搜档网
当前位置:搜档网 › 冰的比熔化热的测量实验报告

冰的比熔化热的测量实验报告

冰的比熔化热的测量实验报告
冰的比熔化热的测量实验报告

大学物理实验报告

课程名称:大学物理实验

实验名称:冰的熔解热的测量

冰的熔解热的测量

一、 实验项目名称:冰的熔解热的测量 二、 实验目的

1.理解熔解热的物理意义,掌握用混合量热法测定冰的熔解热.

2.学会用图解法估计和消除系统散热损失的修正方法.

三、 实验原理

单位质量的固体物质在熔点时从固态全部变成液态所需的热量,称为该物质的比熔解热,一般用L 来表示。

实验时将质量为m 1克0℃的冰投入盛有m 2克T 1℃水的量热器内筒中,设冰全部熔解为水后平衡温度为T 2℃,保温杯、搅拌器的质量分别为m 3、 m 4,其比热容分别为C 1、C 2和水的比热容为C 0。根据混合量热法的原理,冰全部熔解为同温度(0℃)的水并从0℃升到T 2℃过程中所吸收的热量等于其余部分(水m 1、保温杯m 3、搅拌器m 4)从温度T 1℃降到T 2℃时所放出的热量,有

(1)

冰的熔解热的实验公式为

(2)

式中水的比热容C 0=4.18×103J/kg ℃。

本实验“热学系统”依据混合量热法测量冰的熔解热,必须在系统与外界绝热的条件下进行实验。为了满足此条件,从实验装置、测量方法和实验操作等方面尽量减少系统与外界的热交换。由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。因此,要适当地选择参数进行散热修正。牛顿冷却定律告诉我们,一个环境的温度T 如果略高于环境温度T 0(两者的温度差不超过10℃),系统就会散失热量,散热速率与温度差成正比,用数学

形式表示为

当时(即直线围成的两

块面积近似相等),系统的散热与吸热相互抵消,就可以将系统很好地近似为一个孤立系统。

203142121120()()m c m c m c T T m L mT C ++-=+20314212201

1

()()L m c m c m c T T T C m =

++--0()dQ

K T T dt =-A B S S

四、实验仪器

保温杯、搅拌器、温度计、天平、吸水纸、水、冰、烧杯、取冰夹、秒表。

五、实验内容及步骤

1.用天平测量保温杯、搅拌器、温度计整体的质量为M1(g),记录室温为T(℃)。

2.在保温杯加入适量水后,测得整体的质量为M2(g),此时温度计的稳定为T1(℃)。

3.记录温度和时间的关系,每隔10—15秒记录一次温度。最后再次称取冰熔解后的质量为M3(g)。

4.根据数据绘制T—t曲线,公式L=m2C0(T1-T2)/m1-T2C0处理数据。

注意事项:

1.在实验过程中,应不断对系统加以搅拌,以使系统中各处温度均匀,并加快冰的溶解。

2.放冰时要轻而快,以免将水溅出。

3.测量中温度记的水银泡不能接触冰块,也不能保温杯壁。

六、数据记录及处理

1.称取的质量

2.记录温度和时间的关系,并绘制T—t曲线

时间(秒)温度(℃)

033

1522

3017

4514

6013.1

7516

9017

10517

12017

13517.2

15017.3

16517.5

18018

19518

用坐标纸绘图修正

数据处理:作图得T1=33℃, T2=13℃

m1=11.6g , m2=46g , C0=4.18×103 J/(kg*℃)

代入L= m2×C0×(T1-T2)/m1﹣T2×C0=2.77×105 J/(kg·℃)理论值L=3.35×105 J/(kg·℃)

相对误差为17.31%

七、实验结果分析与小结

误差分析

冰的熔解热理论值为3.35×105 J/(kg·℃),实验值和理论值存在一定误差,相对误差为17.31%,我认为有以下几个原因:

1.系统不是一个严格的孤立系统,且操作不规范,与外界发生热交换。实验仪器的保温条件不够,造成的散热误差。

2. 投冰前未将冰拭干或者用手触摸冰造成操作误差。

3. 将水倒入量热器后未及时测量水的温度;倒入冰前测量的水温未达到稳定值;倒入冰后未及时读出温度值。

4. 每个时间间隔内所读的温度值有人为的读数误差。实验次数少所造成的偶然误差。

5.搅拌不够均匀,引起的误差。实验过程中要求温度混合时刻均匀,而实际中很难保证搅拌足够均匀。

6.作图通过计算格数的方法来确定初、末温度的修正值,这样做误差很大。

实验感想

通过这次实验,我学习了冰的熔解热的测量的相关原理,也受益匪浅。我们做实验并不是只是为了测量数据,而是为了学会实验的方法,处理数据的方法,提高我们的动手能力和思考能力。

当然在实验中也遇到了很多问题。比如测量时动作不够迅速,导致数据的不准确。搅拌时搅拌太快,导致不均匀。和同伴合作时不够

默契,造成手忙脚乱。

老师也耐心的给我们一步一步分析原理,讲解注意事项。比如实验中的一些小技巧,比如根据牛顿冷却定律,在温差不太大时,散热速度(热量损失率)与温度差成正比,所以实验的初始温度不宜过大,一般高于环境温度10摄氏度左右为宜,同时加水量也应注意,一般加入超过量筒的水量为宜。以及冰的质量和水的质量的关系、散热修正法的使用。读数时采取倒数5秒使读数更加准确。

我们可以在实验中,对书上说介绍的知识产生更加直观,更加感性的认识。理论与实践相结合让我更好的理解了书中的内容,领略了物理理论的真谛。

八、附上原始数据

溶解热的测定实验报告

溶解热测定 姓名 学号 班级 实验日期 1 实验目的 (1)了解电热补偿法测定热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。 (3)掌握用微机采集数据、处理数据的实验方法和实验技术。 2 实验原理 溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。 积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用s Q 表示。 微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1 2n n Q ???? ????表示。 冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。 积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。 微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应, 以21n n Q ???? ????或2 0n s n Q ???? ????表示。 它们之间关系可表示为: s Q n Q =2 令021n n n = 2 1002n s n s n Q n n Q Q ???? ????+???? ????= ()()0201n s n s d Q Q Q -= 积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热 (即OC )。显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

混合法测冰的熔化热

实验三 混合法测冰的熔化热 【实验简介】 温度测量和量热技术是热学实验的中最基本问题。本实验主要学习利用量热学的实验方法混合法测量冰的熔化热。量热学是以热力学第一定律为理论基础的,它所研究的范围就是如何计量物质系统随温度变化、相变、化学反应等吸收和放出的热量。量热学的常用实验方法有混合法、稳流法、冷却法、潜热法、电热法等。本实验应用混合发测冰的熔化热,使用的基本仪器为量热器。由于实验过程中量热器不可避免地要参与外界环境的热交换而散失对热量,因此,本实验采用牛顿冷却定理克服和消除热量散失对实验的影响,以减小实验系统误差。 詹姆斯·普雷斯科特·焦耳——生平简介(1818-1889) 焦耳是英国著名物理学家,1818年12月24日生于英国曼彻斯特。他研究 的实验成果有焦耳-楞次定律,焦耳气体自由膨胀实验、焦耳-汤姆孙效应、焦耳热 功当量实验、焦耳热等。焦耳于1840~1850年进行的热功当量实验为热力学第 一定律的科学表述奠定了基础。 1889年10月11日焦耳在塞尔逝世,终年71岁。 为了纪念他对科学发展的贡献,国际计量大会将能量、功、热量的单位命名为焦耳。 【实验目的】 1、掌握基本的量热方法——混合法; 2、测定冰的熔化热; 3、学习消除系统与外界热交换影响量热的方法。 【实验仪器和用具】 量热器(BDI-302A 型),数字温度计(SN2202或DM-T )或水银温度计(0~50℃,0.1℃)、烧杯、电子天平(YJ6601)、冰柜、或恒温数显水浴锅、保温桶、小量筒(10ml,0.5ml )、电子秒表或机械秒表等。 图

【实验原理】 1、热平衡方程式 在一定压强下,固体发生熔化时的温度称为熔化温度或熔点,单位质量的固态物质在熔点时完全 熔化为同温度的液态物质所需要吸收的热量称为熔 化热,用L 表示, 单位为J Kg 或J g 。 将质量m ,温度为0℃的冰块置入量热器内, 与质量为0m ,温度为0t 的水相混合,设量热器内系 统达到热平衡时温度为1t 。若忽略量热器与外界的 热交换,根据热平衡原理可知,冰块熔化成水并升 温吸热与水和内筒等的降温放热相等。即: 010*******()(-)mL mC t m C m C m C t t +=++ (3-1) 解得冰的熔化热为: 00112201011()(-)-L m C m C m C t t C t m = ++ (3-2) 上式中:m 为冰的质量,0m 为量热器内筒中所取温水的质量,00 4.18()C J g C =?为水的比热,1m ,1C 为量热器内筒及搅拌器的质量和比热(二者同材料), 22m C 是温度计插入水中部分的热容(对水银温度计22 1.9m C V =,V 数值上等于温度计插入水中体积的毫升数,单位为o J C ; 对数字温度计的22m C 可不计。),0t ,1t 为投冰前、后系统的平衡温度。实验中可测出m , 0m ,1m ,22m C ,0t ,1t 的值,0C ,1C 为已知量,故可以求出L 的值。 2、初温与末温的修正 上述结论是在假定冰熔化过程中,系统与外界没有热交换的条件。实际上,只要有温度差异就必然有热交换的存在。因此必须考虑如何防止或进行修正热散失的影响。 第一,冰块在投入量热器水中之前要吸收热量,这部分热量不容易修正,应尽量缩短投放时间。第二,引起测量误差最大的原因是0t ,1t 这两个温度值,这是由于混合过程中量热器与环境有热交换。若0t 大于环境温度θ,1t 小于θ,则混合过程中,系统对外先是放热,后是吸热,至使温度计读出的初温0t 和混合温度1t 都与无热交换时的初温度和混合温度有差异,因此,必须对0t 和1t 进行修正。修正方法用图解法进行。考察投冰前、冰融化过程和冰全部融化后持续的三个阶段内的水温随时间的变化情况,作出时间~温度曲线(ABCDE )。 实验时,从投冰前5分钟开始,每30秒测一次水温,直至冰完全熔化后5分钟为止,中间测时、测温不间断。将记录的时间~温度,在二维坐标上先描出点,再将点连成连续的曲线ABCDE ,如图3-6示:图中AB 为投冰前的放热线(近似为直线),BCD 为熔化时的曲线,DE 为熔化后的吸热线(近似为直线),B 、D 两点为为温度计实测的投冰前后的系统初、末温度。 下面讨论对曲线ABCDE 的处理方法,可以采取两种方法。 方法一、在BCD 段找出与室温θ对应的点C ,过C 作一条垂直于时间轴的垂线FG ,分别与AB 、ED 的延长线交于F 、G 。在冰熔化的过程中,当水温高于室温前(BC 段),量热器 一直在放热,故混合前的理论初温值应该低于投冰前的测量温度值(B 点值);同理,水温低于室温后(CD 段),量热器从环境吸热,故熔化完的理论温度要低于温度计显示的最低温度值(D 点值)。如果图中BCF ,CDG 两部分的面积近似相等(一般需要多次实验改变参数,才可以达到较好的近似),根据牛 电子天平图3-5 图3-6

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

测定冰的溶解热

测定冰的熔解热 【实验简介】 温度测量和量热技术是热学实验的中最基本问题。本实验主要学习利用量热学的实验方法混合法测量冰的熔化热。量热学是以热力学第一定律为理论基础的,它所研究的范围就是如何计量物质系统随温度变化、相变、化学反应等吸收和放出的热量。量热学的常用实验方法有混合法、稳流法、冷却法、潜热法、电热法等。本实验应用混合发测冰的熔化热,使用的基本仪器为量热器。由于实验过程中量热器不可避免地要参与外界环境的热交换而散失对热量,因此,本实验采用牛顿冷却定理克服和消除热量散失对实验的影响,以减小实验系统误差。 一、实验目的: 1、理解混合法测量冰的熔解热的原理; 2、掌握用混合法测定冰的熔解热的方法; 3、学会修正散热的粗略方法。 二、实验仪器和用具: 量热器、数字温度计、电子天平、冰柜、恒温水浴锅、保温桶、秒表、干擦布。 三、实验原理: 在一定压强下,固体发生熔化时的温度称为熔化温度或熔点,单位质量的固态物质在熔点时完全熔化为同温度的液态物质所需要吸收的热量称为熔解热,用L 表示, 单位为 J Kg 或J g 。 1、熔解热的计算 若将质量为m ,温度为0 0C 的冰块置入量热器内,与质量为0m ,温度为0t 的水相混合,当量热器内系统达到热平衡时温度为1t 。设量热器内筒和搅拌器的材料相同,两者总质量为 1m ,比热容为1C 。若忽略量热器与外界的热交换,根据热平衡原理可知,冰块熔化成水并 升温吸热与水、内筒以及搅拌器的降温放热相等。即: 01001101()()mL mC t m C mC t t +=+- (1) 解得冰的熔解热为: 001101011 ()(-)L m C m C t t C t m = +- (2) 上式中:)/(18.40C g J C o ?=为水的比热容,1m ,1C 为量热器内筒及搅拌器的质量和比热容(二者同材料),0t 、1t 为冰熔化前后系统处在热平衡时的温度。01,C C 为已知量,实验中可测出0101,,,,m m m t t 的值,故可以求出冰的熔解热L 的值。

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

冰的熔化热-实验报告

XX大学物理学院实验报告 实验名称:测定冰的熔化热 学生姓名:XXX 学号:XX 实验日期:20XX年XX月XX日 一、数据及处理 3. 投入冰的时刻:t=250s 冰的温度:-13.0℃ 室温:26.1℃ 5. 计算得到冰的熔化热L=3.22x10J/kg 6. T-t图像:

7. 从图中得到的信息: 水的初始温度(承装水时):39.5℃; 投入冰前水温下降速度:0.1℃/30s; 投入冰时水温:38.7℃; 冰完全融化后的温度:22.1℃; 系统达到稳定状态耗时:约100s; 投入冰时温度比室温高12.6℃,稳定后温度比室温低4℃,其比值为3.15; 二、分析与讨论 1. 误差的主要来源: 误差主要来源于搅拌过程和转移过程之中水的溅出,包括溅出到桌上与溅出到外筒里,这将直接影响冰的测量质量,由于在计算式中,冰的质量位于分母,故放大了绝对误差。因此,在失败(误差过大)一次后,采取连同外筒一起测量质量的方法,防止在取出内筒过程中造成的溅出,同时测量包括溅入外筒的水。 2. 补偿法的意义: 理论公式的适用范围是有限的,在相当多的实验情况下,不可避免的会出现超出适用范围的因素,例如本实验中的对环境吸放热,无法实现完全绝热的实验条件,带来系统的偏差。补偿法可以在一定程度上减小这些不可抗因素的影响,使作用效果相反的两种因素相互抵消以维持实验结果,从而减小实验误差。在其他的实验中,例如迈克尔逊干涉仪中,也存在着大量的补偿法应用。 3. 测量值偏小的原因: (1)取出冰块和将冰块擦干时不可避免的会与外界,特别是加持、擦拭工具间相互传热,甚至与手掌间接传热,造成温度上升,使熔化热计算值偏低; (2)读取系统热平衡温度时,由于外界导热的影响以及温度计示数的延迟使温度读取值偏大,导致熔化热计算值偏低; (3)拟合过程采取直线拟合,与原本的二次拟合存在差异,导致起始温度较推断值更高,使熔化热计算值偏低。 三、收获与感想 (1)投入冰前与最终稳定后,温度的变化较为缓慢,测量数据点可以选择更疏一些。(2)投入冰后到稳定前,温度变化非常剧烈,测量数据点可以选择更密一些。 (3)投入冰与记录时间、温度难以同时进行,故可以根据投入冰前的温度变化线性推出投入冰时刻的系统温度,以获得准确值,在其他热学实验中也可以应用。 (4)在量程允许的情况下,将整个量热器称量质量,而不取出内筒,减少必要的操作步骤,减少水的溅出带来的误差。 (5)初步了解并使用了补偿法,为以后在测电阻、迈克尔逊干涉仪等实验增加经验。

冰熔化实验报告

篇一:冰熔化实验报告 冰熔化实验报告 实验目的: 观察冰的熔化的过程,知道晶体的熔化特点,是吸热的过程。实验器材: 温度计,铁架台,石棉网,大烧杯,酒精灯,冰,秒表(或手表)实验步骤: 1、把装有冰块的大烧杯放在铁架台的石棉网上。 2、把温度计用铁架台上的架子固定,且温度计不接触大烧杯的底和壁。 3、把酒精灯放在石棉网下面。 4、点燃酒精灯开始加热大烧杯。 5、每隔半分钟记录一次温度计的读数。并记录下来。 6、根据记录的数据,在下表中做温度--时间图线。实验表格: 1实验结论: 实验延伸: 1.是不是所有物质的熔化都和冰的熔化一样具有相同的情况? 2.水凝固成冰的时的温度--时间图线又是怎样的? 2篇二:冰的熔解热的测定实验报告 实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 a 和一个已知热容的系统 b 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 c(c=a+b).这样 a (或 b)所放出的热量,全部为 b(或 a)所吸收。因为已知热容的系统在实验过程中所传递的热量 q,是可以由其温度的改变△t 和热容 c 计算出来,即 q = c△t ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 q放,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 q吸。 因为是孤立系统,则有q放= q吸(1) 设混合前实验系统的温度为t1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为 m(冰的温度和冰的熔点均认为是0℃,设为t0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为t℃(此时应低于室温10℃左右),冰的溶解热由l表示,根据(1)式有 ml+m c1(t- t0)=(m1 c1+ m2 c2+ m3 c3)(t1- t) 因tr=0℃,所以冰的溶解热为: l? (m1c1?m2c2?m3c3)(t1?t) ?tc1

冰的熔解热的测定实验报告

学院:信息工程学院 班级:通信152 学号:6102215051 姓名:潘鑫华 实验时间:第六周星期二下午八九十节

T T' θ J K T 1 T 1' 实验名称 测定冰的熔解热 一、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 二、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 A 和一个已知热容的系统 B 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 C (C =A +B ).这样 A (或 B )所放出的热量,全部为 B (或 A )所吸收。因为已知热容的系统在实验过程中所传递的热量 Q ,是可以由其温度的改变 △T 和热容 C 计算出来,即 Q = C △T ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 Q 放 ,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 Q 吸。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T 1,其中热水质量为m2(比热容为c0)。冰的质量为m1(冰的温度和冰的熔点均认为是0℃,设为T 0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T ℃(此时应低于室温10℃左右),冰的溶解热由L 表示,根据(1)式有 ML +m1c0(T - T 0)=m2c0(T 1- T ) 因T r=0℃,所以冰的溶解热为: L=[m2c0(T1-T2)-T2c0m1]/m1 (2) 综上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此整个实验在量热器内进行,但由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。所以当实验过程中系统与外界的热量交换不能忽略

物化实验报告:溶解热的测定-KCl、KNO3

华南师范大学实验报告 课程名称 物理化学实验 实验项目 溶解热的测定 【实验目的】 1.用量热计简单测定硝酸钾在水中的溶解热。 2.掌握贝克曼温度计的调节和使用。 【实验原理】 盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。溶解热是这两种热效应的总和。最终是吸热还是放热,则由这两种热效应的相对大小来决定。 本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。 T C C W C W W M H m sol ??++-=?][322111 )( (3.1) 式中: m Sol H ?为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1; 1W 为溶质的质量,单位:kg ; T ?为溶解过程的真实温差,单位:K ; 2W 为水的质量,单位:kg ; M 为溶质的摩尔质量,单位:kg ·mo1–1 ; 21C C 、分别为溶质和水的比热,单位:11--?K kg kJ ; 度升 3C 为量热计的热容(指除溶液外,使体系温高1℃所需要的热量) ,单位:kJ 。 实验测得W 1、W 2、ΔT 及量热计的热容后,即 可按 图3.1溶解热测定装配图 1.磁力搅拌器; 2.搅拌磁子; 3.杜瓦瓶; 4.漏斗; 5.传感器; 6.SWC —IIC 数字贝克曼温度仪.

(3.1)式算出熔解热m Sol H 。 【仪器与药品 】 溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.) 【实验步骤】 1.量热计热容的测定: 本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。然后用普通水银温度计测出量热计中溶液的温度,倒掉溶液。 2.硝酸钾溶解热的测定:用硝酸钾代替氯化钾重复上述实验,区别是称取硝酸钾的质量为7克(准确至0.01g)。完成一次实验后,溶液不倒掉。同样连续读数8次后,再向溶液中加入7克硝酸钾,再读取12次温度完成第二次测量。实验结束,倒掉溶液 【数据的处理】 1.各样品溶解前后温差的雷诺校正图

测定冰的熔化热-实验报告

测定冰的熔化热实验报告(一)实验数据及处理 1.第一次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.69 g m0=164.16 g T2-T3=15.2℃

2.第二次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.97g m0=171.13g T2-T3=13.8℃

(T2-θ):(θ-T3)= 10.1 :3.7 (二)分析与讨论 1.从实测数据看,如果实验全过程中散热、吸热没有达到补偿,冰的熔化热结果不一定偏离“合理”的数据范围,这说明散热或吸热并不是该系统的主要实验误差来源。那么,本实验的主要误差来源是什么? 由熔化热的公式看,对计算结果影响最大的量是m,即冰的质量。由于采用间接测量法,因此冰的质量是比较容易产生误差的,比如投冰时溅出水,就会对

算出的冰的质量产生影响,从而产生误差。 2.通过实验去体会粗略修正散热的方法——补偿法在本实验中的应用对学习做实验的意义。 在实验系统不能很好地保证绝热时,用补偿法修正系统误差是一个办法,也是一个好的思路。在这次实验中,我们应该反复摸索,对各物理参量进行合理的选择和调整,使散热和吸热基本达到补偿。 然而,实验结果证实量热器是一个很好的绝热系统,因此,在分析系统误差来源时,应实事求是地、定量地进行分析,不能将误差的来源归结为系统的散热、吸热未能达到补偿。 3.在本实验室提供的条件下,实测熔化热的结果通常小于文献值 L=3.34×105J/Kg,你能分析是什么原因吗? 本实验未计算温度计插入水中的部分带来的影响。

溶解热实验报告

溶解热的测定 名字:程伊伊学号:06 班级:药学日期:2016.3.15 (一)实验原理 1.溶解热概念溶质溶解于溶剂的过程由溶质晶格破坏、电离的吸热过程和溶质溶剂化的放热过程组成,总的热效应取决于两者之和,可能是吸热的,也可能是放热的。在一定温度和压力下,热效应的大小与溶质和溶剂的相对量有关,例如硝酸钾溶解在水中的热效应(吸热)随溶剂水的量增加而增加。 2.电热补偿法原理硝酸钾溶解于水的过程是吸热过程,反应热可以用电热补偿法来进行测定。其基本做法是,在反应前确定系统的温度,在反应中,给予系统电加热,直到反应结束后,系统的温度恢复到起始状态,计算电热量即为反应热。 △Hm=Cp*△T1*M/m Cp=Q/△T2 Q=IVt (二)实验步骤 (1)在分析天平上称取1份重量为8.2345g的硝酸钾样品,放在干燥器中待用。 (2)将蒸馏水加入干燥的保温杯中,同时记录水温,作为实验温度。 (3)插上电源,搭好装置,开启磁力搅拌器,调整转速。观察数字贝克曼温度计,记录初始温度T1,每1min观察1次,记录3次,直至恒温。 (4)将预先称好的硝酸钾8.2345g迅速、全部倒入保温杯中,盖好瓶盖,磁力搅拌器均匀地搅拌,由于硝酸钾溶解为吸热过程,溶解时温度下降,每30s读取温度一次,直至温度不变,即为T2。T2每1min观察1次,记录3次。 (5)开启电源,接上加热器,调整功率(电压约10V,电流约1A),准确记录电流电压值。当贝克曼温度计度数上升0.5℃时,记作标记温度,并按下秒表开始计时。 (6)计时的同时,观察温度上升,直至接近T1,取下加热器,记录温度T3,每1min 观察1次,记录3次。 (三)数据记录和处理 实验温度的测定 通电时间:3min14s 电流:1.435A 电压:10.46V 实验温度:13.92℃ 每1min记录1次第1次第2次第3次 T1 13.93 13.93 13.93 T2 11.16 11.14 11.13 T3 14.18 14.22 14.26

溶解热的测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶解热的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxxx 指导老师:李旭老师 实验日期: 2013-11-19 湘南学院化学与生命科学系

一、实验目的 1、掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。 2、用电热补偿法测定KNO3在不同浓度水溶液中的积分溶解热。 3、用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热。 二、实验原理 1、在热化学中,关于溶解过程的热效应,有下列几个基本概念。 溶解热:在恒温恒压下,n 2mol 溶质溶于n 1mol 溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。 积分溶解热:在恒温恒压下,1mol 溶质溶于n 0mol 溶剂中产生的热效应,用Qs 表示。 微分溶解热:在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以 表示简写为 。 冲淡热:在恒温恒压下,1mol 溶剂加到某浓度的溶液中使之冲淡所产生的热效应。冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。 积分冲淡热:在恒温恒压下,把原含1mol 溶质及n 01mol 溶剂的溶液冲淡到含溶剂为n 02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以Qd 表示。 微分冲淡热 在恒温恒压下,1mol 溶剂加入某一确定浓度的无限量的溶液中产生的热效应,以 可以简写为 。 2、积分溶解热QS 可由实验直接测定,其它三种热效应则通过QS -n 0曲线求得。 设纯溶剂和纯溶质的摩尔焓分别为m H (1)和Hm ? (2),当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为H 1,m 和H 2,m ,对于由n 1mol 溶剂和n 2mol 溶质组成的体系,在溶解前体系总焓为H 。 H =n1Hm(1)+n2Hm(2) (1) 设溶液的焓为H ′, H ′=n1H1,m +n2H2,m (2) 此混合(即溶解)过程的焓变为 H H H nA Hm A H*m A nB Hm B H*m B ??==+(,,)(,,) nA Hm A nB Hm B =?+?,, 式中,Hm ?,A 即为该浓度溶液的微分稀释热,ΔHm ,B 即为该浓度溶液的1,,2n p T n Q ???? ????1 2n n Q ???? ????2,,2n p T n Q ???? ????22n n Q ???? ????

冰的熔解热实验报告

大学物理实验报告 课程名称:物理设计类实验 实验名称:冰的熔解热的测定 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:第八周星期三下午十五时四十五分开始

关。 由此可知,用混合量热法测冰的熔解热时,应尽量让室温处在水的初、终温之间,使系统向外界吸、放的热量基本抵消。在实验过程中,从混合前一段时间到混合后一段时间均记下温度和时间的关系,绘制T-t 曲线,如图(1)中的实线部分。图中T1约为B 点对应的水的初温,T2约为C点对应的系统平衡温度,我们用眼睛估寻一个温度,由它对应的G 点绘制一条EGF 直线平行于T 轴,它与BGC 线组成两个小面积BGE 和CGF。估寻的原则是这两个小面积相等。 图(1)中由T1 降温到θ'过程是系统向环境散热: q 散= ?t t B G k ( T - θ ) d t 温度从θ'降到T2 过程是系统从环境吸热: q 吸= ?t t G c k ( T - θ ) d t q吸和q散正是上述两个小面积,他们相等时便使交换的总热量正好为零。应该指出,由于冰块越溶越小,表面积也变小,交换热量速度变慢,所以T-t 曲线上的BC 段明显地不是直线,其斜率越来越小。 本实验对温度的测量采用精度为1℃的水银温度计和数字万用表测温档。

时间(s)120 135 150 165 180 195 210 温度(摄氏度)12 11.8 11.6 11.4 11.2 11.2 11.2 温度大概稳定后 时间(s)240 300 360 420 480 540 温度(摄氏度)11.2 11.4 11.6 11.8 12 12 由数据可以作图: 得T1=31.8摄氏度,T2=10.6摄氏度。 由公式L=T2×T0(T1?T2)?T1T2T0 T1

【免费下载】溶解热的测定实验报告 南昌大学

南昌大学物理化学实验 溶解热的测定实验报告一、 实验目的 1 .了解电热补偿法测定热效应的基本原理及仪器使用。 2.测定硝酸钾在水中的积分溶解热,并用作图法求得其微分稀释热、积分稀释热和微分溶解热。 二、 基本原理1.物质溶解于溶剂过程的热效应称为溶解热。它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。前者是1mol 溶质溶解在n 0mol 溶剂中时所产生的热效应,以Q s 表示。后者是1mol 溶质溶解在无限量某一定浓度溶液中时所产生的热效应,即。 溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。前者是把原含1mol 溶质和n 01mol 溶剂的溶液稀释到含溶剂n 02mol 时所产生的热效应,以Q d 表示,显然。后者是1mol 溶剂加到无限量某一定浓度溶液中时所产生的热效应,即。 2.积分溶解热由实验直接测定,其它三种热效应则需通过作图来求:设纯溶剂、纯溶质的摩尔焓分别为H *m ,A 和H *m ,B ,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为H m ,A 和H m ,B ,若由n A mol 溶剂和n B mol 溶质混合形成溶液,则混合前的总焓为 H = n A H *m ,A + n B H *m ,B (1)混合后的总焓为 H ? = n A H m ,A + n B H m ,B (2)此混合(即溶解)过程的焓变为 ΔH = H ? – H = n A (H m ,A – H *m ,A )+ n B (H m ,B – H *m ,B ) = n A ΔH m ,A + n B ΔH m ,B (3)根据定义,ΔH m ,A 即为该浓度溶液的微分稀释热,ΔH m ,B 即为该浓度溶液的微分溶解热,积分溶解热则为: 故在Q s ~ n 0图上,某点切线的斜率即为该浓度溶液的微分稀释热,截距即为该浓度溶液的微分溶解热。如图所示:、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

【清华】溶解热的测定--2006030027

溶解热的测定 吴大维 2006030027 生64 同组实验者:王若蛟 实验日期:2008年5月16日 提交报告日期:2008年5月30日 指导教师:张连庆 1 引言 1.1 实验目的 1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。 2.掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。 3.复习和掌握常用的测温技术。 1.2 实验原理 1.2.1 基本实验原理 物质溶于溶剂中,一般伴随有热效应的发生。盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。 在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。 溶解热 在恒温恒压下,溶质B 溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用sol H ?表示。 摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用sol m H ?表示。 sol sol m B H H n ??= (1) 式中, B n 为溶解于溶剂A 中的溶质B 的物质的量。 摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,( )A sol T P n B H n ???表示,简写为()A sol n B H n ???。 稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。 摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ?表示。 21dil m sol m sol m H H H ?=?-? (2) 式中,2sol m H ?、1sol m H ?为两种浓度的摩尔积分溶解热。

大学物理实验讲义(冰的熔化热) (1)

混合法测冰的熔化热 一、实验目的: 1、掌握基本的量热方法——混合法; 2、测定冰的熔化热; 3、学习消除系统与外界热交换影响量热的方法。 二、实验仪器和用具: 量热器、数字温度计、烧杯、电子天平、冰柜、恒温水浴锅、保温桶、秒表、毛巾。 三、实验原理: 在一定压强下,固体发生熔化时的温度称为熔化温度或熔点,单位质量的固态物质在熔点时完全熔化为同温度的液态物质所需要吸收的热量称为熔化热,用L 表示, 单位为 J Kg 或J g 。 1、熔化热的计算 若将质量m ,温度为0 0C 的冰块置入量热器内,与质量为0m ,温度为0t 的水相混合,设量热器内系统达到热平衡时温度为1t 。若忽略量热器与外界的热交换,根据热平衡原理可知,冰块熔化成水并升温吸热与水和内筒等的降温放热相等。即: 01001101()()mL mC t m C mC t t +=+- 解得冰的熔化热为: 001101011 ()(-)L m C m C t t C t m = +- 上式中:0 0 4.18()C J g C = 为水的比热,1m ,1C 为量热器内筒及搅拌器的质量和比 热(二者同材料),0t 、1t 为冰熔化前后系统处在热平衡时的温度。实验中可测出 0101,,,,m m m t t 的值,01,C C 为已知量,故可以求出冰的熔化热L 的值。 2、系统始末温度的修正 上述结论是假定在冰熔化过程中,系统与外界没有热交换的条件下。实际上,系统与外界只要有温度差异就必然有热交换存在。因此必须考虑如何防止或进行修正,以减少热交换的影响。 第一,冰块在投入量热器水中之前要吸收热量,这部分热不容易修正,应尽量缩短投放冰块的时间。 第二,引起测量误差最大的原因是01,t t 这两个温度值,这是由于冰熔化过程中量热器与环境有热交换。若0t 大于环境温度θ,1t 小于θ,则混合过程中,系统对外先是放热,后是吸热,至使温度计读出的初温0t 和末温1t 都与理想情况下的初温和末温有差异。因此,必

冰的熔解热的测定.

冰的熔解热的测定 摘要:用混合法测定冰的熔解热是把冰和一个容量已知的系统混合起来达到热平衡,在与外界没有热交换条件下冰吸收的热量等于系统在实验过程中放出的热量,放出的热量可由温度的改变和热容量计算出来,冰的熔解热可根据条件计算出来。 关键词:冰的比熔解热、吸热、放热、散热修正 引言: 将一定质量的冰和一定质量的水混合,当混合后的系统达到一定的温度后,冰全部熔解为同温度的水,根据热力学第一定律,冰熔解所吸收的热量与水降温所放出的热量相等.只要测量出系统与外界的换热量、水的质量、冰的质量等,就可以求出冰的熔解热.文中采用混合法测量冰的熔解热,实验中并未考虑系统环境的散热损失.本实验研究方法中采用测量系统中水的质量变化来测量冰的质量。实验用混合法来测定冰的熔解热,即把待测的系统和一个已知其热容的系统混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 ()。这样(或)所放出的热量,全部为(或)所吸收。因为已知热容的系统在实验过程中所传递的热量是可以由其温度的改变和热容计算出来的,即 。因此,待测系统在实验过程中所传递的热量也就知道了。由此可见,保持系统为孤立系统,是混合量热法所要求的基本实验条件,这要从仪器装置、测量方法及实验操作等各方面去保证。如果实验过程中与外界的热交换不能忽略,就要做散热或吸热修正。温度是热学中的一个基本物理量,量热实验中必须测量温度。一个系统的温度,只有在平衡态时才有意义,因此计温时必须使系统温度达到稳定而均匀。用温度计的指示值代表系统温度,必须使系统与温度计之间达到热平衡。 1.1实验原理: 一定压强下的晶体开始熔解时的温度称为该晶体在此压强下的熔点,质量为1g的某种物质的晶体熔解为相同温度的液体所吸收的热量叫做该晶体的熔解热。本实验采用混合量热测定冰的熔解热,其基本原理是:把待测系统和一个已知其热容的系统混合起来,并使它们形成一个与外界没有热量交换的孤立系统。于是,在此孤立系统中已知其热容的系统吸收(或放出的热量也就是待测系统放出(或吸收的热量。已知其热容的系统吸收(或放出的热量可通过其温度的变化及其热容来求得,于是待测系统放出(或吸收的热量也便可求得。为了使实验系统成为一个孤立系统,我们采用了量热器。量热器的种类很多,随测量的目的、要求、测量精度的不同而异。最简单的一种如图2-27所示,它是由热的良导体做成的内筒,放在一较大的外筒中组成。通常在内筒中放水、温度计及搅拌器,这些东西(内筒、温度计、搅拌器及水连同放进的待测物体就构成了我们所考虑的(进行实验的系统,内筒、水、温度计和搅拌器的热容可以测知。量热器的内筒置于一绝热架上,外筒用绝热盖盖住,因此其内的空气与外界对流很小。又因空气是不良导体,所以内、外筒间通过热传导传递的热量便可减至很少。同时由于内筒的外壁及外筒的内外壁都十分光亮,使得它们向外辐射热或吸收辐射热的本领

相关主题