搜档网
当前位置:搜档网 › 石墨烯基橡胶复合材料的制备与性能

石墨烯基橡胶复合材料的制备与性能

石墨烯基橡胶复合材料的制备与性能
石墨烯基橡胶复合材料的制备与性能

还原氧化石墨烯-天然橡胶-丁腈橡胶复合材料的制备与性能

复合材料学报第35卷 第5期 5月 2018年Acta Materiae Com p ositae Sinica Vol .35No .5Ma y 2018 DOI :10.13801/j .cnki.fhclxb.20170814.004收稿日期:2017-05-19;录用日期:2017-07-16;网络出版时间:2017-08-14 15:39网络出版地址:htt p s ://doi.or g /10.13801/j .cnki.fhclxb.20170814.004基金项目:有机功能分子合成与应用教育部重点实验室开放基金(2016-KL -011)通讯作者:张玉红,博士,教授,硕士生导师,研究方向为有机-无机杂化材料与功能高分子 E -mail :zhan gy uhon g @https://www.sodocs.net/doc/7d2493524.html, 引用格式:方正平,殷俊,张玉红,等.还原氧化石墨烯/天然橡胶-丁腈橡胶复合材料的制备与性能[J ].复合材料学报,2018,35(5):1253-1259.FANG Zhen gp in g ,YIN Jun ,ZHANG Yuhon g ,et al.Manufacture and p ro p erties of reduced g ra p hene oxide /natural rubber -nitrile butadiene rubber com p osites [J ].Acta Materiae Com p ositae Sinica ,2018,35(5):1253-1259(in Chinese ).还原氧化石墨烯/天然橡胶- 丁腈橡胶复合材料的制备与性能 方正平,殷俊,张玉红*,何培新 (湖北大学化学化工学院功能材料绿色制备与应用教育部重点实验室有机化工新材料湖北省协同创新中心,武汉430062)摘 要: 采用水合肼还原氧化石墨烯(GO )制备了还原氧化石墨烯(RGO ) ,以RGO 作为分散介质加入到天然橡胶(NR )和丁腈橡胶(NBR )基体中,通过乳液共混法制备了RGO /NR -NBR 复合材料三采用FTIR 二Raman 二XRD 及SEM 等手段表征了RGO 的结构和形貌,测试结果表明,水合肼还原GO 效果较好,基本除去含氧官能团,同 时RGO 还保留了GO 的片层结构三RGO /NR -NBR 复合材料的SEM 测试结果显示,纳米尺寸的RGO 均匀分散 在橡胶基体中,且复合材料的拉伸断面粗糙程度显著增加三RGO /NR -NBR 复合材料的硫化性能测试结果表明,随RGO 的含量增加,复合材料的交联密度二最大扭矩及扭矩差均增大三RGO /NR -NBR 复合材料的力学性能随 RGO 含量的增加而提高,当RGO 含量为3.0%时,材料的拉伸强度二100%定伸强度和邵氏硬度分别提高了 65.7%二90.3%和21.1%,断裂伸长率降低了13.1%三关键词: 还原氧化石墨烯(RGO );天然橡胶(NR );丁腈橡胶(NBR );乳液共混;力学性能中图分类号: TQ333 文献标志码: A 文章编号: 1000-3851(2018)05-1253-07Manufacture and p ro p erties of reduced g ra p hene oxide /natural rubber -nitrile butadiene rubber com p osites FANG Zhen gp in g ,YIN j un ,ZHANG Yuhon g *,HE Peixin (Hubei Collaborative Innovation Center for Advanced Or g anic Chemical Materials ,Ministr y -of -Education Ke y Laborator y for the Green Pre p aration and A pp lication of Functional Materials ,Colle g e of Chemistr y and Chemical En g ineerin g ,Hubei Universit y ,Wuhan 430062,China )Abstract : Reduced g ra p hene oxide (RGO )was s y nthesized via chemical reduction of g ra p hene oxide (GO )with h y -drazine h y drate.B y addin g RGO in blendin g s y stem of the natural rubber (NR )and nitrile butadiene rubber (NBR ) ,the RGO /NR -NBR com p osites were p re p ared b y latex co -coa g ulation method.The structure and mor p holo gy of RGO were anal y zed b y FTIR ,Raman s p ectrosco py ,XRD and SEM.The results show that ox yg en functional g rou p can be removed b y the reduction of GO with h y drazine h y drate ,meanwhile ,RGO has maintained the monola y er structure of GO.SEM ima g es of RGO /NB -NBR com p osites indicate that RGO is homo g eneousl y dis p ersed in com - p osites and the stretchin g section of com p osites becomes rou g h obviousl y .Anal y sis on vulcanization characteristics indicate that the cross -linkin g densit y ,maximum tor q ue and tor q ue difference of the RGO /NR -NBR com p osite in -crease with the RGO mass fraction increasin g .The mechanical p ro p erties of RGO /NR -NBR com p sites have been g reatl y im p roved after the addition of RGO.When RGO /NR -NBR com p osites with 3.0%RGO ,the tensile stren g th ,tensile stren g th at 100%elon g ation and the shore A hardness of RGO /NR -NBR com p osites increase b y 65.7%,90.3%and 21.1%,res p ectivel y ;the elon g ation at break decreases b y 13.1%. Ke y words : reduced g ra p hene oxide (RGO );natural rubber (NR );nitrile butadiene rubber (NBR );latex co -coa g ula -tion ;mechanical p ro p erties 万方数据

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.sodocs.net/doc/7d2493524.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.sodocs.net/doc/7d2493524.html, or J.F.Che; e-mail:xiaoche@https://www.sodocs.net/doc/7d2493524.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.sodocs.net/doc/7d2493524.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

天然橡胶复合材料制备及力学性能研究

Vol .36,No .2,2014 收稿日期:2014-01-18 *基金项目:沈阳市科技攻关计划项目:高耐磨橡胶关键技术研究与开发(编号:F11-002-2-00)。作者简介:袁霞(1975-),女,辽宁辽阳人,实验师,研究方向:橡胶材料及化学性能研究。 前言 弹性体橡胶材料缺乏结晶能力,分子间作用力 小,自由体积大,因而就包括强度、硬度、耐磨及疲劳等性能综合而言,绝大多数橡胶不经过补强是无法应用的[ 1 ]。众所周知,磨耗性能是橡胶制品的一项重要指标,与材料失效和制品的使用安全性密切相关。提高橡胶制品耐磨性,可以带来相当可观的经济效益和社会效益。为了提高橡胶材料的物理机械性能,并满足加工性能要求,需要对其进行改性处理。其中物理改性是最常用的方法,在物理改性技术中,填充改性占有极其重要的地位。 国内外学者在这方面已经进行了大量的研究。一些橡胶复合材料中的无机粒子材料如SiO 2、TiO 2、ZnO 、Al 2O 3、白炭黑、云母以及稀土颗粒等对橡胶的 抗老化及强度等性能有一定的改善[ 2,3 ]。但对于橡胶 作为轮胎的重要指标-耐磨性能改善不是很理想,其中碳系材料作为橡胶填料具有较好耐磨性。碳纳米材料相对于传统碳材料如炭黑、膨胀石墨等更具有提高耐磨等性能的潜力。如S.Cantoumet 等人[ 4 ]制备了碳纳米管增强的天然橡胶复合材料,并确定碳纳米管质量分数对所得复合材料形变的影响。随着碳纳米管含量的增加,原刚度上升,大应变处产生的刚性增加。添加碳纳米管也使得拉伸强度和断裂伸长提高。Xiangwenzhou 等人[ 5 ]采用喷雾干燥法分别制备了碳纳米管和炭黑填充丁腈粉末橡胶复合材料。粉末颗粒细小圆整,平均直径为10~15μm 。实验结果,碳纳米管/丁苯橡胶复合材料的动态力学性能和基本力学性能优于炭黑/丁苯橡胶复合材和纯丁苯橡胶材料。断裂结构证实碳纳米管和橡胶 天然橡胶复合材料制备及力学性能研究* 袁霞1,许健2,安玉良1*,于万年2,韩德仁2 (1.沈阳理工大学材料学院,辽宁沈阳1101591;2.中橡集团沈阳橡胶研究设计院,辽宁沈阳110021) 摘要:分别以白炭黑、碳纳米管、碳微球及石墨烯为增强剂,对天然橡胶复合材料的制备以及其力学性能进行研究。采用传统机械混炼法将复合材料进行混合,通过平板硫化机进行交联制备天然橡胶复合材料。分别考察不同增强剂的含量对橡胶复合材料力学性能的影响,找到最佳的添加量。分析了不同种增强剂对复合材料力学性能的影响规律,对其增强效果进行对比说明。采用电子万能拉伸测试仪、邵氏硬度计对复合材料的拉伸性能和硬度性能进行分析,结果表明:复合材料的力学性能随着炭微球、碳纳米管和石墨烯含量的增加而增加,随着白炭黑的含量的增加而减少,碳纳米管和石墨烯的增强效果较好。 关键词:天然橡胶;白炭黑;石墨烯;碳纳米管;炭微球;改性;复合材料 中图分类号:TQ 332.5 文献标识码:A 文章编号:1001-0017(2014)02-0104-04 Preparation and Mechanical Properties of Natural Rubber Composites YUAN Xia,XU Jian,AN Yu-liang,YU Wan-nian and HAN De-ren ((1.College of Material Science and Engineering,Shenyang Ligong University,Shenyang 110168,China;2.Shenyang Institutes of Rubber and Design,Chinese Rubber Corporation,Shenyang 110021,China ) Abstract :The preparation and mechanical properties of natural rubber composite was carried out by using different kinds of enhancer such as white carbon black,carbon nanotube,carbon microsphere and https://www.sodocs.net/doc/7d2493524.html,ing traditional mechanical mixing method to mix the raw materials and then the composite was synthesized by heat condition on the plat sulfuration apparatus.The effects of the content of enhancer on mechanism perfor -mance of composite were investigated and then the optimized content of enhancer was obtained.The effects law of the content of enhancer on the ten -sile strength of composites was investigated.The general tensile tester and sclerometer were used to characterize the hardness and mechanism perfor -mance of the composites.The results showed the mechanism properties of composites became stronger with the increasing of the carbon microsphere,carbon nanotube and grapheme,and became weakness with the increasing of white carbon black.The carbon nanotube and grapheme were better en -hancers for the rubber. Key words :Natural rubber;white carbon black;grapheme;carbon nanotubes;carbon microsphere;modified;composites 袁霞等,天然橡胶复合材料制备及力学性能研究104··

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

石墨烯基复合材料的制备及吸波性能研究进展

石墨烯基复合材料的制备及吸波性能研究 进展 摘要随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得电磁波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、频带宽、强吸收的吸波材料。 石墨烯作为世界上最薄硬度最强的纳米材料,优点很多,例如石墨烯制成的片状材料中,厚度最薄,比表面积较大,具有超过金刚石的强度等,这些优点满足吸波材料的需求。石墨烯基复合材料在满足吸波材料基本要求的基础上又提升了材料吸收波的能力。 本文简单地介绍了吸波材料及石墨烯,综述概况了石墨烯基复合材料的研究现状,包括石墨烯复合材料制备方法、微观形貌以及复合材料的吸波性能,提出了石墨烯基复合吸波材料未来的发展方向。 关键词石墨烯基;吸波材料;纳米材料

Progress in Preparation and absorbing properties of graphene-based composites Abstract With the gigahertz (GHz) frequency range of the electromagnetic waves are widely used in wireless communications, such as electromagnetic interference, information leaks and other problems to be solved. In addition, military stealth technology in the field of electromagnetic and microwave guided missiles require such electromagnetic wave absorbing material is subjected to a sustained and widespread concern. Therefore, an urgent need to develop a thin, wide frequency band, a strong absorption of absorbing materials. Graphene as the strongest of the world's thinnest hardness nanomaterials, has many advantages, such as a sheet material made of graphene, the thinnest, large specific surface area, with more than a diamond of strength, these benefits meet absorbers It needs. Graphene-based composites on the basis of absorbing materials to meet the basic requirements but also enhance the ability of the material to absorb waves. This article briefly describes the absorbing material and graphene, graphene reviewed before the status quo based composite materials research, including graphene composite material preparation, morphology and absorbing properties of composites made of graphene-based composite

基于石墨烯的导电复合材料

基于石墨烯的导电复合材料进展 课程:聚合物结构与性能学生:张恩重学号:201110102626 自2004年英国曼彻斯特大学Geim教授首次制备出单层石墨烯[1](graphene)以来,其独特的性质就引起了科学家们的广泛关注。石墨烯是单层碳原子紧密堆积而形成的炭质新材料,单层石墨烯是以二维晶体结构存在,厚度只有0.335nm,是目前世界上最薄的二维材料,它是构筑其它维度碳质材料的基本单元,可以包裹起来,形成零维的富勒烯,卷起来形成一维的碳纳米管,层层堆积形成三维石墨,如图1。石墨烯是一种没有能隙的半导体材料,具有比单晶硅高100倍左右的载流子迁移率(2×105cm(V·s))[2]在室温下具有微米级自由程和大的相干长度,因此它是纳米电路的理想材料。另外,石墨烯还具有良好的导热性(导热率为5000W(m·K)[3]、高强度高达130GPa[4]、高透明度(对自然光的吸收率只有2.3%左右)和超大的比表面积(2630m2/g)[5]。由于石墨烯具有上述优异的性能,使其有望在微电子、能源、信息材料和生物医药等领域具有重大的应用前景。 图1 2D结构的石墨烯片层演变成C60、碳纳米管和石墨的示意图 目前制约石墨烯和其复合材料发展的两个主要因素是:一、具有单层结构石

墨烯的大规模制备;二、石墨烯的可控功能化。本文将从聚合物复合导电材料、聚合物复合材料导电机理,石墨烯的制备和石墨烯聚合物复合导电材料的性能研究进展等方面介绍基于石墨烯的导电复合材料,并了解其未来研究领域。 导电高分子材料 近二十年,尤其导电高分子获得诺贝尔奖以来,导电高分子材料作为高分子材料发展的一个新领域,其研究与开发已成为功能高分子材料研究的一个重要方面。按导电机理的不同,导电高分子材料可以分为复合型和结构型两种:复合型导电高分子材料是利用向高分子材料中加入各种导电填料来实现其导电能力;结构型导电高分子材料是改变高分子结构使高分子自身具有导电性来实现其导电能力[6]。本文主要介绍以石墨烯为填料的复合型导电高分子材料。 复合型导电高分子材料 复合型导电高分子材料是指将各种导电填料和高分子材料通过不同的复合方法制备的具有导电功能的多相复合材料。这类材料既具有导电功能,同时又保持高分子材料的特点,并且成本较低,因而得到了广泛的应用。根据导电填料的不同它又可分为碳基材料填充型及金属材料填充型。 1、碳基材料填充型 碳基材料主要包括石墨烯、足球烯、碳纳米管、石墨。碳基材料填填充型导电材料是目前复合型导电材料中应用最广泛的一种,应用最多的碳基材料是石墨烯、碳纳米管和石墨,它的优点有以下几个方面:一、碳基材料填价格低廉,实用性强;二、碳基材料填能根据不同的导电要求有较大的选择余地;三是导电持久稳定[7]。 2、金属材料填充型 金属材料填充型复合导电材料的导电性能优良,比传统金属材料轻且易成型加工,是具有潜在优势的新型导电材料和屏蔽材料。近年来,金属纤维填充材料发展迅速。 复合型导电高分子材料的导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态[8]。根据逾渗理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后就会形成连续的导

相关主题