搜档网
当前位置:搜档网 › 几何 群论 讲义

几何 群论 讲义

几何 群论 讲义
几何 群论 讲义

A Short course in geometric group theory

Notes for the ANU Workshop January/February1996

Walter D.Neumann and Michael Shapiro

2Geometric Group Theory

2Elementary properties of hyperbolic groups

1)Behaviour of geodesics and quasi-geodesics:progression in geodesic corridors.

2)Hyperbolicity is a quasi-isometry invariant.

3)Finite presentation,solubility of the word and conjugacy problems.

4)Finitely many conjugacy classes of torsion elements.

5)The Rips complex and.

6)The boundary.

3Isoperimetric inequalities

1)Area of a word via products of conjugates of relators.

2)Area of a word via V an Kampen diagrams.

3)Dehn’s functions and isoperimetric functions.

4)A group has soluble word problem if and only if it has a recursive Dehn’s function if

and only if it has a sub-recursive Dehn’s function.

5)Equivalence relation and ordering for isoperimetric functions.

6)Consequently solubility of the word problem is a geometric property.

4The JSJ decomposition

1)Splittings of hyperbolic groups.

5Regular languages,automatic,bi-automatic and asynchronously automatic groups

1)De?nitions.

2)The fellow traveler property.

3)The seashell:?nite presentation,quadratic isoperimetric inequality and quadratic time

word problem.

4)Closure properties.

i)Free products.

ii)Direct products.

iii)Free factors.

iv)Finite index subgroups.

v)Finite index supergroups.

vi)HNN extensions and free products with amalgamation over?nite subgroups. vii)Bi-automatic groups are closed under central quotients and direct factors.

5)Famous classes of automatic groups.

Geometric Group Theory3

i)Hyperbolic groups including:free groups,?nite groups,most small cancella-

tion groups,fundamental groups of closed negatively curved manifolds and other negatively curved spaces.

ii)Small cancellation groups.

iii)Fundamental groups of geometric three manifolds except for those containing a nil or solv manifold as a connected sum component.

iv)Coxeter groups.

v)Mapping class groups.

vi)Braid groups and more generally,Artin groups of?nite type.

vii)Central extensions of hyperbolic groups.

viii)Many amalgams of hyperbolic groups along rational subgroups.

ix)Many groups that act on af?ne buildings.

6)Regular languages,cone types and the falsi?cation by fellow traveler property.

7)Bi-automatic groups

i)Hyperbolic groups are geodesically bi-automatic.

ii)Bi-automatic groups have soluble conjugacy problem.

8)Asynchronous automaticity

6Equivalence classes of automatic structures

1)The asynchronous fellow traveller property,rationality and bi-automaticity.

7Subgroups of automatic groups

1)Let be a(synchronous or asynchronous)automatic structure for,and suppose

.Then the following are equivalent:

i)is-rational.

ii)is-quasi-convex.

iii)In the case where is hyperbolic and is synchronous,these are equivalent to: is quasi-geodesic in.

2)A rational subgroup of an automatic(bi-automatic,asynchronously automatic,hyper-

bolic)group is automatic(bi-automatic,asynchronously automatic,hyperbolic).

3)Centers and centralizers of bi-automatic groups are rational,hence bi-automatic.

i)Consequently a hyperbolic group does not contain a subgroup.

8Almost convexity

1)De?nition.

2)Building the Cayley graph.

3)Almost convexity is not a group property.

4Geometric Group Theory

9Growth functions and growth rates

1)Finite cone types implies rational growth function.

2)Gromov’s theorem:polynomial growth implies virtually nilpotent.

Geometric Group Theory5 0.Introduction

Geometric group theory is the study of groups from a geometric viewpoint.Much of the essence of modern geometric group theory can be motivated by a revisitation of Dehn’s three decision-theoretic questions,which we discuss below,in light of a modern viewpoint.This viewpoint is that groups may be pro?tably studied as geometric objects in their own right.This connection between algorithmic questions and geometry is at?rst surprising,and is part of what makes the subject attractive.

As Milnor’s theorem(see below)teaches us,the geometry exists both in the group itself and in the spaces it acts on.This is another powerful motivation for the subject,and was historically one of the turning points.

0.1–4Dehn’s problems.

Early in this century Dehn proposed three seminal questions[D].

Suppose we have a group given in some way,and a set of generators for the group.The word problem asks if there is a procedure to determine whether two words and in these generators represent the same element of.Since we may look at,it is equivalent to ask for a procedure to decide if a word represents the identity.

Notice that if and are two?nite generating sets for then the word problem is soluble with respect to if and only if it is soluble with respect to.For suppose we are given a word in the letters of.Each letter has the same value in as some word in the letters of.Thus it requires only a?nite look-up table to translate a word in the letters of into one in.

However,there is less here than meets the eye.We have said nothing about how to ?nd the?nite look-up table.Thus while we have demonstrated the existence of an algorithm for the word problem in from the existence of one in,we may have no way of?nding that solution.

The conjugacy problem asks if there is a procedure to determine whether the elements and of represented by two words and are conjugate in,that is,does there exist with.Note that if such a procedure exists,then,taking ,we solve the word problem also.

The isomorphism problem asks for a procedure to determine whether two groups are isomorphic.The groups are usually assumed to be given by presentations(a“presentation" is a collection of generators for the group plus some suf?cient collection of relations among these generators).

Dehn’s three questions are remarkable in that they precede by many years the for-malization of“procedure"as“algorithm"by Church,Turing,et al.and by two more decades the resolution of the word problem by Boone and Novikov in the1950’s.They show that there is a?nitely presented group with recursively unsolvable word problem. The unsolvability of the conjugacy problem is immediate,and that of the isomorphism problem also follows.For more details see https://www.sodocs.net/doc/7d16843848.html,ler’s notes for this Workshop.

6Geometric Group Theory

0.5Cayley graphs

There is a standard method for turning a group and a set of generators into a geometric object.Given the group and generating set we produce the directed labeled graph .The vertices of are the elements of and we draw a directed edge from to with label for each and.We will refer to this edge as.

This graph is called the Cayley graph.It comes equipped with a natural left action of .acts on vertices by left-multiplication and carries the edge to .

By forgetting directions on edges and making each edge have length,we can turn into a metric space.This induces the word metric on the vertex set:

in

This metric depends of course on the chosen set of generators.But we will see below that up to“quasi-isometry”it does not depend on this choice(if the generating set is?nite) and that many geometric properties depend only on.

We use to denote the set of all words on letters of,including the empty word and for we use

for.The path is a geodesic if

.Evidently,a word represents the identity if and only if it is a closed loop.It follows that Theorem.has soluble word problem if and only if there is an algorithm capable of constructing any?nite portion of.

For suppose we are in possession of such an algorithm,and we are given the word. The path lies entirely inside the ball of radius around the identity.We use our algorithm to construct this ball and then follow to see if it returns to the identity.

On the other hand,suppose we are given an algorithm to solve the word problem in .To construct the ball of radius around the identity,we enumerate the words of length less than or equal to in.We then use our algorithm for the word problem to determine which of these are equal in.Equality in is an equivalence relation on .Pick a representative(say a shortest representative)in each equivalence class.Now for each and each pair of representatives,use word problem algorithm to determine if is an edge.

Geometric Group Theory7 0.7Dehn’s solution to the word problem for hyperbolic surface

groups.

The previous algorithms are wildly impractical in most situations.There is a beautiful and highly ef?cient solution to the word problem for hyperbolic surface groups.Let us start by describing an inef?cient solution to the word problem in.

If we take in the standard presentation,the Cayley graph embeds in the Euclidean plane as the edges of the tessellation by squares.We can see this embedding as an expression of the fact that acts by isometries on the Euclidean plane.The quotient of the Euclidean plane by this action is the torus.Now we are entitled to see the tessellation of the plane by squares as being the decomposition of the plane into copies of a fundamental domain for this action.However,there is a little piece of sleight-of-hand going on here.To see this,let’s start with the torus.

If we cut the torus open along two curves,it becomes a disk,in fact,if we choose the two curves correctly,it is a square.That is,the torus is the square identi?ed along its edges.If we look for the generators of the fundamental group,they are dual to the curves we have cut along.That is,if we take a base point in the middle of the square,is the curve which starts at the base point,heads towards the right edge of the square,reappears at the left edge and continues back to the base point.Likewise,is the vertical path which rises to the top edge and reappears at the bottom.Thus the fundamental group is generated by the act of crossing either of the cut curves.

Thus,after choosing a base point,the natural relation between the tessellation of the plane and the embedding of the Cayley graph into the plane is that they are dual.That is,there is a vertex of the Cayley graph in the center of each copy of the fundamental domain,and there is an edge of the Cayley graph crossing each edge of the tessellation.

The reason it was not immediately obvious that the tessellation and the Cayley graph are two different things is that the tessellation of the plane by squares is self-dual.That is,if we start with the tessellation of the planes by squares and replace each vertex by a2-cell and each2-cell by a vertex(thus getting new edges crossing our old edges)the result is another tessellation of the plane by squares.Contrast this with the tessellation of the plane by equilateral triangles which is dual to the tessellation of the plane by regular hexagons.

Now as we have seen,?nding the Cayley graph for solves the word problem for ,but it does not lead to a particularly ef?cient solution.

This situation changes if we turn to the fundamental group of a hyperbolic surface, i.e.,a surface of genus2or more.If we wish to cut open a surface of genus2,we will need4curves,and when we have cut it open,we will have an octagon as our fundamental domain.Likewise,looking at the vertex where our cut curves meet shows that we will want to tessellate something with8octagons around each vertex.This suggests that we would like regular octagons with interior angles of.We can have this if we choose to work in the hyperbolic plane.In fact,the hyperbolic plane can be tessellated by regular octagons with interior angles of.

Once again,the Cayley graph is dual to the tessellation,and this tessellation is also self-dual,so the Cayley graph embeds as the edges of this tessellation.In fact,reading

8Geometric Group Theory

the labels on an octagon tells us that our fundamental group has the presentation Given a sub-complex of this tessellation,we de?ne to be together with any fundamental domains which meet.Now suppose we start with a vertex of this tessellation(identi?ed with the identity)and consider for successive values of.We can then observe that each fundamental domain that meets the boundary of meets it in at least of its edges.

Suppose now that we are given a word which represents the identity.We consider as a path based at.There is a smallest so that lies entirely in.If then is the empty word.If,then there is some portion of which lies in,but not in.Suppose is a maximal such portion.Then one of2things happens.Either:

1)returns to along the same vertex by which it left it,in which case

is not reduced or

2)travels along the edges of some2-cell which meet the boundary of

.Call this portion.

In the?rst case,can be reduced in length by deleting a subword of the form, producing a new word with the same value in.

In the second case,we take to be the path so that forms the boundary of. We now have evaluating to the identity,so and have the same value in. Further,.

If we work with a surface of genus greater than,the numbers change,but the argument stays the same.Thus we have proven:

Theorem(Dehn).Let be the fundamental group of a closed hyperbolic surface.Then there is a?nite set of words with each evaluating to the identity, so that if is a word representing the identity,then there is some so that and.

This gives a very ef?cient solution to the word problem.Given a word we look for an opportunity to shorten it and do so if we can.After at most such moves we either arrive at the empty word or we have no further opportunities to shorten our word. If the?rst happens,we have shown that represents the identity.If the second happens, we have shown that it does not.

1.1Hyperbolicity

Let be a?nitely generated group with?nite generating set and let be the corresponding Cayley graph.

i).We say that has thin triangles if there exists a such that if,,and are sides of a geodesic triangle in then lies in a-neighbourhood of.

ii).We can give a parameterized version of the above condition.We?rst note the following.If is a geodesic triangle,then the sides of decompose(as paths parameterized by arclength)as,,so that

Geometric Group Theory9 ,,and.(This is the triangle inequality.Exercise!)

The parameterized version of the previous condition is that there exists such that for any such triangle each of the pairs,;,;,-fellow travel,that is for and so on.The reader may wish to check that suf?ces.

iii).We say that has thin bigons if there is a such that for every pair of geodesics and with the same endpoints,for.(We call such a pair a geodesic bigon.)Warning:we are here treating as a bona?de geodesic metric space.Accordingly,we must allow the endpoints of geodesics to occur in the interior of edges.

iv).We shall see that a group obeying any of these conditions is?nitely presented.That is to say,there is a presentation

where consists of a?nite set of words on the set of generators and

is isomorphic to the quotient of the free group on by the normal closure of.

Another way of saying this is that a word in the letters of represents the identity in if and only if it is freely equal to a product of conjugates of elements of.Thus a word in represents the identity if is equal(in the free group on to an expression of the form

We say that has a linear isoperimetric inequality if there is a constant so that for any trivial word we can satisfy this equation with.

v).We say that has a sub-quadratic isoperimetric inequality if there is a sub-quadratic function so that for any word presenting the identity,can be freely expressed as the product of at most conjugates of de?ning relators.

vi).We say that has a Dehn’s algorithm if there is a?nite set of words with each evaluating to the identity,so that if is a word representing the identity,then there is some so that and.

10Geometric Group Theory

We have seen that this gives an algorithm.Given a word,we can replace it with the shorter word which evaluates to the same group element.If does in fact represent the identity,after at most such moves,we are left with the empty word. If does not represent the identity,after at most such moves,we are left with a word which we cannot shorten.

vii).We will say that geodesics diverge exponentially in if there is a constant and an exponential function()with the following property:Suppose that and are geodesic rays based at a common point.Suppose that there is a value so that .Suppose now that is a path connecting to

and that lies outside the ball of radius around.Then. viii).We will say that geodesics diverge uniformly in if there is a constant and a function,,with the following property:Suppose that and are geodesic rays based at a common point.Suppose that there is a value so that .Suppose now that is a path connecting to

and that lies outside the ball of radius around.Then. Theorem.All the above conditions are equivalent and independent of generating set.A group satisfying them is called word hyperbolic.

Conditions i),ii),and vii)are equivalent to each other for any geodesic metric space and are characterizations of a type of hyperbolicity in such spaces called Gromov-Rips hyperbolicity.In a class of spaces including complete simply connected riemannian manifolds they are also equivalent to linear isoperimetric inequality.In these spaces linear isoperimetric inequality means the existence of a constant such that a closed loop can always be spanned by a disk of area at most.

The thin bigons condition is equivalent to Gromov-Rips hyperbolicity in any graph with edges of unit length(see[Pa2]),but certainly not in arbitrary geodesic metric spaces (think of euclidean space!).

Conditions i),ii),iv),vi),and vii)can be found in general expositions such as[ABC], [B],[C3],[CDP],[GH].Conditions v)and viii)can be found in[Pa1].

1.2Cayley graphs and group actions

We say that a metric space is a geodesic metric space if distances in are realized by geodesics in That is,given,there is a path connecting and so that and is minimal among all paths connecting and.

A map is a quasi-isometric map if for all,

Geometric Group Theory11 Suppose now that is a geodesic metric space.Suppose that is a?nitely generated group which acts by isometries on.Suppose further that this action is discrete and co-compact.“Discrete”means that if is a sequence of distinct group elements then for the sequence does not converge(this is slightly weaker than“proper discontinuity”).“Co-compact"means that the orbit space is compact.

Let us?x a generating set for and pick a basepoint,.The map which takes to takes to,is-equivariant,and is?nite-to-one since the action of is discrete.For each,we choose a path from to.We now have a map

de?ned by taking each vertex of to,and each edge of to. (Strictly speaking,we must parameterize both the edge and the path by the unit interval and take to.)

Theorem(Milnor)[M].The map is a quasi-isometry.

This is not a particularly dif?cult theorem—indeed,the reader may wish to try to prove it as an exercise.However,as mentioned in the Introduction,it was one of the turning points in the development of modern geometric group theory.

1.3Groups acting on hyperbolic spaces.

In view of Milnor’s Theorem,we will want to see that any space which is quasi-isometric to a hyperbolic space is itself hyperbolic.This will show that co-compact discrete action of a group on a hyperbolic space“transfers"the hyperbolicity of to.It will also show that hyperbolicity is independent of generating set.

2.1Quasi-geodesics in a hyperbolic space

A geodesic is an isometric map of the interval.(Y ou may take this a de?nition of.)A-quasi-geodesic is a-quasi-isometry of the interval .Here are several characterizations of the relationship between geodesics and quasi-geodesics in a hyperbolic space.

Given a path it is often convenient to extend it to a map de?ned on by setting for.We use this convention in the following theorem. Theorem.There are,,and so that if

is a-quasi-geodesic and is a geodesic in and is-hyperbolic,and and have the same endpoints,then each of the following hold:

i).Each of and is contained in an-neighbourhood of the other.

ii).and asynchronously-fellow travel.That is,there is a monotone surjective reparameterization of so that for all we have. iii).progresses at some minimum rate along.That is,the reparameterization of ii) can be chosen so that implies.

12Geometric Group Theory

This last is sometimes referred to as “progression in geodesic corridors."

2.2Hyperbolicity is a quasi-isometry invariant

We now prove that hyperbolicity is a quasi-isometry invariant using the previous theorem and a picture.

Theorem.Suppose that

and are quasi-isometric geodesic metric spaces.If is

hyperbolic,so is

.

2.3Word and conjugacy problem for hyperbolic groups

It follows immediately from the existence of a Dehn’s algorithm that a hyperbolic group has a highly ef?cient solution to its word problem.Most early solutions to the conjugacy problem used the boundary of a hyperbolic group,which will be described later.We will give a proof in 5.7due to Gersten and Short which works in the more general setting of biautomatic groups,and which does not use the boundary.

2.4Torsion in hyperbolic groups

There is a charming proof that hyperbolic groups have ?nitely many conjugacy classes of torsion elements based on the Dehn’s algorithm.See for example,[ABC ].

2.5The Rips Complex

A fundamentally important property of a hyperbolic group is:

Theorem (Rips).Let be a hyperbolic group.Then acts properly discontinuously on a ?nite dimensional contractible complex with compact quotient.

Such a complex is easy to describe.We start with a Cayley graph for and take the geometric realization of the following abstract simplicial complex

Geometric Group Theory13 for an appropriate bound.V ertex set of is and the simplices consist of subsets of of diameter at most in the word metric.It turns out that

always suf?ces.A very ef?cient proof of Rips’theorem is given in[ABC].

This theorem has important homological implications for.For example,if is virtually torsion free(i.e.,has a torsion free subgroup of?nite index)then it has?nite virtual cohomological dimension and in any case its rational homology and cohomology is?nite dimensional.It is an important open problem whether a hyperbolic group is always virtually torsion free.

Another interesting consequence is that non-vanishing homology implies a lower bound for the hyperbolicity constant for among all?nite generating sets for .

2.6The boundary of a hyperbolic group

For a hyperbolic group(in fact more generally for any Gromov/Rips hyperbolic metric space)there is a natural compacti?cation of by adding a“boundary at in?nity.”Roughly speaking the boundary consists of the set of all ways to travel off to in?nity. One way of making this precise is to de?ne a geodesic ray in a Cayley graph for as an isometry of into and to say two rays are equivalent if they fellow travel. The boundary(which in fact is a quasi-isometry invariant and thus does not depend on the choice of generating set)is the set of equivalence classes of geodesic rays.The topology on can be de?ned in a multitude of ways.Basicly two points are close if their rays fellow travel for a long time.One way to formalize this is to take the compact open topology on the set of rays and take the quotient topology on.

There are also many ways of describing how to attach this boundary to or its Cayley graph.One obtains a compact Hausdorff space into which both and embed. We leave as an exercise how to attach the boundary:the construction is highly stable in the sense that any reasonable answer you give will be correct(see[NS1]).

3.1Area of a word that represents the identity

As we have seen,a group with presentation

is isomorphic to,where is the free group on and is the normal closure of in.It follows that a word represents the identity in if and only if it is freely equal(that is,equal in)to an expression of the form

where each.Thus,solving the word problem in means determining the existence or non-existence of such an expression for each.

A naive approach would be to start enumerating all such expressions in hopes of ?nding one freely equal to our given.If represents the identity,we must eventually

14Geometric Group Theory

?nd the expression that proves this.The problem with this approach is knowing when to give up if does not represent the identity.Let us formalize this quandary.

Suppose we take a word representing the identity in.We de?ne the area,

to be the minimum in any such expression for.

3.2Van Kampen diagrams

The choice of the word area is motivated the notion of a V an Kampen diagram for. Such a diagram is a labeled,simply connected sub-complex of the plane.Each edge of is oriented and labeled by an element of.Reading the labels on the boundary of each2-cell of gives an element of.is a V an Kampen diagram for if

.

reading the labels around the boundary of gives

Theorem.Each Van Kampen diagram with2-cells for gives a way of expressing as a product.Each product for gives a Van Kampen diagram for with at most2-cells.In particular,has a Van Kampen diagram if and only if represents the identity.

Thus,we could have de?ned to be the minimum number of2-cells in a V an

Kampen diagram for.

3.3Dehn’s function of a presentation

We de?ne the Dehn’s function of the presentation to be

This maximum is taken over words presenting the identity.We say is an isoperimetric

function for if.(As we shall see below,“isoperimetric function”

is often used in a sense between these two.)

Geometric Group Theory15

3.4Isoperimetric functions and the word problem

Either of these functions answers the question,“When should we give up?" Theorem.has a soluble word problem if and only if it has a recursive Dehn’s function if and only if it has a sub-recursive Dehn’s function(and the same for isoperimetric functions).

A function is recursive if it can be computed by some computer program.It is sub-recursive if there is a recursive function so that for all. Proof.If a given word represents the identity,we can eventually exhibit a V an Kampen diagram for it by sheer perseverance.The Dehn’s function(if we can compute it or an upper bound for it)tells us the maximum number of2-cells in any V an Kampen diagram we must consider.Now,the number of possible V an Kampen diagrams with a given number of two cells is unbounded,because such diagrams may have long1-dimensional portions.However,the length of the boundary of such a diagram is at least twice the total length of the1-dimensional portions.Thus any possible diagram for has at most 2-cells and at most

16Geometric Group Theory

3.6The word problem is geometric

Theorem.The property of having soluble word problem is a quasi-isometry invariant of ?nitely presented groups.

This follows because the property of being sub-recursive is an equivalence class invariant of functions.

Since groups with unsolvable word problem exist,isoperimetric functions can be of enormously rapid growth.In fact,by their de?nition,non-sub-recursive functions can be thought to have“inconceivably rapid growth.”

It is not hard to?nd groups with solvable word problem with very fast growing Dehn functions—for example,Gersten has pointed out[G]that for any the function (levels of exponent)is a lower bound for the isoperimetric function for the group(the notation is a shorthand for).Clearly,

the algorithm proposed above for the word problem—enumerating all V an Kampen diagrams up to the size given by the Dehn function—is absurd when one has a Dehn function that grows this fast(or even exponentially fast).For speci?c groups much faster algorithms can often be found.

4JSJ decomposition.

The name JSJ refers to Johannson,and Jaco and Shalen,who developed a theory,building on earlier ideas of Waldhausen,for cutting irreducible three-dimensional manifolds into pieces along tori and https://www.sodocs.net/doc/7d16843848.html,ter Thurston explained these decompositions from a geometric point of view in his famous“Geometrization Conjecture"for3-manifolds.One can describe JSJ decomposition in terms of amalgamated product and HNN decomposition of the relevant fundamental group,and in fact a purely group theoretic version of the theory has been worked out by Kropholler and Roller.

Around1992Zlil Sela pointed out that analogous decompositions appear to exist for groups in a much broader range of situations.First Sela did this for torsion free hyperbolic groups and then Sela and Rips extended it to general torsion free?nitely presented groups.This is currently a very active area of research,and we can only touch on some of its coarsest elements here.Since some of the major players are here at this workshop(Swarup,Bowditch),we can hope to learn more in seminars.In fact we are indebted to them for the information in this section,although any errors in it are our responsibility.

The theory also has origins in work of Stallings on“ends of groups."The set of ends of a locally compact space is the limit over larger and larger compact subsets of of the set of components of.The set of ends of a?nitely generated group is the set of ends of any connected space on which acts freely with compact quotient —for example one may take a Cayley graph of the group.The de?nition turns out to be independent of choices.For example,has two ends,has one end for,and a free group on two or more generators has in?nitely many ends,since its Cayley graph

Geometric Group Theory17

is an in?nitely branching tree.For a hyperbolic group it is known that the set of ends coincides with the set of components of the boundary of the group.

Stallings showed that a?nitely generated group can have only(if the group is ?nite),,,or in?nitely many ends.Moreover,if ends then the group is virtually in?nite cyclic and if in?nitely many then the group can be“split"along a?nite subgroup, that is,it is an amalgamated free product or HNN extension amalgamated along a?nite subgroup.In the latter case of“decomposing along a?nite subgroup,”one might try to iterate the decomposition if the component groups that are being amalgamated still have in?nitely many ends.Work of Dunwoody[Du]shows that for a?nitely presented group this iteration eventually ends.One codes the result in what is called a“graph of groups." This is a?nite graph with groups assigned to vertices of the graph and subgroups of the vertex groups assigned to adjacent edges of the graph as a scheme for describing how to repeatedly amalgamate the vertex groups along the edge groups using amalgamated free products or HNN extensions.In our case all the edge groups are?nite and the vertex groups each have at most one end,since they cannot be further decomposed.This is, as it were,the?rst stage of JSJ decomposition,and leaves us with one-ended groups to decompose.

We now restrict to one-ended hyperbolic groups.In this case JSJ decomposition concerns splitting along virtually in?nite cyclic subgroups.The main question is when such splittings exist.We have:

Theorem(Paulin and Rips).If is a one ended hyperbolic group with

then splits along a virtually in?nite cyclic group.

By we mean the outer automorphism group:the quotient of by the group of inner automorphisms,that is automorphisms induced by conjugation by a group element.

Theorem(Swarup and Scott,Bowditch).If is a hyperbolic group with one end and is a virtually in?nite cyclic subgroup with the relative number of ends

then splits along some virtually in?nite cyclic subgroup(except for some virtual surface groups).

Swarup and Scott proved the torsion free case.Bowditch’s proof is very different and uses the boundary.It also shows that the existence of such a splitting is a geometric property,i.e.,invariant under quasi-isometry.

The number of relative ends is given by taking a connected space on which acts freely and cocompactly as before and counting the ends of.One must exclude virtual surface groups in the above theorem,since they include triangle groups which do not split despite having cyclic subgroups with.

Rips and Sela have shown that the JSJ splittings are unique up to an appropriate equivalence relation in special cases.

18Geometric Group Theory

5.1Regular languages,?nite state automata,and automatic structures A ?nite state automaton over an alphabet is a ?nite directed,labeled graph equipped with a base vertex and a set of preferred vertices or “accept vertices.”The edges of are labeled by letters of ,where is an additional symbol that stands for “empty”.A ?nite state automaton de?nes a language .is the set of words labelling paths in starting from the base vertex of and ending at accept vertices of .For example,the language de?ned by the following ?nite state automaton is

.a

base vertex all vertices are accept vertices

A language is a regular language if it is the language of some ?nite state automaton.One also speaks of the language accepted by the ?nite state automaton.

We say the ?nite state automaton

is deterministic if no -edges occur and each vertex of has exactly one edge emanating from it for each element of .

A ?nite state automaton is a model of a simple computing device.This is best seen in the deterministic case.A deterministic ?nite state automaton can be written as a 5-tuple.,where is the alphabet,is the set of vertices,or states ,is the transition function given by the edges of ,is the base vertex

or start state and

is the set of preferred vertices or accept states .We imagine that performs computations on words to determine whether or not they lie in .Given the word ,the computation proceeds as follows:starts in the state and reads .This causes it to enter state .It proceeds in this way reading the letters of and changing states according to the formula .It concludes that if and only if .There are many characterizations known for regular languages.The following theo-rem,which gives some of them,is a worthwhile exercise.First a de?nition that we will return to later.We de?ne the cone of a word with respect to a language .It is the set Theorem/Exercise.The following are equivalent for a language .

i).is a regular language (i.e.,accepted by a ?nite state automaton);

ii).There are only ?nitely many different cones as runs through ;

iii).is accepted by some deterministic ?nite state automaton.(Hint:to show ii)iii)use the set of cones as the states of the ?nite state automaton.)Another standard way to characterize regular languages is in terms of closure prop-erties.We will not discuss this characterization,but it is a good exercise to prove the closure properties.

Geometric Group Theory19 Theorem.If are regular languages then so are:,,

,,and with.

In addition to using?nite state automaton to examine single words,we will need to use them to examine pairs.In order to do this,we use a technical trick:We form the padded product alphabet

where is a symbol not in.We then embed into by writing as

,if,

,if,and as

if.

When we speak of a subset of being the language of a?nite state automaton we mean it with respect to the padded product alphabet as above.A?nite state automaton for such a language is often called a(synchronous)two-tape?nite state automaton,since one imagines it being fed the two input words on two separate“input tapes.”If we extend the alphabet to include also pairs and,where denotes the empty word,one obtains what is called an asynchronous two-tape automaton,since the automaton can read a letter on only one tape at a time and thus read the two“tapes”asynchronously.

Another useful closure property of regular languages(again an exercise to prove)is: Proposition.If is the language of a(possibly asynchronous)two-tape automaton,then its projection onto the?rst factor is a regular language.

We now give the original automaton-theoretic de?nition of an automatic structure for.The characterization of the?rst theorem of 5.2gives a more useful working de?nition and is often used nowadays.

An automatic structure for consists of the following:

1)A?nite set together with a map.We write this map

.

3)A synchronous two-tape automaton so that

4)For each a synchronous two-tape automaton so that

Such a structure ful?ls our desire to build the Cayley graph“on the cheap".The language gives us names for the vertices of,and since it is regular,it is cheap to determine when we have such a name.cheaply determines when two names name the same vertex,and cheaply determines when two such names name an edge.All this can be made even cheaper by proving:

20Geometric Group Theory

Theorem.Any automatic structure for contains a sub-language which is an auto-matic structure which bijects to.

For a proof of this and other basics of automatic structures see[ECHLPT]or[BGSS].

5.2Fellow traveler property

There is a geometric condition which tells us when a regular language which surjects to the group is an automatic structure.We say that has the fellow traveler property if there exists such that for any pair of words so that and end at most an edge apart,for all.

Theorem.Suppose is a regular language that surjects to.Then is an automatic structure if and only if has the fellow traveler property.

Proof.We?rst show that an automatic structure has the fellow-traveler property.This uses the following simple but basic lemma about regular languages.

Lemma.Let be a regular language.Then there exists a bound such that if is an initial segment of an-word,that is,there exists a with,then there exists such a of length at most.

Proof.Let be the number of states in an automaton for.When we feed to the automaton,the fact that it can be extended to an-word means it ends at a state from which an accept state can be reached.This accept state can then clearly be reached in at most steps(in fact suf?ces).

Applying this lemma to the language accepted by the comparator automaton shows that a pair of words being compared are always at most steps away from being letter apart,so their values are at most apart,proving the fellow traveler property.

The fact that the fellow-traveler property implies the existence of comparator automata follows easily from the following proposition,and is left to the reader.

Proposition.Let be a group with?nite generating set.Then for any and any the languages

and-fellow-travel

are regular languages(actually,to be precise,we must use the corresponding padded languages,as described above).

Proof.Denote for each.Note that if we know and know the next letters and of and respectively then we can compute,since

.The words and fellow-travel if and only if for all.We can thus build a?nite state automaton to recognise the languages and by using the ball as set of states plus an additional “fail state”and letting the-edge from state lead to if this element

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

中山大学本科课程教学大纲_群论简介

附件1:教学大纲的基本格式和内容 (教学大纲封面) 中山大学 本科课程教学大纲 学院(系)物理学院 课程名称群论简介 二〇一七年

群论简介(Introductory Group Theory)教学大纲 (编写日期:2018年7月) 一、课程基本说明 二、课程基本内容 (一)教学进度表 (含学时分配,学时分配要落实到“章”或“节”,并对各章节的重点、难点内容加以必要的说明)

(二)教学环节安排 (对各种教学环节的安排如:实验、实习、习题课、作业等以及本课程与其他相关课程的联系、分工等作必要说明) 本课程是我校物理学专业理论物理方向的专业基础课之一,由于知识点多而且有一定难度,学生在学习的过程中应以消化吸收课程知识内容为主,不宜做过多的题海练习。平时作业以补充完善课堂中未来得及讲授的证明或计算过程、应用课堂讲授的方法去解决前沿文献中的问题为主。由于学时有限以及可能遇到节假日的放假影响,部分课程内容还可留给学生自学。 (三)教学方法 (包括课堂讲授、提问研讨,课后习题和答疑等情况) 课堂讲授采用启发式教学方法,在讲课中注意问题的提出、问题处理的设想和问题的处理方法,引导学生去思考、讨论和研究,激发学生的学习热情;对重点内容要讲透,难点要讲清,例题要选好,分析方法要一般化,能起到举一反三的作用;引导和鼓励学生应用在课堂上所学到的知识和方法,去解决前沿文献中遇到的物理问题。 (四)课程教材 1、主讲教材 张宏浩,《群论讲义》 2、辅助教材 韩其智,孙洪洲,《群论》,北京大学出版社,1987 (五)主要参考书目 (要求推荐若干参考书,并注明书名、作者、出版社、版本、出版日期等) 马中骐,《物理学中的群论》,科学出版社,第二版,2006 徐婉裳,喀兴林《群论及其在固体物理中的应用》,高等教育出版社,1995

高中平面几何讲义(上) 叶中豪

高中平面几何(上) 知识要点 几何问题的联系和转化 比例线段与相似图形 共点线与共线点(梅涅劳斯定理和塞瓦定理) 三角形的“五心” 四点共圆及其判定 正弦定理和余弦定理 几何变换及相似理论 完全四边形与Miquel点 位似及其应用 例题和习题 1.已知H是△ABC的垂心,M、N分别是BC和AH的中点,直线MN交以AH 为直径的圆于点S、T。求证:AT、AS平分∠BAC及其外角。(10040601-2.gsp) 2.已知:ABCD是正方形,AE=AD,BF=BC,且∠EAD+∠FBC=90°,联结BE、EF,分别交AD于P、Q。求证:PQ=QD。(08012304.gsp)

3.已知梯形ABCD中,AD∥BC,E、F分别为AB、CD上的点,满足∠AED=∠BEC,∠AFD=∠BFC,对角线AC、BD交于O。求证:OE=OF。(07112501.gsp) 4.已知四边形ABCD中,∠B=90°对角线AC=BD,P是对边BC、AD中垂线的交点,Q是对边AB、CD中垂线的交点。求证:B、P、Q三点共线。(10041302.gsp) 5.如图,矩形ABCD中,EF∥AB,EF与对角线BD交于G点。过E作ET⊥DF,

垂足为T;过F作FS⊥BE,垂足为S。求证:S、G、T三点共线。 6.如图,设N是△ABC的弧BAC的中点,M是BC边中点,I是△ABC的内心。求证:∠ANI=2∠IMC。(09021701.gsp) 7.已知O是△ABC的外心,D、E、F分别是各边中点,R、r 为外接圆和内切圆的半径。求证:OD+OE+OF=R+r。(10040601-9.gsp) 8.已知:P是△ABC内任一点,EH∥BC,FI∥AB,GD∥AC,且三线共点于P,

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

高一数学竞赛讲义:平面几何

平面几何习题 2016.4.18 例1、(2005)13.已知点 M 是 ABC ? 的中线 AD 上的一点, 直线 BM 交边 AC 于点N , 且 AB 是 NBC ? 的外接圆的切线, 设 BC BN λ=, 试求 BM MN (用 λ 表示). 例2、(2006)15. △ABC 中,AB

A B C P 例4、(2010)13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥, 垂足H . 过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形. 例5、(2011)13.如图,P 是ABC 内一点. (1)若P 是ABC 的内心,证明:1 902 BPC BAC ∠=+∠; (2)若1902BPC BAC ∠=+∠且1 902 APC ABC ∠=+∠,证明:P 是ABC 的内心. A B C D E F H G

M B D O A 例6、(2012) 13. 如图,半径为1的圆O 上有一定点M, A 为圆O 上动点, 在射线OM 上有一动点B,AB=1,OB>1. 线段AB 交圆O 于另一点C,D 为线段OB 的中点,求线段CD 长的取值范围 例7、(2013)12.如图,梯形ABCD 中,B 、D 关于对角线AC 对称的点分别是'B 、 'D ,A 、C 关于对角线BD 对称的点分别是'A 、'C .证明:四边形'''' A B C D 是梯形.

高中数学立体几何之面面平行的判定与性质讲义及练习电子教案

高中数学立体几何之面面平行的判定与性质讲义及练习

面面平行的判定与性质 一、基本内容 1.面面平行的判定 文字 图形 几何符号 简称 判定定理1 判定定理2 2.面面平行的性质 文字 图形 几何符号 简称 性质定理1 性质定理2 二、例题 1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面. 2.在正方体1111ABCD A B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG . A 1 A B 1 C 1 C D 1 D G E F

F E D B A P C 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形, PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (Ⅰ)求证:EF BD ⊥; (Ⅱ)试确定点F 在线段AC 上的位置,使EF //平面PBD . 4. 在四棱锥P ABCD 中,AB //CD ,AB AD ,4,22,2AB AD CD ,PA 平面 ABCD ,4PA . (Ⅰ)设平面PAB 平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ; (Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所 成角的正弦值为33,求PQ PB 的值. 5. 在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠?, EB ⊥平面ABCD , EF//AB ,2AB=,=1EF ,=13BC ,且M 是BD 的中点. (Ⅰ)求证://EM 平面ADF ; (Ⅱ)在EB 上是否存在一点P ,使得CPD ∠最大? 若存在,请求出CPD ∠的正切值;若不存在, 请说明理由. P D C B A C A F E B M D

《点集拓扑讲义》集合论初步学习笔记

《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。 这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著. 即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基本知识,以及其中的四则运算,大小的比较(<和≤),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早已熟悉的方式去使用,而不另作逻辑上的处理. §1.1集合的基本概念 集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类. 1 / 23

集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员. 集合也可以没有元素.例如平方等于2的有理数的集合,既大于1又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称 之为空集,记作.此外,由一个元素构成的集合,我们常称为单点集. 集合的表示法: (1)用文句来描述一个集合由哪些元素构成(像前面所作的那样),是定义集合的一个重要方式. (2)描述法:我们还通过以下的方式来定义集合:记号 {x|关于x的一个命题P} 表示使花括号中竖线后面的那个命题P成立的所有元素x构成的集合.例如,集合{x|x为实数,并且0

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

122本经典物理名著!!!

122本经典物理名著!!! 学物理的人应该好好看看的书. 122本经典物理名著!!! 1 爱因斯坦文集 2 费曼物理学讲义(原声录音) 出国留学必备书之一! 3 费曼物理学讲义_卷一 4 费曼物理学讲义_卷二 5 费曼物理学讲义_卷三 6 费曼物理学讲义习题集 7 别闹了,费曼先生!

8 泡利物理学讲义(共六卷) 出国留学必备书之一! 9 Faraday(法拉第)_Lectures on the Forces of Matter 10 Faraday(法拉第)_The Chemical History of A Candle 11 从抛物线谈起—混沌动力学引论 12 多粒子系统的量子理论 13 量子力学与路径积分(费曼)出国留学必备书之一! 14 物理力学讲义(钱学森) 15 物理学家用微分几何出国留学必备书之一!

16 相对论(索末菲) 17 相对论的意义 18 算法大全 19 相对论量子场 20 相对论量子力学 21 引力论与宇宙论 22 自然哲学之数学原理宇宙体系 23 物理学进展2001 24 物种起源(达尔文) 25 nobel lectures(1998--2001)

26 Numerical Recipes in C 27 phy Question 28 physics review letter(V ol74-V ol86) 29 thermal physics 30 超弦理论导论 31 力学系统的对称性与不变 32 relativity the special and general theory 33 interact(斯坦福直线加速器实验室) 34 Introduction to Tensor

高中平面几何讲义

高中平面几何 (上海教育出版社叶中豪) 知识要点 三角形的特殊点 重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard点,聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线 特殊直线、圆 Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆, Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆 特殊三角形 中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形, 第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形 相关直线及相关三角形 Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形 重心坐标和三线坐标 四边形和四点形 质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线 完全四边形 Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理 重要轨迹 平方差,平方和,Apollonius圆 三角形和四边形中的共轭关系 等角共轭点,等角共轭线,等截共轭点,等截共轭线 几何变换及相似理论 平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心 Miquel定理 内接三角形,外接三角形,Miquel点 根轴 圆幂,根轴,共轴圆系,极限点 反演 反演,分式线性变换(正定向和反定向) 配极 极点与极线,共轭点对,三线极线及三线极点,垂极点 射影几何 点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 理,Brianchon定理 著名定理 三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley定理Mannheim定理 例题和习题

江西财经大学数学社2015年下学期第一次讲义

2015年数学社第一次测试 (适用教材:微积分、高等数学、数学分析) 命题人:钱佳威 基础部分 1.(微分方程解的特性考察)已知x x xe y e y ==21和是齐次二阶常系数线性微分方程的解,求该方程。 2.(对构造幂级数或者拆分法的考察)求∑=∞ →+n k n k k 1)! 1(lim . 3.(对计算积分进行考察)计算? ++1 14 3x dx x . 4.(对三角函数的周期与基本极限的考察)求极限( )2 lim 1sin 14n n n π→∞ ++. 5.(对极值与隐函数的考察)设函数()y y x =由323322x x y y +-=确定,求 ()y x 的极值。 6.(积分定义的概念考察)求极限如下: 提高部分 1.(全国大学生数学竞赛.数学类)设f(x)在[0,1]上黎曼可积,在x=1处 可导,f(1)=0,f ’(x)=a ,求证:a dx x f x n n n -=? ∞ →1 2 )(lim . 2.(全国大学生数学竞赛.数学类)设f(x)在[0,1]上黎曼可积,]1,0[∈f . 求证:},1,0{)(,0=?>?x g ε使得任意ε<-???|))()((|],1,0[],[b a dx x g x f b a .

3.(全国大学生数学竞赛.数学类)设∑+∞=1 n n na 收敛,证明:∑∞ =+∞ →1 lim k k n n ka =0. 参考答案 基础篇 1. 2. 3.C x x x +++++-+|11|ln 43143)1(83343432 4 4.解 因为() 222 sin 14sin 142sin 142n n n n n π π ππ+=+-=++ 原式22lim 1sin exp lim ln 1sin 142142n n n n n n n n ππππππ→∞ →∞??????=+=+?? ? ?++++???????? 1 422exp lim sin exp lim 142142n n n n e n n n n π π ππππ→∞ →∞ ???? === ? ?++++??? ? 5.解 方程两边对x 求导,得22236360x xy x y y y ''++-= .故()2222x x y y y x +'=-,令 0y '=,得()200x x y x +=?=或2x y =- 将2x y =-代入所给方程得2,1x y =-=,

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

高中平面几何 叶中豪 学习要点 几何问题的转化 圆幂与根轴 P ’tolemy 定理及应用 几何变换及相似理论 位似及其应用 完全四边形与Miquel 点 垂足三角形与等角共轭 反演与配极,调和四边形 射影几何 复数法及重心坐标方法 例题和习题 1.四边形ABCD 中,AB=BC ,DE ⊥AB ,CD ⊥BC ,EF ⊥BC ,且 ()sin 1 tan sin 2 θθγγ?+=。求证:2EF=DE+DC 。(10081902.gsp )

2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B 弧段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。 (10092401-1. gsp) 3.设三角形ABC的Fermat点为R,连结AR,BR,CR,三角形ABR,BCR,ACR的九点圆心分别为D,E,F,则三角形DEF为正三角形。(10082602.gsp) 4.在△ABC中,已知∠A的角平分线和外角平分线分别交外接圆于D、E,点A关于D、E的对称点分别为F、G,△ADG和△AEF的外接圆交于A和另一点P。求证:AP//BC。(10092102.gsp)

5.圆O1和圆O2相交于A、B两点,P是直线AB上一点,过P作两圆作切线,分别切圆O1和圆O2于点C、D,又两圆的一条外公切线分别切圆O1和圆O2于点E,F。求证:AB、CE、DF共点。(10092201.gsp) 6.四边形ABCD中,M是AB边中点,且MC=MD,过C、D分别作BC、AD 的垂线,两条垂线交于P点,再作PQ⊥AB于Q。求证:∠PQC=∠PQD。 (10081601-26.gsp)

Fuzzy模糊数学-共5节-电子书---讲义

模糊数学 第1节模糊聚类分析 第2节模糊模式识别 第3节模糊相似优先比方法 第4节模糊综合评判 第5节模糊关系方程求解 在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。 根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。这样的集合论本身并无法处理具体的模糊概念。为处理这些模糊概念而进行的种种努力,催生了模糊数学。模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。 模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。 在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。 第1节模糊聚类分析 1. 模糊集的概念 对于一个普通的集合A,空间中任一元素x,要么x∈A,要么x?A,二者必居其一。这一特征可用一个函数表示为: A x x A x A ()= ∈ ?? ? ? 1 A(x)即为集合A的特征函数。将特征函数推广到模糊集,在普通集合中只取0、1两值推广到模糊集中为[0, 1]区间。 定义1 设X为全域,若A为X上取值[0, 1]的一个函数,则称A为模糊集。 如给5个同学的性格稳重程度打分,按百分制给分,再除以100,这样给定了一个从域X={x1 , x2 , x3 , x4, x5}到[0, 1]闭区间的映射。 x1:85分,即A(x1)=0.85 x2:75分,A(x2)=0.75 x3:98分,A(x3)=0.98 x4:30分,A(x4)=0.30 x5:60分,A(x5)=0.60

平面几何讲义-过伯祥

平面几何 图形集 2018·03 浙江奥数网专家 过伯祥 一. 基本图形与基本结论 用综合法解平几题,一般可先问:(每个平几题都有涉及的基本图形与基本结论!) 发现了什么基本图形?有什么基本结论可以利用么? 从(几十个)基本图形、基本结论入手: 1. (三角形的内切圆、旁切圆的性质) 基本图形:三角形的内切圆、旁切圆,及其在边上的切点. 基本结论一: 三角形内切圆的性质(可用a 、b 、c 表出与切点有关的诸线段.) 2AM =AB +AC +BC =2p ;2AG =AB +AC -BC ;GM =BC 等. [参练习1图] 基本结论二:三角形内切圆与旁切圆性质:若D 为内切圆的切点,F 为旁切圆的切点,则有BD =CF =CM =p -b ;S =p r ; S =(AB +AC -BC )A r ÷2等. [参练习1图]

2.(圆与弧、角,三角形五心的性质) 基 本图形:三角形及其外接圆,外心,内心. 基本结论三: 三角形角B 平分线与其外接圆的交点G 有性质: GI =GA =GC ; ∠BIC =90°+ 2 1 ∠A ;∠BOC =2∠A ;abc =4RS 等. 基本结论四:顺向全等的三角形保角,即对应边的夹角保持相等. 顺向全等的三角形(如△ADE 与△GOI )的定义: 两三角形全等;且对应顶点的排列顺序相同. 顺向全等三角形的判定:两三角形全等;各对应边的夹角同为锐角或钝角. 3. (圆与幂,证两线垂直的新法) 与圆的幂,与证线段垂直有关的 问题! 基本结论五: 一点关于一圆的幂: PR ·PC =PO 2-r 2. 基本结论六: 两线垂直的条件

几何 群论 讲义

A Short course in geometric group theory Notes for the ANU Workshop January/February1996 Walter D.Neumann and Michael Shapiro

2Geometric Group Theory 2Elementary properties of hyperbolic groups 1)Behaviour of geodesics and quasi-geodesics:progression in geodesic corridors. 2)Hyperbolicity is a quasi-isometry invariant. 3)Finite presentation,solubility of the word and conjugacy problems. 4)Finitely many conjugacy classes of torsion elements. 5)The Rips complex and. 6)The boundary. 3Isoperimetric inequalities 1)Area of a word via products of conjugates of relators. 2)Area of a word via V an Kampen diagrams. 3)Dehn’s functions and isoperimetric functions. 4)A group has soluble word problem if and only if it has a recursive Dehn’s function if and only if it has a sub-recursive Dehn’s function. 5)Equivalence relation and ordering for isoperimetric functions. 6)Consequently solubility of the word problem is a geometric property. 4The JSJ decomposition 1)Splittings of hyperbolic groups. 5Regular languages,automatic,bi-automatic and asynchronously automatic groups 1)De?nitions. 2)The fellow traveler property. 3)The seashell:?nite presentation,quadratic isoperimetric inequality and quadratic time word problem. 4)Closure properties. i)Free products. ii)Direct products. iii)Free factors. iv)Finite index subgroups. v)Finite index supergroups. vi)HNN extensions and free products with amalgamation over?nite subgroups. vii)Bi-automatic groups are closed under central quotients and direct factors. 5)Famous classes of automatic groups.

高中数学竞赛讲义_平面几何

1 平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学立体几何讲义一

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) 点A 在直线a 上。 点A 不在直线a 上。 点A 在平面α内。 点A 不在平面α内。 直线a 、b 交于A 点。 直线a 在平面α内。 直线a 与平面α无公共点。 直线a 与平面α交于点A 。 平面α、β相交于直线l 。 α(平面α外的直线)表示α或a A α=。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式: A A B B ααα∈? ??∈? 。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式:A l A αα ββ∈? ?=?∈? 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , B A α D C B A

∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈α β. 又∵α β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ?d ,如图1. ∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α. ∵A ,E ∈α,A ,E ∈a ,∴a ?α. 同理可证b ?α,c ?α. ∴a ,b ,c ,d 在同一平面α内. 2o 当四条直线中任何三条都不共点时,如图2. ∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α. 设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α. 又 H ,K ∈c ,∴c ?α. 同理可证d ?α. ∴a ,b ,c ,d 四条直线在同一平面α内. α b a d c G F E A 图1 a b c d α H K 图2 α D C B A l 例2 β M

高中数学立体几何之面面平行的判定与性质讲义及练习

面面平行的判定与性质 一、基本内容 1.面面平行的判定 文字 图形 几何符号 简称 判定定理1 ( 判定定理2 ] 2.面面平行的性质 文字 图形 " 几何符号 简称 性质定理1 , 性质定理2 [ 二、例题 1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 2.在正方体1111ABCD A B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点. * 求证:平面1D EF ∥平面BDG . A A B 1 C 1 C D 1 D G , F

F E " B A P C 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形, PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (Ⅰ)求证:EF BD ⊥; (Ⅱ)试确定点F 在线段AC 上的位置,使EF PBD 4. 在四棱锥P ABCD 中, AB CD AB AD 4,22,2AB AD CD PA ABCD 4PA / (Ⅰ)设平面 PAB 平面 PCD m =,求证: CD m BD ⊥PAC Q PB QC PAC 33PQ PB 在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠?, EB ⊥平面ABCD , EF//AB ,2AB=,=1EF ,=13BC ,且M 是BD 的中点. (Ⅰ)求证://EM 平面ADF ; (Ⅱ)在EB 上是否存在一点P ,使得CPD ∠最大 & 若存在,请求出CPD ∠的正切值;若不存在, 请说明理由. 6.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体NFEC 体积的最大值. ? 7 如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足 P D C B A C A F E B M D

100部物理名著 黄启怡

1 波动学《伯克利物理学教程》第三卷上、下册 2 场论(朗道) 3 场论与粒子物理学(上册)(李政道) 4 场论与粒子物理学(下册)(李政道) 5 非平衡态热力学和耗散结构(李如生) 6 分形物理学 7 辐射的量子统计性质(路易塞尔) 8 高等量子力学(第二版)(杨泽森) 9 高温辐射物理和量子辐射理论(李世昌) 10 孤子理论 11 古典力学(by goldston) 12 固体的电子结构 13 固体化学导论 14 固体物理导论(基泰尔) 15 固体物理习题详解(基泰尔) 16 固体物理学(黄昆) 17 光和物质的奇异性 18 光学(planck) 19 光学原理上册、下册(m.玻恩e.沃耳夫) 20 广义相对论(刘辽) 21 广义相对论dirac 22 广义相对论引论(俞允强) 23 规范场的量子理论导引 24 规范场论(胡瑶光) 25 规范场与群论、完全可积问题 26 计算物理学(张开明顾昌鑫) 27 结晶化学导论(第二版) 28 经典电动力学(jackson_vol1) 29 经典电动力学(jackson_vol2 30 经典电动力学习题答案(jackson_2nd) 31 经典和现代数学物理方程(陆振球) 32 空间群表 33 李代数李超代数及在物理学中的应用 34 理论电化学 35 理论物理基础(彭恒武徐锡中) 36 理论物理学基础教程丛书统计物理学(苏汝铿) 37 理论物理学基础教程丛书量子力学(苏汝铿) 38 理论物理学中的计算机模拟方法(w.heermann) 39 量子场论上册(c.依捷克森) 40 量子场论下册(c.依捷克森) 41 量子场论导引(上、下册)杨炳麟 42 量子电动力学(栗弗席茨)

相关主题