搜档网
当前位置:搜档网 › 考研线性代数知识点全面总结

考研线性代数知识点全面总结

考研线性代数知识点全面总结
考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲

第一章、行列式

1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算

一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法

定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

?行列式值为0的几种情况:

Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;

Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q n

a a a ?=∑21t

2

1

1-D )(,t 为n q q q ?21的逆序数

4.行列式性质:

1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则)

7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.

5.克拉默法则:

:若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D

D D D

x D D n =?==

n 2211x ,x ,,。

矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。

(3)0≤R(n m A ?)≤min{m,n} ; ()()A R A R T = ;若B ~A ,则R(A)=R(B) ;

若P 、Q 可逆,则R(PAQ)=R(A)

; max{R(A),R(B)} ≤R(A,B) ≤R(A)+R(B) ;

若AB=C ,R(C)≤min{R(A),R(B)} 4.逆矩阵

(1)定义:A 、B 为n 阶方阵,若AB =BA =I ,称A 可逆,B 是A 的逆矩阵(满足半边也成立); (2)性质:()111---=A B AB , ()()' A A'1-1-=;(A B 的逆矩阵,你懂的)(注意顺序) (3)可逆的条件:① |A|≠0; ②r(A)=n; ③A->I;

(4)逆的求解:○

1伴随矩阵法A

*

1

-A A =;②初等变换法(A:I )->(施行初等变换)(I:1-A ) (5)方阵A 可逆的充要条件有:○1存在有限个初等矩阵1P ,…,l P ,使l P P P A Λ21= ○

2E A ~ 第三章、初等变换与线性方程组

1、 初等变换:○

1()()B Aji??→??,○2()()BAki?→??,○3()()BAj

i+k??→?? 性质:初等变换可逆。 等价:若A 经初等变换成B ,则A与B等价,记作B ~A ,等价关系具有反身性、对称性、传递性。

初等矩阵:由单位阵E 经过一次初等变换得到的矩阵。

定理:对n m A ?施行一次初等行变换,相当于在A 的左边乘相应的m 阶初等矩阵;对n m A ?施行一次初等列变换,相当于在A 的右边乘相应的n 阶初等矩阵。

等价的充要条件:○

1 R(A)=R(B)=R(A,B) ○

2n m ?的矩阵A、B等价?存在m 阶可逆矩阵P 、n 阶可逆矩阵Q ,使得PAQ=B 。 线性方程组解的判定

定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;

(3)r(A,b)=r(A)

特别地:对齐次线性方程组AX=0,(1) r(A)=n 只有零解;(2) r(A)

(1)解的情况:r(A)=n ?只有零解 ; r(A)

①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。 (4)性质:

1若1ξ=x 和2ξ=x 是向量方程A*x=0的解,则21ξξ+=x 、1ξk x =也是该方程的解。 ○

2齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。 ○

3若r A n m =?)(R ,则n 元齐次线性方程组A*x=0的解集S 的秩r -=n R S 。 3.非齐次线性方程组

(1)解的情况:○

1有解? R(A)=R(A,b)。○2唯一解? R(A)=R(A,b)=n 。○3无限解? R(A)=R(A,b)<n 。 (2)解的结构: X=u+r n r n a c a c a c --++Λ2211。

(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。

(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。 (5)○1若1η=x 、2η=x 都是方程b Ax =的解,则21ηη-=x 是对应齐次方程0=Ax 的解

2η=x 是方程b Ax =的解,ξ=x 是0=Ax 的解,则ηξ+=x 也是b Ax =的解。 第四章、向量组的线性相关性

1.N 维向量的定义(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a 为列向量)。 2.向量的运算:

(1)加减、数乘运算(与矩阵运算相同);

(2)向量内积 α'β=a1b1+a2b2+…+anbn ; (3)向量

长 22221a n a a a a a +++='=Λ

(4)向量单位化 (1/|α|)α;

3.线性组合

(1)定义:若m m a a a λλλ+++=Λ2211b ,则称b 是向量组1a ,2a ,…,n a 的一个线性组合,或称b 可以用向量组1a ,2a ,…,

n a 的线性表示。

(2)判别方法:将向量组合成矩阵,记 A =(1a ,2a ,…,n a )

1 B=(1a ,2a ,…,n a ,β),则:r (A)=r (B) ?b 可以用向量组1a ,2a ,…,n a 线性表示。 ○

2B=(1b ,2b ,…,m b ),则: B 能由A 线性表示?R(A)=R(A,B) ?AX=B 有解?R(B)≤R(A). (3)求线性表示表达式的方法:矩阵B 施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。 注:求线性表示的系数既是求解Ax=b 4.向量组的线性相关性

(1)线性相关与线性无关的定义

设 02211=+++n n a k a k a k Λ,若k1,k2,…,kn 不全为0,称线性相关;若全为0,称线性无关。 (2)判别方法:

① r(α1,α 2,…,αn)

3A:1a ,2a ,…,n a , B:1a ,2a ,…,n a ,1+n a ,若A 相关则B 一定相关,若B 相关A 不一定相关; 若A 无关,B 相关,则向量1+n a 必能由A 线性表示,且表示式唯一。 注:含零向量的向量组必定相关。 5.极大无关组与向量组的秩

(1)定义:最大无关组所含向量个数称为向量组的秩

(2)求法:设A =(1a ,2a ,…,n a ),将A 化为阶梯阵,则A 的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

(3)矩阵的秩等于它的行向量组的秩也等于它的列向量组的秩。 注:如何证明()()A R A A R T =,101P .

第五章、相似矩阵及二次型

1、向量内积:[]y x y x T =,。

内积性质:[][]x y y x ,,=,[][]x y y x ,,λλ=,[][][]x z x y y z x ,,,+=+;

:当x=0时,[]0,=x x ,当x ≠0时,[]0,>x x

2、向量长度:[]22221,n x x x x x x +?++==

性质:非负性0≥x 、齐次性x x λλ=、三角不等式y x y x +≤+

3、正交:[]0,=y x 称x 与y 正交。若x=0,则x 与任何向量都正交。

正交向量组是指一组两两正交的非零向量。

定理:若m 维向量1a ,2a ,…,n a 是正交向量组,则1a ,2a ,…,n a 线性无关。

正交阵:E A A n T n =,1

-=A A T 。

性质:若A 为正交阵则T A 也是正交阵,且1±=A ;若A 、B 都正交,则AB 正交。

规范正交基:设m 维向量1a ,2a ,…,n a 是向量空间V 的一个基,若1a ,2a ,…,n a 两两正交,且都是单位向量,则称1a ,2a ,…,n a 是V 的一个规范正交基。 规范正交化:施密特正交化过程:11a b =,[][]1112122,,b

b b a b a b -=,……

[][][][][][]1

11122221111,,,,,,--------

=n n n n n n n n n b b b a b b b b a b b b b a b a b Λ 正交变换:P 为正交阵,Px y =称为正交变换。有x y = 4、矩阵的特征值和特征向量

1定义:对方阵A ,若存在非零向量x 和数λ使x Ax λ=,则称λ是矩阵A 的特征值,向量x 称为矩阵A 的对应于特征值λ的特征向量。

2特征值和特征向量的求解:求出特征方程|E A λ-|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(E A λ-)x =0中求出方程组的所有非零解即为特征向量。

3重要结论与定理: (1)A 可逆的充要条件是A 的特征值不等于0;(2)A 与A 的转置矩阵A'有相同的特征值; (3)不同特征值对应的特征向量线性无关。 (4)对()ij n a =A 的特征值有:∑∑=i

ii i

i a λ;A i

i =∏λ。

(5)若λ是A 的特征值,则k λ是k A 的特征值,()λ?是()A ?的特征值。(6)1λ,2λ,…,m λ是方阵A的m个特征值,对应特征向量是1p ,2p ,…,m p ,若i λ互不相等,则i p 互不相关。 5、矩阵的相似

1定义:同阶方阵A 、B ,若有可逆阵P , B AP P -1=,则A 与B 相似。P 为把A 变为B 的相似变换矩阵。 ○

2若n 阶矩阵A 与对角阵Λ相似,则对角阵元素i λ即是A 的n 个特征值。 若f(λ)是矩阵A的特征多项式,则f(A)=0。

n A 与对角阵相似?A 有n 个线性无关的特征向量。

若n A 的n 个特征值互不相等,则A 与对角线对视。

3求A 与对角矩阵Λ相似的方法与步骤(求P 和Λ):求出所有特征值;求出所有特征向量;

看我是怎么整理考研数学笔记的

得数学者得天下,数学的重要性不言自明,一定要好好准备,我高中,大学数学底子还不错,自己也努力了,感觉数学里面最容易的还是线性代数和概率论和数理统计,因为题型有限,变化不大,对比历年真题就会发现。真正难的是高数,因为花样太多了,虽然考点有限,但是怎么个综合法,你就不知道了,所以高数题目要多见识,今年考研高数证明题我就看过很类似的,所以很快就做出来了,没见过的同学都不知道怎么下手。我今年数学考得不太好的 原因是我线性代数和概率论各算错一道题目,后悔死了,所以大家在准备考研时,别忘记提 醒自己时刻细心做题。数学的辅导书我很反感陈文登的,比较支持李永乐的,蔡遂林的也不错。 我数学资料做了一大批。要不我把做过的辅导书点评下,仅供参考! 2008数学大纲解析:由于2009没出版,只能用2008的,这是本好书,都是真题,分析透彻,建议买。 轻轻松松考高分线代概率历年真题分类解析——李永乐,这本书对历年真题对比分析, 让你知道考研真正考什么?该准备什么。强烈推荐。 2006考研数学历年真题解析与指导--高教,图书馆借的,现在不出版了,也是分析真题, 像大纲解析,如果图书馆有的话,可以看看。 2009数学考试分析--高教,近3年的试题分析,数一到数四都包括,花2天时间琢磨出题的变化,觉得不错,你会发现一些规律。 武钟祥的历年真题分析,这是我认为真题分析最全面最好的书,里面涵盖了所以年份的试题,数一到数四的都有,大家要知道,数学题目经常是今年数学一考了,明年后年可能数学三考,只是变换出题的方式,大家不要只看数学一的题目。强烈推荐。其实上面这么多 书我觉得最好的还是这本,有一本就够了。 线性代数辅导讲义--李永乐,这本书要多看几遍,越看越好,越看越懂,然后做真题。强烈推荐。 概率论与数理统计辅导讲义--龚兆仁,还可以,有些地方有些繁琐,有些根本不会考的也作了详细介绍。 数学基础过关660题--李永乐。不是很必要买,做了没什么感觉。 陈文登的复习指南,我不推荐买,原因就不说了,你们在网上搜搜看评价,本人用过,的确不怎么样。 李永乐的全书,贴合实际,但是稍显繁琐,很多同学到了11月底才看完,根本没时间去想,思 考。感觉知识点是全,是细,但是你记起来就不容易了。数学的记不像政治,数学 要练习,多思考才能有体会,才能记得深刻,最后才能灵活用。如果买全书的话,要注意时

考研线性代数知识点全面汇总

考研线性代数知识点全面汇总

————————————————————————————————作者:————————————————————————————————日期: 2

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则:

考研线性代数知识点全面总结资料

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则: :若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D D D D x D D n =?== n 2211x ,x ,,。

高数部分考研必备:超经典的考研数学考点与题型归类分析总结

高数部分考研必备:超经典的考研数学考点与 题型归类分析总结 1、1 高数第一章《函数、极限、连续》 1、2 求极限题最常用的解题方向: 1、利用等价无穷小; 2、利用洛必达法则,对于型和型的题目直接用洛必达法则,对于、、型的题目则是先转化为型或型,再使用洛比达法则; 3、利用重要极限,包括、、; 4、夹逼定理。 1、3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分的结果可以写为 F(x)+1,1指的就是那一分,把它折弯后就是中的那个C,漏掉了C

也就漏掉了这1分。第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异出题人在定积分题目中首先可能在积分上下限上做文章:对于型定积分,若f(x)是奇函数则有=0;若f(x)为偶函数则有=2;对于型积分,f(x)一般含三角函数,此时用的代换是常用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质、。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1、4 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用以下这组逻辑公式来作模型:假如有逻辑推导公式AE、(AB) C、(CDE)F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出 A、 B、D,求证F成立。为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类: 1、已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的AE就可能有AH、A(IK)、(AB)

考研线性代数核心知识点和易错点总结

考研线性代数核心知识点和易错点总结

————————————————————————————————作者:————————————————————————————————日期:

2018考研线性代数核心知识点和易错 点总结 通过7-9月这三个月时间的复习,大家应该做到把所学的知识系统化综合化,尤其是考研数学中的线性代数。在考研数学中线性代数只占分值的22%,所占比例虽然不高,但是对每位考研学子来说同样重要。线性代数部分的内容相对容易,从历年真题分析可知考试的时候出题的套路也比较固定。但是线性代数的知识点比较琐碎,记忆量大而且容易混淆的地方较多;另外这门学科的知识点之间的联系性也比较强,这种联系不仅指各个章节之间的相互联系,更重要的是不同章节中的各种性质、定理、判定法则之间也有着相互推导和前后印证的关系。因此,在复习线性代数的时候,要求考生做到“融会贯通”,即不仅要找到不同知识点之间的内在联系,还要掌握不同知识点之间的顺承关系。为了使广大考生在暑期强化阶段更好地复习线性代数这门学科,下面为大家总结了本门课程的核心考点和易错考点,希望对大家的复习能有所帮助! 一、核心考点 1、行列式 本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出与的结构。对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的相关知识出题的。对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值特征向量等相关考点,对考生能力要求较高,需要考生有扎实的基础,对线性代数整个学科进行过细致而全面的复习。抽象行列式的计算常见的方法有三种:一是利用行列式的性质;二是使用矩阵运算;三是结合特征值与特征向量。 2、矩阵 矩阵是线性代数的核心内容,它是后续章节知识的基础,矩阵的概念、运算及其相关理论贯穿着整个线性代数这门学科。这部分的考点较多,重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。另外,这几年还经常出现与初等变换与初等矩阵相关的命题。本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。 3、向量 本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联

考研数学十真题题型总结考研必备

考研数学十年真题题型总结! 高等数学(①10年考题总数:117题②总分值:764分③占三部分题量之比重:53%④占三部分分值之比重:60%第一章函数、极限、连续(①10年考题总数:15题②总分值:69分③占第一部分题量之比重:12%④占第一部分分值之比重:9%)|考研|考研网:y/f S,Z H \%\题型 1 求1∞型极限(一(1),2003) 题型 2 求0/0型极限(一(1),1998;一(1),2006)|考研|考研网 D!V \ k [ g u 题型 3 求∞-∞型极限(一(1),1999) 题型 4 求分段函数的极限(二(2),1999;三,2000) 题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)|考研|考研网 n1g:z1~ q9`*M m 题型 6 无穷小的比较或确定无穷小的阶(二(7),2004) 题型 7 数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006)https://www.sodocs.net/doc/8116398090.html, u6t I+N+v r ` 题型 8 求n项和的数列极限(七,1998) 题型 9 函数在某点连续性的判断(含分段函数)(二(2),1999) 第二章一元函数微分学考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕 X I!P R5m;i$^ U w

(①10年考题总数:26题②总分值:136分③占第一部分题量之比重:22%④占第一部分分值之比重:17%)5432考研论坛是考研人的网上考研家园,主要提供考研资料下载,学习讨论等 x*x F4as.E%s&Z.e 题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕#G:w X K1V S O R 题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005) 题型 3 求函数或复合函数的导数(七(1),2002)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕.m!n;l y(`*O.O u 题型 4 求反函数的导数(七(1),2003) 题型 5 求隐函数的导数(一(2),2002) n8U C G+J k B.R3w 题型 6 函数极值点、拐点的判定或求解(二(7),2003) 题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002) 题型 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕/E+?;g CW u$Q 题型 9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,

2020年考研线性代数重点内容和典型题型总结

XX年考研线性代数重点内容和典型题型总结线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学 们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题 为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必 然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算 行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算.关于每个重要题型的具体方法以及例题见《xx年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴

随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数

考研数学线性代数知识点梳理

从近几年的真题来看,数学线性代数出题没有过多的变化,2014年的考研[微博]学子们,如何做到在千军万马中胜出,需要我们提前准备,更要做到心中有数,下面跨考教育[微博]数学教研室张老师就考研中线性代数部分的复习重点 在考前再给大家梳理一遍。 一、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练 掌握。 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计 算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初 等矩阵的性质等。 二、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式:(1)矩阵形式,(2)向量形式。 1)齐次线性方程组与线性相关、无关的联系 齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。 齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成 立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线 性方程组问题而提出的。

强化复习线性代数各章重点及题型考研

线性代数在考研数学中占有重要地位,必须予以高度重视。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的,下面就将线代中重点内容和典型题型做了总结,希望对大家学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容, 不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、 逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等 问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试 题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶 法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对 角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽 象行列式的计算、含参数的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的 始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、 性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几

年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。 由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念; 了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

考研数学三大题型答题技巧总结

考研数学三大题型答题技巧总结 考研数学的题量较大,时间却是有限的,想要在有限的时间内取得最高的分数,除了自己的实力之外,应用答题技巧是十分必要的。按照科学的答题顺序作答,对最后成绩也是很有好处的! 一、选择题答题技巧 在做选择题的时候大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。 代入法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。 演算法:它适用于题干中给出的条件是解析式子。 图形法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。 排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。 反推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。 如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。 二、填空题答题技巧 填空题的答案是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。 这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。 填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。 三、解答题的答题技巧 解答主观大题目一定要学会放弃不会做的题,每道题思考时间一般不应超过10分钟,否则容易导致概率和线性代数等部分的题目无法解答,不要为了一道题目耽误了后面20~30分的内容。

考研数学线性代数题型归纳.doc

三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。 四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。 五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。 2019考研数学线性代数知识点总结 【行列式】 1、行列式本质——就是一个数 2、行列式概念、逆序数 考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算 考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。 4、余子式和代数余子式 考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。 5、行列式展开定理 考研:核心知识点,必考! 6、行列式性质 考研:核心知识点,必考!小题为主。 7、行列式计算的几个题型 ①、划三角(正三角、倒三角) ②、各项均加到第一列(行) ③、逐项相加 ④、分块矩阵 ⑤、找公因 这样做的目的,在行/列消出一个0,方便运用行列式展开定理。 考研:经常运用在找特征值中。

⑥数学归纳法 ⑦范德蒙行列式 ⑧代数余子式求和 ⑨构造新的代数余子式 8、抽象型行列式(矩阵行列式) ①转置 ②K倍 ③可逆 ③伴随 ④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型 (这部分内容放在第二章,但属于第一章的内容) 考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。 【矩阵】 1、矩阵性质 考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。 2、数字型n阶矩阵运算

2020考研数学复习:线代知识点

2020考研数学复习:线代知识点 考研数学中的线性代数试题,从难易程度上其实要远低于高数,却依然困扰了很多考生。究其原因,我们就不得不从线性代数的学 科特点及命题方向着手分析。线性代数从内容上看纵横交错,前后 联系紧密,环环相扣,相互渗透,因此解题方法灵活多变。而且线 性代数的命题重点,除了对基础知识的注重外,还偏向于知识点的 衔接与转换。考生在复习的时候要结合这两个方向进行有针对性的 复习。 举例来说,设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解 系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即 r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。 再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理 P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无 关的特征向量所构成,再由特征向量与基础解系间的联系可知此时 若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni 个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相 似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A) 又比如,对于n阶行列式我们知道:若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当 |A|≠0时,可用克莱姆法则求Ax=b的惟一解;可用|A|证明矩阵A 是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量 α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否为零 来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的 最高阶数来定义的,若r(A) 凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接 与转换。复习时应当常问自己做得对不对?再问做得好不好?只有不

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上与个人线代心得

高等数学 (数二 > 一. 重点知识标记 高等数学 科目大纲章节知识点题型重要度等级 高等数学 第一章函数、极限、连续 1 . 等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★ 2. 函数连续的概念、函数间断点的类型 3 . 判断函数连续性与间断点的类型★★★ 第二章一元函数微分学 1. 导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连续的关系★★★★ 2 . 函数的单调性、函数的极值讨论函数的单调性、极值★★★★ 3. 闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★ 第三章一元函数积分学 1 . 积分上限的函数及其导数变限积分求导问题★★★★★ 2. 有理函数、三角函数有理式、简单无理函数的积分 计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★ 第四章多元函数微分学 1. 隐函数、偏导数、的存在性以及它们之间的因果关系 2. 函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连 续性的讨论与它们之间的因果关系★★ 3 . 多元复合函数、隐函数的求导法求偏导数,全微分★★★★★ 第五章多元函数积分学 1.二重积分的概念、性质及计算 2.二重积分的计算及应用★★ 第六章常微分方程 1.一阶线性微分方程、齐次方程, 2.微分方程的简单应用,用微分方程解决一些应用问题★★★★ 一、函数、极限、连续部分:

极限的运算法则、极限存在的准则( 单调有界准则和夹逼准则 >、未定式的极限、主要的等价无穷 小、函数 间断点的判断以及分类,还有闭区间上连续函数的性质( 尤其是介值定理 >,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。 二、微分学部分: 主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。 一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近 线 ,也是一个重点内容,在近几年考研中常出现。 多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问 题 。 三、积分学部分: 一元函数积分学 一个重点是不定积分与定积分的计算。在计算过程中,会用 到 不定积分 / 定积分的基本性质、换元积分法、 分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,如何准确地进行换元从而得到最终 答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,多练掌握解题技巧。对于定积分在物理上的应用( 数二有要求 >,如功、引力、压力、质心、形心等,近几年考试基本都没有涉及, 考生只要记住求解公式即可。 多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质, 以及 直角坐标与极坐标的相 互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。 四、微分方程: 这里有两个重点:一阶线性微分方程。二阶常系数齐次/ 非齐次线性微分方程。 线性 第一章行列式 1.行列式的运算 2.计算抽象矩阵的行列式★★★ 第二章矩阵 1.矩阵的运算 2.求矩阵高次幂等★★★ 3. 矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★ 第三章向量

2018考研数学线性代数六大考点

跨考考研线性代数在考研数学中占比22%,因此,学好线代很关键。一般,线性代数常考计算题和证明题,因此大家要把握好公式和理论重点。下面和大家分享线性代数六大考点,大家注意复习。 一、行列式部分,强化概念性质,熟练行列式的求法 在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。 二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用 通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。 三、向量部分,理解相关无关概念,灵活进行判定 向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 四、线性方程组部分,判断解的个数,明确通解的求解思路 线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。 五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解 矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。 六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理 二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。 2018考研交流总群337587371

考研数学三必背知识点:线性代数

线性代数必考知识点 一、行列式 1、逆序数 一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质 (1) 行列式行列互换,其值不变,即T A A (2) 行列式两行或两列互换,其值反号。 (3) 行列式某行或某列乘以k 等于行列式乘以k 。 (4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。 (5) 行列式两行或两列对应成比例,则行列式为零。 (6) 行列式某行或某列元素为零,则行列式为零。 (7) 上、下三角行列式其值为主对角线上元素乘积。 (8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理 (1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式 33211232231131221332211331231233221133 32 3123222113 1211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵 1、矩阵运算 (1) 矩阵加减法即是将对应元素进行加减。 (2) 矩阵乘法是将对应行与对应列元素相乘再相加。 (3) 矩阵除法是乘以逆矩阵。 (4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。 (5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式 (1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置 (1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A

相关主题