以最大限度地发挥锚杆支护的整体支护作用;可操作性原则。提供的锚杆支护设计应具有可操作性,有利于井下施工管理和掘进速度的提高;在保证巷道支护效果和安全程度,技术上可行、施工上可操作的条件下,做到经济合理,有利于降低巷道支护综合成本。 三、结论

相关主题