搜档网
当前位置:搜档网 › 人教版九年级数学上册 圆 几何综合专题练习(解析版)(1)

人教版九年级数学上册 圆 几何综合专题练习(解析版)(1)

人教版九年级数学上册 圆 几何综合专题练习(解析版)(1)
人教版九年级数学上册 圆 几何综合专题练习(解析版)(1)

人教版九年级数学上册圆几何综合专题练习(解析版)(1)

一、初三数学圆易错题压轴题(难)

1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,

(1)求证:直线AB是⊙O的切线;

(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.

【答案】(1)见解析;(2)

5

【解析】

【分析】

(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;

(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出

DC=35

x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.

【详解】

(1)证明:连接OC,如图1,

∵OA=OB,AC=BC,

∴OC⊥AB,

∵OC过O,

∴直线AB是⊙O的切线;

(2)解:连接OC、DC,如图2,

∵AB=4AD,

∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,

∴∠DCF=90°,

∵OC⊥AB,

∴∠ACO=∠DCF=90°,

∴∠OCF=∠ACD=90°﹣∠DCO,

∵OF=OC,

∴∠AFC=∠OCF,

∴∠ACD=∠AFC,

∵∠A=∠A,

∴△ADC∽△ACF,

1

22 AC AD DC x

AF AC CF x

====,

∴AF=2AC=4x,FC=2DC,

∵AD=x,

∴DF=4x﹣x=3x,

在Rt△DCF中,(3x)2=DC2+(2DC)2,

解得:DC

5

x,

∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC

=,

∴∠CFE=∠AFC,

∴sin∠CFE=sin∠AFC=DC

DF

=5

35

x

x

=

【点睛】

本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.

2.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.

(1)求证:∠E=∠C;

(2)若⊙O的半径为3,AD=2,试求AE的长;

(3)在(2)的条件下,求△ABC的面积.

【答案】(1)证明见解析;(2)10;(3)48 5

.

【解析】

试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:

∠E=∠C;

(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;

(3)根据相似三角形的面积比等于相似比的平方可求解.

试题解析:(1)如解图,连接OB,

∵CD为⊙O的直径,

∴∠CBD=∠CBO+∠OBD=90°,

∵AB是⊙O的切线,

∴∠ABO=∠ABD+∠OBD=90°,

∴∠ABD=∠CBO.

∵OB、OC是⊙O的半径,

∴OB=OC,∴∠C=∠CBO.

∵OE∥BD,∴∠E=∠ABD,

∴∠E=∠C;

(2)∵⊙O的半径为3,AD=2,

∴AO=5,∴AB=4.

∵BD∥OE,

∴=,

∴=,

∴BE=6,AE=6+4=10

(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得

S△ABC= S△AOE==

3.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.

(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.

(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.

(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.

【答案】(1)圆心C的坐标为(1,);

(2)抛物线的解析式为y=x2﹣x;

(3)点D、E均在抛物线上;

(4)﹣1<x0<0,或2<x0<3.

【解析】

试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;

(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;

(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;

(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.

试题分析:(1)∵⊙C经过原点O

∴AB为⊙C的直径

∴C为AB的中点

过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1

∴圆心C的坐标为(1,).

(2)∵抛物线过O、A两点,

∴抛物线的对称轴为x=1,

∵抛物线的顶点在直线y=﹣x上,

∴顶点坐标为(1,﹣).

把这三点的坐标代入抛物线y=ax2+bx+c,得,

解得,

∴抛物线的解析式为y=x2﹣x.

(3)∵OA=2,OB=2,

∴AB==4,即⊙C的半径r=2,

∴D(3,),E(﹣1,),

代入y=x2﹣x检验,知点D、E均在抛物线上.

(4)∵AB为直径,

∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,

∴﹣1<x0<0,或2<x0<3.

考点:二次函数综合题.

4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.

(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.

i.若点P正好在边BC上,求x的值;

ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.

(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.

【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,

当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<

时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.

【解析】

试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,

即当x=AB=2时,点P恰好落在边BC上;

ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2

②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.

(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.

试题解析:(1)i.如图1,

由轴对称性质知:AM=PM,∠AMN=∠PMN,

又MN∥BC,

∴∠PMN=∠BPM,∠AMN=∠B,

∴∠B=∠BPM,

∴AM=PM=BM,

∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.

ii.以下分两种情况讨论:

①当0<x≤2时,

∵MN∥BC,

∴△AMN∽△ABC,

∴,

∴,

∴AN=,

△MNP与梯形BCNM重合的面积为△MNP的面积,

∴,

②当2<x<4时,如图2,

设PM,PN分别交BC于E,F,

由(2)知ME=MB=4-x,

∴PE=PM-ME=x-(4-x)=2x-4,

由题意知△PEF∽△ABC,

∴,

∴S△PEF=(x-2)2,

∴y=S△PMN-S△PEF=,

∵当0<x≤2时,y=x2,

∴易知y最大=,

又∵当2<x<4时,y=,

∴当x=时(符合2<x<4),y最大=2,

综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,

设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.

在Rt△ABC中,BC==5;

由(1)知△AMN∽△ABC,

∴,即,

∴MN=x

∴OD=x,

过M点作MQ⊥BC于Q,则MQ=OD=x,

在Rt△BMQ与Rt△BCA中,∠B是公共角,

∴△BMQ∽△BCA,

∴,

∴BM=,AB=BM+MA=x+x=4

∴x=,

∴当x=时,⊙O与直线BC相切;

当x<时,⊙O与直线BC相离;

x>时,⊙O与直线BC相交.

考点:圆的综合题.

5.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.

(1)求证:MN是⊙O的切线.

(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.

①求证:FD=FG.

②若BC=3,AB=5,试求AE的长.

【答案】(1)见解析;(2)①见解析;②AE=1

【解析】

【分析】

(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得

∠MAC+∠CAB=90°,则结论得证;

(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;

②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.

【详解】

(1)证明:∵AB是直径,

∴∠ACB=90°,

∴∠CAB+∠ABC=90°;

∵∠MAC=∠ABC,

∴∠MAC+∠CAB=90°,即MA⊥AB,

∴MN是⊙O的切线;

(2)①证明:∵D是弧AC的中点,

∴∠DBC=∠ABD,

∵AB是直径,

∴∠CBG+∠CGB=90°,

∵DE ⊥AB ,

∴∠FDG+∠ABD =90°, ∵∠DBC =∠ABD , ∴∠FDG =∠CGB =∠FGD , ∴FD =FG ;

②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.

∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB , ∴DE =DH ,

在Rt △BDE 与Rt △BDH 中,

DH DE

BD BD =??

=?

, ∴Rt △BDE ≌Rt △BDH (HL ), ∴BE =BH , ∵D 是弧AC 的中点, ∴AD =DC ,

在Rt △ADE 与Rt △CDH 中,

DE DH

AD CD =??

=?

, ∴Rt △ADE ≌Rt △CDH (HL ). ∴AE =CH .

∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE , ∴AE =1. 【点睛】

本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.

6.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (?4,0)处.

(1)求直线AB 的解析式;

(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,

交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.

【答案】(1)132y x =-+(2)d =5t (3)故当 t =85

,或8

15,时,QR =EF ,N (-6,6)或(2,2). 【解析】

试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;

(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;

(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解; 试题解析:

(1)∵C (0,8),D (-4,0), ∴OC=8,OD=4, 设OB=a ,则BC=8-a ,

由折叠的性质可得:BD=BC=8-a , 在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2, 则(8-a )2=a 2+42, 解得:a=3, 则OB=3, 则B (0,3), tan ∠ODB=

34

OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=3

4

OA OC = , 则OA=6, 则A (6,0),

设直线

AB 的解析式为:y=kx+b ,

则60{3

k b b +== ,解得:1

{23

k b =-= , 故直线AB 的解析式为:y=-1

2

x +3; (2)如图所示:

在Rt △AOB 中,∠AOB=90°,OB=3,OA=6, 则2

2

135,tan 2OB OB OA BAO OA +=∠=

= ,255OA

cos BAO AB

∠==, 在Rt △PQA 中,905APQ AP t ∠=?=,

则AQ=

10cos AP

t BAO =∠ ,

∵PR ∥AC ,

∴∠APR=∠CAB ,

由折叠的性质得:∠BAO=∠CAB , ∴∠BAO=∠APR , ∴PR=AR ,

∵∠RAP+∠PQA=∠APR+∠QPR=90°, ∴∠PQA=∠QPR , ∴RP=RQ , ∴RQ=AR ,

∴QR=

1

2 AQ=5t, 即d=5t;

(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,

∴四边形NTOS 是正方形, 则TQ=TR=

1522

QR t = ,

∴1115151022224

NT AT AQ TQ t t t =

=-=-=()() , 分两种情况,

若点N 在第二象限,则设N (n ,-n ),

点N 在直线1

32

y x =-+ 上, 则1

32

n n -=-

+ , 解得:n=-6,

故N (-6,6),NT=6,

15

64

t = , 解得:8

5

t = ;

若点N 在第一象限,设N (N ,N ), 可得:1

32

n n =-+ , 解得:n=2, 故N (2,2),NT=2,

15

24

t =, 解得:t=8

15

∴当 t =85,或8

15

,时,QR =EF ,N (-6,6)或(2,2)。

点睛:此题考查了折叠的性质、待定系数法求一次函数的解析式、正方形的判定与性质、等腰三角形的性质、平行线的性质以及三角函数等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用。

7.如图1,四边形ABCD 中,

为它的对角线,E 为AB 边上一动点(点E 不与点

A 、

B 重合),EF ∥A

C 交BC 于点F ,FG ∥B

D 交DC 于点G ,GH ∥AC 交AD 于点H ,连接H

E .记四边形EFGH 的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD 为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如

图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.

(1)等腰梯形(填“是”或“不是”)“四边形”;

(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.

【答案】“值”为10;(1)是;(2)最多有5个.

【解析】

试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;

(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;

(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.

矩形ABCD中,若AB=4,BC=3,则它的“值”为10;

(1)等腰梯形是“四边形”;

(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.

考点:动点问题的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

8.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.

(1)当∠A=30°时,求∠CDB的度数;

(2)当m=2时,求BE的长度;

(3)在点B的整个运动过程中,

①当BC=3CE时,求出所有符合条件的m的值.

②连接EH,FH,当tan∠FHE=

5

12

时,直接写出△FHD与△EFH面积比.

【答案】(1)60°;(2)4

5

;(3)①m=22或42;②

26

2

【解析】

【分析】

(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;

(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=5

,过点H作

HK⊥BC于点K,利用垂径定理可得结论;

(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;

②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比

等于底之比,再由tan∠FHE=

5

12

可求得

DH

EF

的值即可.

【详解】

解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,

∵HB=HD,CH⊥BD,

∴CH是BD的中垂线,

∴CB=CD,

∴∠CDB=∠ABC=60°;

(2)如图1,过点H作HK⊥BC于点K,

当m=2时,BC=2,

∴AB22

AC BC

5,

∴cos∠ABC=BC

AB 5

∴BH=BC?cos∠ABC25,

∴BK=BH?cos∠ABC=2

5

∴BE=2BK=4

5

(3)①分两种情况:

I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,

∵BC=3CE=m,

∴CE=1

3m,BE=

2

3

m,

∵DE∥AC,

∴△DEB~△ACB,

∴DE

AC =

BE

BC

2

3

∴DE=2

3AC=

8

3

∵CD=CB=m,

∴Rt△CDE中,由勾股定理得:

22

81

m

33

????

?

??

+?

??

=m2,

∵m>0,

∴m=22;

II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,

∵BC=3CE,

∴CE =13m ,BE

=3

2m , ∵DE ∥AC ,

∴△DEB ~△ACB ,

DE AC =BE

BC =32

, ∴DE =

3

2

AC =6, ∵CD =CB =m ,

∴Rt △CDE 中,由勾股定理得:62

+2

1m 3?? ???

=m 2, ∵m >0, ∴m =42;

综上所述,①当BC =3CE 时,m =22或42. ②如图4,过F 作FG ⊥HE 于点G ,

∵CH ⊥AB ,HB =HD , ∴CB =CD , ∴∠CBD =∠CDB ,

∴DFE BEF =,即DF EF BE EF +=+, ∴DF BE =, ∴EF ∥BD , ∴

FHD EFH

S S

DH

EF

, ∵在Rt △FHG 中,

FG HG =tan ∠FHE =5

12

, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k , ∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k , ∴EF 22FG EG +22(5)k k +26k ,

FHD EFH

S S

26k =26

2

. 【点睛】

本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.

9.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延

长交

O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且

2180APB PEB ∠+∠=?.

(1)如图1,求证://PF AD ;

(2)如图2,连接AE ,若90APB ∠=?,求证:PE 平分AEB ∠; (3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,

4

sin 5

ABD ∠=

,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257

【解析】 【分析】

(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=?,由四边形内角和是

360?,得180∠+∠=?P AOB ,由同弧所对的圆心角是圆周角的一半,得到

2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;

(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=?得290PEB ∠=?,从而45PEB ∠=?,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=?,得

PE PK =,从而90APE EPB ?∠=-∠,进而APE BPK ∠=∠,即可证得

APE BPK ??≌由此45K AEP ∠=∠=?,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由

45ADE ∠=?,90AED ∠=?,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ??≌,由直径所对的圆周角是直角,可得90ADM ∠=?,在

Rt ADM ?中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对

角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ?中,252OP OA =

=延长EO

交AD 于K ,在Rt OEP ?中,由勾股定理得7PE =,在Rt OEH ?中,由勾股定理得

257PH =

. 【详解】 (1)连接OA 、OB

∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径, ∴OA AP ⊥,OB BP ⊥, ∴90OAP OBP ∠=∠=?,

∴在四边形AOBP 中,360180180P AOB ∠+∠=?-?=?, ∵AB AB =, ∴2AOB ADB ∠=∠, ∴2180P ADB ∠+∠=?, ∵2180P PEB ∠+∠=?, ∴ADB PEB ∠=∠, ∴//PF AD

(2)过点P 做PK PF ⊥交EB 延长线于点K

∵90APB ∠=?,

∴21809090PEB ∠=?-?=?, ∴45PEB ∠=?,

∵PA 、PB 为圆O 的切线, ∴PA PB =,

∵PK PE ⊥,45PEK ∠=?, ∴PE PK = ,

∵9090APE EPB KPB EPB ??∠=-∠=∠=-∠, ∴APE BPK ∠=∠, ∴APE BPK ??≌, ∴45K AEP ∠=∠=?,

∴AEP PEB ∠=∠, ∴PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM

∵45ADE ∠=?,90AED ∠=?, ∴DE AE =, ∵OA 、OD 为半径, ∴OA OD =, ∵OE OE =, ∴DEO AEO ??≌, ∴1

452

AEO OED AED ∠=∠=∠=?, ∴90OEP ∠=?, ∵AM 为圆O 的直径, ∴90ADM ∠=?, ∵弧AD =弧AD , ∴ABD AMD ∠=∠,

在Rt ADM ?中,8AD =,4

sin 5

AMD ∠=,则10AM =, ∴5OA OB ==,

由题易证四边形OAPB 为正方形, ∴对角线AB 垂直平分OP ,AB OP =, ∵H 在AB 上, ∴OH PH =, 在Rt OAP ?中,252OP OA ==

延长EO 交AD 于K ,

∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠, ∴4DK KE ==,3OK =,1OE = ∴在Rt OEP ?中,227PE OP OE =-= 在Rt OEH ?中,222OH OE EH =+ ∵OH PH =,7EH PE HP PH =-=- ∴()2

2217PH PH =+-

∴257

PH =

. 【点睛】

本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.

10.如图,在ABC ?中,90C ∠=?,30CAB ∠=?,10AB =,点D 在线段AB 上,

2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时

停止运动,设DP m =.

(1)AO =___________,BP =___________.(用m 的代数式表示) (2)当m 为何值时,

O 与ABC ?的一边相切?

(3)在点P 整个运动过程中,过点P 作

O 的切线交折线AC CB -于点E ,将线段EP

绕点E 顺时针旋转60?得到EF ,过F 作FG EP ⊥于G .

①当线段FG 长度达到最大时,求m 的值;

②直接写出点F 所经过的路径长是________.(结果保留根号) 【答案】(1)22

m

AO =+,8BP m =-;(2)4m =或32348m =;(3)①

112115

3762【解析】 【分析】

(1)观察图中AO 和DP 的数量关系可得22

DP

AO =+

,而BP AB AP =-,将DP m =代入即可.

(2)O 与ABC ?的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的

解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ?中根据三角函数可得

cos30FG PE ?=?,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可.

几何练习题精选

几何练习题精选 题型一、相似三角形的判定与性质 1、 如图1、在ABC ?中, 90=∠BAC ,BC 边的垂直平分线EM 与AB 及CA 的延长线分别交于D 、E ,连接AM , 求证:EM DM AM ?=2 2、 如图2,已知梯形ABCD 为圆内接四边形,AD//BC ,过C 作该圆的切线,交AD 的延长线于E ,求证:ABC ?相似于EDC ? 3、 如图3,D B ∠=∠,AE ⊥BC , 90=∠ACD ,且AB=6,AC=4,AD=12,求BE 的长。

4、 如图4,O Θ和O 'Θ相交于A ,B 两点,过A 作两圆的切线分别交两圆于C 、D 两点, 连接DB 并延长交O Θ于点E ,证明:(1)AB AD BD AC ?=?;(2)AC=AE 题型二、截割定理与射影定理的应用 1、 如图5,已知E 是正方形ABCD 的边AB 延长线上一点,DE 交CB 于M ,MN//AE 于 N ,求证:MN=MB 2、 如图6,在ABC Rt ?中, 90=∠BAC ,AD 是斜边BC 上的高,若AB :AC=2:1, 求AD :BC 的值。

3、 如图7,AB 是半圆O 的直径,C 是半圆上异于A 、B 的点,CD ⊥AB ,垂足为D ,已 知AD=2,CB=34,求CD 的长。 4、 如图8,在ABC ?中,DE//BC ,EF//CD ,若BC=3,DE=2,DF=1,求AB 的长。 题型三、圆内接四边形的判定与性质 1、 如图9、AB ,CD 都是圆的弦,且AB//CD ,F 为圆上一点,延长FD ,AB 相交于点E , 求证:BD=AC ;(2)DE AF AC AE ?=?

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

人教版九年级数学上册圆知识点归纳及练习含答案完整版

人教版九年级数学上册圆知识点归纳及练习含 答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆 24.1.1圆 知识点一圆的定义 圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。 知识点二圆的相关概念 (1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 (2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。 (3)等圆:等够重合的两个圆叫做等圆。 (4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 24.1.2垂直于弦的直径 知识点一圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 知识点二垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,且CD⊥AB, A B AM=BM 垂足为M AC=BC AD=BD D 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 如上图所示,直径CD与非直径弦AB相交于点M, CD⊥ABAM=BMAC=BC AD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。 24.1.3弧、弦、圆心角 知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2)在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 (3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。

九年级数学上册 圆 几何综合专题练习(解析版)

九年级数学上册 圆 几何综合专题练习(解析版) 一、初三数学 圆易错题压轴题(难) 1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。 (1)求这条抛物线的解析式; (2)求点E 的坐标; (3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由 【答案】(1)y=x 2 +2x-8(2)(-1,- 72)(3)(-8,40),(-15 4,-1316),(-174 ,-25 16 ) 【解析】 分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值; (2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点 G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值, 从而求出点E 的坐标; (3)设点P (a , a 2+2a -8), 则2 28,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时 和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标. 详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-

(2)由(1)可得:2 28y x x =+-,当0y =时,124,2x x =-=; ∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC = 过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,, 则11 6322 AG AB = =?= , 设 ,则 , 在Rt AGE ?中,, 在 中, ()2 22218CE EF CF a =+=+-, ∵AE CE = , ∴()2 2918a a +=+- , 解得:7 2a = , ∴712E ? ?-- ?? ? , ; (3)设点()2,28a a a P +-, 则2 28,2PQ a a BQ a =+-=-, a.当PBQ ?∽CBO ?时, PQ CO BQ OB =,即228822 a a a +-=-, 解得:10a =(舍去);

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

九年级数学圆的知识点总结大全

r B 一、知识回顾 第四章:《圆》 圆的周长 : C=2πr 或 C=πd 、圆的面积 : S=πr 2 圆环面积计算方法: S=πR2- πr 2或 S=π( R2-r 2) (R 是大圆半径, r 是小圆半径) 二、知识要点一、圆的概念 集合形式的概念: 1 、 圆可以看作是到定点的距离等于定长的点的集合; 2 、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3 、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点 O 为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是: 平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系 1、点在圆内 d r 点C 在圆内; A d 2、点在圆上 d r 点B 在圆上; O d 3、点在圆外 d r 点 A 在圆外; C 三、直线与圆的位置关系 1、直线与圆相离 d r 无交点; 2、直线与圆相切 d r 有一个交点; 3、直线与圆相交 d r 有两个交点; r d d=r r d

C D 四、圆与圆的位置关系 外离(图 1) 无交点 d R r ; 外切(图 2) 有一个交点 d R r ; 相交(图 3) 有两个交点 R r d R r ; 内切(图 4) 有一个交点 d R r ; 内含(图 5) 无交点 d R r ; d d d R r R r R r 图 1 图2 图 3 d d r R r R 图4 图 5 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其 它 3 个结论,即: ① AB 是直径 ② AB CD ③ CE DE ④ 弧 BC 弧 BD ⑤ 弧 AC 弧 AD 中任意 2 个条件推出其他 3 个结论。 A 推论 2:圆的两条平行弦所夹的弧相等。 C D 即:在⊙ O 中,∵ AB ∥ CD O O ∴弧 AC 弧BD A B E B 六、圆心角定理 顶点到圆心的角,叫圆心角。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定

人教版九年级数学上册圆

初中数学试卷 金戈铁骑整理制作 圆 章节测试 时间:40分钟 满分:120分 姓名: 得分: 一、选择题(本大题共9小题,共54分) 1. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( ) A. 4π B. 6π C. 12π D. 16π 2. 一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( ) A. 300° B. 150° C. 120° D. 75° 3. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 4. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( ) A. ∠ADC B. ∠ABD C. ∠BAC D. ∠BAD 5. 如图,在⊙O 中,AB 是直径,AC 是弦,连接OC ,若∠ACO =30°,则∠BOC 的度数是( ) A. 30° B. 45° C. 55° D. 60°

6.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12, OM:MD=5:8,则⊙O的周长为() A. 26π B. 13π C. D. 7.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的 对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是() A. B. 2- C. 2- D. 4- 8.如图,在半径为4的⊙O中,CD是直径,AB是弦,且CD⊥AB,垂足为点E,∠AOB=90°, 则阴影部分的面积是() A. 4π-4 B. 2π-4 C. 4π D. 2π

数学九年级上册 圆 几何综合专题练习(word版

数学九年级上册 圆 几何综合专题练习(word 版 一、初三数学 圆易错题压轴题(难) 1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在 射线BA 上,以BP 为半径的 P 交边BC 于点E (点E 与点C 不重合),联结PE 、 PC ,设x BP =,PC y =. (1)求证:PE //DC ; (2)求y 关于x 的函数解析式,并写出定义域; (3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取 值范围. 【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605 R << 【解析】 【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据 平行线的判定定理即可得到结论; ()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形, //PH AF ,求得2BF FG GC ===,根据勾股定理得到 22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到 223PH x = ,13BH x =,求得1 63 CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218 655 PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】 () 1证明:梯形ABCD ,AB CD =, B DCB ∠∠∴=, PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,

初二几何专题训练整理

初中几何综合测试题 一.填空题 1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为_______. 2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是_________. 4.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为________. 5.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 . 6.梯形上底长为2,中位线长为5,则梯形的下底长为________. 7.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA, 8.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于_________. 二.选择题 1.一个角的余角和它的补角互为补角,则这个角是 [ ] A.30° B.45° C.60° D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]

A.1∶2∶3 B.1∶1∶1 C.1∶4∶9 D.1∶3∶5 4.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°, 则∠BCF的度数是 [ ] A.160° B.150° C.70° D.50° 5.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和 BC相交于E,图中全等三角形共有 [ ] A.2对 B.3对 C.4对 D.5对 6.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段 三.解答题

人教版数学九年级上册:24《圆》专题练习(附答案)

word版初中数学 第二十四章《圆》专题练习 目录 专题1 与圆周角有关的辅助线作法 (1) 专题2圆周角定理 (3) 专题3 证明切线的两种常用方法 (4) 专题4与切线长有关的教材变式 (5) 专题5与圆的切线有关的计算与证明 (6) 专题6 求阴影部分的面积 (8)

专题1 与圆周角有关的辅助线作法 类型1 构造同弧或等弧所对的圆周角或圆心角 1.如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B 是AC ︵ 的中点,则∠D 的度数是( ) A .70° B .55° C .35.5° D .35° 2.如图,点A ,B ,C ,D 分别是⊙O 上的四点,∠BAC =50°,BD 是直径,则∠DBC 的度数是( ) A .40° B .50° C .20° D .35° 3.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为( ) A .50° B .55° C .60° D .65°

4.如图,A ,B ,C 在⊙O 上,∠ACB =40°,点D 在ACB ︵ 上,M 为半径OD 上一点,则∠AMB 的度数不可能为( ) A .45° B .60° C .75° D .85° 类型2 利用直径构造直角三角形 5.如图,在⊙O 中,∠OAB =20°,则∠C 的度数为 . 6.如图,在⊙O 中,AB 为直径,∠ACB 的平分线交⊙O 于点D ,AB =6,则BD = . 7.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于 . 8.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于点D ,AC =5,DC =3,AB =42,则⊙O 的半径为 .

小学奥数几何专题训练附答案

学习奥数的重要性 1. 学习奥数是一种很好的思维训练。奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。 2. 学习奥数能提高逻辑思维能力。奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助 3. 为中学学好数理化打下基础。等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。 4. 学习奥数对孩子的意志品质是一种锻炼。大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。 六年级几何专题复习 如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接 而成,那么阴影部分的面积是_____cm2。(π取3.14)(几何) 有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。(结头处绳长不计,π取3.14) 图中的阴影部分的面积是________平方厘米。(π取3)

初三数学圆知识点总结

初三数学圆知识点总结 一、本章知识框架 二、本章重点 1.圆的定义: (1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆. (2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆接四边形的对角互补;外角等于它的对角. (3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.

垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等. 5.三角形的心、外心、重心、垂心 (1)三角形的心:是三角形三个角平分线的交点,它是三角形切圆的圆心,在三角形部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示. (3)三角形重心:是三角形三边中线的交点,在三角形部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定:

人教版九年级数学上册圆单元测试题及答案

九年级数学第二十四章圆测试题(A) 时间:45分钟分数:100分 一、选择题(每小题3分,共33分) 1 .若O O所在平面内一点P到O O上的点的最大距离为10, A . 14 B . 6 C . 14 或6 D. 7 或3 2. 如图24—A —1 , O O的直径为10,圆心O到弦AB的距离 A . 4 B . 6 C . 7 I 3. 已知点O ABC的外心,若/ A=80 A . 40 4. 如图 A . 20° B . 80 24—A — 2, B . C. 160° △ ABC内接于O 最小距离为 OM的长为 4则此圆的半径为( 3,则弦AB 的长是 D . 8 ,则/ BOC的度数为( D. 120° 若/ A=40 °,则/ OBC的度数为( O 图24—A — 4 图24—A — 3 小明同学设计了一个测量圆直径的工具, 垂直,在测直径时,把O点靠在圆周上, A . 12个单位 B . 10个单位 6. 如图 A . 80° 7. 如图 PB于点 A . 5 24—A —4, AB为O O的直径,点 B. 50° C. 40 ° 24—A —5, P 为O O 外一点, 5 .如图24—A —3, 标有刻度的尺子OA、OB在O点钉在一起, 读得刻度OE=8个单位,OF=6个单位,则圆的直径为( D . 15个单位 ,则/ A等于() 并使它们保持 ) PA 、 C、D,若PA=5,则△ PCD的周长为( B . 7 C . 8 D . 10 C . 1个单位 C 在O O 上,若/ B=60 ° D . 30° PB分别切O O于A、B, ) CD切O O于点E,分别交PA、 &若粮仓顶部是圆锥形,且这个圆锥的底面直径为 毡,则这块油毡的面积是() 4m,母线长为3m,为防雨需在粮仓顶部铺上油 A . 6m2 C . 12m22 D . 12二 m 9.如图24—A —6,两个同心圆,大圆的弦AB 点P,且 CD=13 , PC=4,则两圆组成的圆环的面积是( A. 16 n B . 36 n 10 .已知在△ ABC中, 10 A . 3 11.如图 C、D E、 C. 52 n AB=AC=13 , 与小圆相切于点P,大圆的弦CD经过) D. 81 n BC=10,那么△ ABC的内切圆的半径为( 12 B . 5 24—A —7,两个半径都是4cm的圆外切于点C, 一只蚂蚁由点A开始依A、B、 F、C、G A的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这 C. 2 径上不断爬行,直到行走2006 n cm后才停下来, A . D 点 B . E 点 C . F 点D 二、填空题(每小题3分,共30分) 12 .如图24—A —8,在O O中,弦AB等于O 则蚂蚁停的那一个点为( .G点 O的半径,0C丄AB交O O于点C,则 8段路 )

初三数学圆专题经典 (含答案)

九年级数学第二十四章圆测试题(A ) 一、选择题(每小题3分,共33分) 1.(2005·资阳)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( ) A . 2b a + B .2b a - C .2 2b a b a -+或 D .b a b a -+或 2.(2005·浙江)如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦 AB 的长是( ) A .4 B .6 C .7 D .8 3.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120° 4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70° 5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30° 7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .10 8.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( ) A .2 6m B .2 6m π C .2 12m D .2 12m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( ) A .16π B .36π C .52π D .81π 10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .5 12 C .2 D . 3 图24—A — 5 图24—A — 6 图24—A — 1 图24—A — 2 图24—A — 3 图24—A —4

中考数学几何专题训练

专题八圆

8.正多边形的有关计算: (1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例: (1) n = n 360 ;

(2)有关计算在Rt ΔAOC 中进行. (2) n 1802n ? = α 二 定理: 1.不在一直线上的三个点确定一个圆. 2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算: (1)圆的周长C=2πR ;(2)弧长L= 180 R n π;(3)圆的面积S=πR 2 . (4)扇形面积S 扇形 =LR 2 1 360R n 2=π; (5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 圆柱侧(2)圆锥的侧面积:S 圆锥侧 =LR 21 =πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径) 四 常识: 1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.

A B C 第5 A B C 第6 O E 4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径) 直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r ) 两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ; 两圆内切 d=R-r ; 两圆内含 d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线. 圆中考专题练习 一:选择题。 1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的 度数为( ) ° ° ° ° 2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )53 3、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( ) A 1个 B 2个 C 3个 D 4个 4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( ) A .19 B .16 C .18 D .20 5、(11·浙江湖州)如图,已知在Rt △ABC 中,∠ BAC =90°,AB =3, BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所 得圆锥的侧面积等于 ( )

人教版九年级上册数学 圆 几何综合专题练习(解析版)

人教版九年级上册数学 圆 几何综合专题练习(解析版) 一、初三数学 圆易错题压轴题(难) 1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。 (1)求这条抛物线的解析式; (2)求点E 的坐标; (3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由 【答案】(1)y=x 2 +2x-8(2)(-1,- 72)(3)(-8,40),(-15 4,-1316),(-174 ,-25 16 ) 【解析】 分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值; (2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点 G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值, 从而求出点E 的坐标; (3)设点P (a , a 2+2a -8), 则2 28,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时 和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标. 详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-

(2)由(1)可得:2 28y x x =+-,当0y =时,124,2x x =-=; ∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC = 过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,, 则11 6322 AG AB = =?= , 设 ,则 , 在Rt AGE ?中,, 在 中, ()2 22218CE EF CF a =+=+-, ∵AE CE = , ∴()2 2918a a +=+- , 解得:7 2a = , ∴712E ? ?-- ?? ? , ; (3)设点()2,28a a a P +-, 则2 28,2PQ a a BQ a =+-=-, a.当PBQ ?∽CBO ?时, PQ CO BQ OB =,即228822 a a a +-=-, 解得:10a =(舍去);

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

九年级数学圆知识点总结

初三圆的知识点总结 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”. 几何表达式举例:∵ CD 过圆心∵CD ⊥AB 2.平行线夹弧定理: 圆的两条平行弦所夹的弧相等 . 几何表达式举例: 3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦” . 几何表达式举例:(1) ∵∠AOB=∠COD ∴ AB = CD (2) ∵ AB = CD ∴∠AOB=∠COD 4.圆周角定理及推论: (1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图) (5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 .(如 图) (1)(2)(3) (4) 几何表达式举例: (1)∵∠ACB=2 1∠AOB ∴ …………… (2)∵ AB 是直径 ∴∠ACB=90° (3)∵∠ACB=90° ∴ AB 是直径 (4)∵ CD=AD=BD ∴ΔABC 是Rt Δ 5.圆内接四边形性质定理: 圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角 . 几何表达式举例:∵ ABCD 是圆内接四边形∴ ∠CDE =∠ABC ∠C+∠A =180° 6.切线的判定与性质定理: 如图:有三个元素,“知二可推一”;需记忆其中四个定理. (1)经过半径的外端并且垂直于这条 半径的直线是圆的切线; (2)圆的切线垂直于经过切点的半径; ※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心. 几何表达式举例: (1)∵OC 是半径∵OC ⊥AB ∴AB 是切线 (2)∵OC 是半径 ∵AB 是切线∴OC ⊥AB (3) …………… 7.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角. 几何表达式举例: ∵ PA 、PB 是切线∴ PA=PB ∵PO 过圆心∴∠APO =∠BPO 8.弦切角定理及其推论 : 几何表达式举例: A B C D O A B C D E O 平分优弧 过圆心 垂直于弦平分弦平分劣弧 ∴ AC BC AD BD == AE=BE A B C D E F O A B C O P A B O A B C D E A B C O A B C D ∵∴ ∥=AB CD AC BD A B C O 是半径垂直是切线

初二上几何证明题 题专题训练 好题汇编

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;? (2)求证:DG=DF . 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

相关主题