搜档网
当前位置:搜档网 › 钻井工程井眼轨道设计与轨迹控制

钻井工程井眼轨道设计与轨迹控制

钻井工程井眼轨道设计与轨迹控制
钻井工程井眼轨道设计与轨迹控制

.

第五章井眼轨道设计与轨迹控制

1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08

答:

井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。

2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算?

答:

方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。

方位角表示方法:真方位角、象限角。

方位线位置真方位角与象限角关系

真方位角=象限角第一象限

真方位角=180°第二象限-象限角

真方位角=180°+象限角第三象限

-象限角360°真方位角=第四象限

水平投影长度与水平位移有何区别?视平移与水平位移有何区别.?3 答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。视平移是水平位移在设计方位上的投影长度。

4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。

.5 垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。

6.?实际资料中如果超过了怎么办?180 为什么要规定一个测段内方位角变化的绝对值不得超过答:

测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测7.点计算有什么关系?答:坐标增量和井眼曲率;测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E 坐标、视平移)对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、E坐标、N 和两个极坐标(水平位移、平移方位角)。.

.

轨迹计算时,必须首先算出每个测段的坐标增量,然后才能求得测点的坐标值。

8.平均角法与校正角法有什么区别?实际计算结果可能有什么差别?

答:

平均角法假设测段是一条直线,该直线的方向是上下二测点处井眼方向的“和方向”(矢量和)。校正平均角法假设测段形状为一条圆柱螺线。

校正平均角法的计算公式是在平均角计算公式的基础上加入了校正系数。

9.直井轨迹控制的主要任务是什么?

答:

直井轨迹控制的主要任务就是要防止实钻轨迹偏离设计的铅垂直线。一般来说实钻轨迹总是要偏离设计轨道的,问题在于能否控制井斜的度数或井眼的曲率在一定范围之内。

10.引起井斜的地质原因中最本质的两个因素是什么?二者如何起作用?

答:

最本质的两个因素是地层可钻性的不均匀性和地层的倾斜。

沉积岩都有这样的特征:垂直层面方向的可钻性高,平行层面方向的可钻性低。在地层倾斜的情况下,当地层倾角小于45°时,钻头前进方向偏向垂直地层层面的方向,于是偏离铅垂线;当倾角超过60°以后,钻头前进方向则是沿着平行地层层面方向下滑,也要偏离铅垂线;当地层倾角在45°~60°之间时,井斜方向属不稳定状态。

11.引起井斜的钻具原因中最主要的两个因素是什么?他们又与什么因素有关?

答:

钻具导致井斜的主要因素是钻具的倾斜和弯曲。

导致钻具倾斜和弯曲的主要因素:首先,由于钻具直径小于井眼直径,钻具和井眼之间有一定的间隙。其次,由于钻压的作用,下部钻具受压后必将靠向井壁一侧而倾斜。

12.井径扩大如何引起井斜?如何防止井径扩大?

答:

井眼扩大后,钻头可在井眼内左右移动,靠向一侧,也可使受压弯曲的钻柱挠度加大,于是转头轴线与井眼轴线不重合,导致井斜。

要防止井径扩大,首先要有好的钻井液护壁技术;其次可以抢在井径扩大以前钻出新的井眼。

13.满眼钻具组合控制井斜的原理是什么?它能使井斜角减小吗?08

答:

满眼钻具组合采用在钻铤上适当安装扶正器(近钻头扶正器、中扶正器、上扶正器、第四扶正器),采用扶正器组合的办法解决井斜问题。满眼钻具组合并不能减小井斜角,只能做到使井斜角的变化(增斜或将斜)很小或不变化。

14.钟摆钻具组合控制井斜的原理是什么?为什么使用它钻速很慢?08

答:

钟摆钻具组合在钻柱的下部适当位置加一个扶正器,该扶正器支撑在井壁上,使下部钻柱悬空,则该扶正器以下的钻柱就好像一个钟摆,也要产生一个钟摆力。此钟摆力的作用是使钻头切削井壁的下侧,从而使新钻的井眼不断降斜。

.

.

钟摆钻具组合的性能对钻压特别敏感。钻压加大,则增斜力加大,钟摆力减小。钻压再增大,还会将扶正器以下的钻柱压弯,甚至出现新的接触点,从而完全失去钟摆组合的作用。所以钟摆钻具组合在使用中必须严格控制钻压,故钻速很慢。

15.定向井如何分类?常规二维定向井包括哪些?

答:

根据轨道的不同,定向井可分为二维定向井和三维定向井两大类,按照井斜角的大小,可将定向井分为三类:井斜角在15°~30°的属小倾斜角定向井;井斜角在30°~60°的属中倾斜角定向井;井斜角超过60°的属大倾斜角定向井。常规二维定向井轨道有四种类型:三段式、多靶三段式、五段式和双增式。

16.从钻井工艺的角度看,定向井的最大井斜角是大点好还是小点好?

答:

在可能的条件下,尽量减小最大井斜角,以便减小钻井的难度。但最大井斜角不得小于15°,否则井斜方位不易稳定。

17.多靶三段式与三段式有何区别?轨道设计方法有何不同?

答:

多靶三段式的轨道给定条件中,没有目标的水平位移。多靶三段式在设计中需要求出目标点的水平位移,确定地面上的井位,所以被称为“倒推设计法”。

18.轨道设计的最终结果包括哪些内容?

答:

设计结果包括:井斜角/°、垂增/m、垂深/m、平增/m、平移/m、段长/m和井深/m。

19.动力钻具造斜工具有哪几种形式?他们的造斜原理有何共同之处?

答:

动力钻具又称井下马达,包括涡轮钻具、螺杆钻具、电动钻具三种。动力钻具接在钻铤之下,钻头之上。在钻井液循环通过动力钻具时,驱动动力钻具转动并带动钻头旋转破碎岩石。动力钻具以上的整个钻柱都可以不旋转。这种特点对于定向造斜非常有利。

20.螺杆钻具在定向井造斜方面有何优点?

答:

螺杆钻具的扭矩与压力降成正比。压力降可从泵压表上读出,扭矩则反映所加钻压的大小,所以可以看着泵压表打钻。根据泵压表上的压力降还可以换算出钻头上的扭矩,从而可以较为准确的求得反扭矩。这是螺杆钻具在定向钻井应用中的突出优点。

21.变向器与射流钻头造斜原理有什么不同?它们能连续造斜吗?

答:

变向器是钻出小井眼扩眼并增斜来钻井的,射流钻头是利用一个大喷嘴中喷出的强大射流形成的冲击来造斜的,它们不能连续造斜。

22.BHA是什么意思?它有什么用途?08

答:

.

BHA(Bottom Hole Assembly)为靠近钻头的那部分钻具,称为“底部钻具组合”。BHA是定向造斜的关健,通过它进行定向井轨迹控制。

23.轨迹控制的三个阶段的主要任务各是什么?

答:

(1)打好垂直井段。在钻垂直井段时要求实钻轨迹尽可能接近铅垂线,也就是要求井斜角尽可能小。

(2)把好定向井造斜关。如果定向造斜段的方位有偏差,则会给以后的轨迹控制造成巨大困难。所以定向造斜是关键。(3)跟踪控制到靶点。从造斜段结束,至钻完全井,都属于跟踪控制阶段。这一阶段的任务是在钻进过程中,不断了解轨迹的变化发展情况,不断地使用各种造斜工具或钻具组合,对井眼轨迹进行控制,原则就是既要保证中靶,又要加快钻速。

24.高边方向与装置方向线各是怎样形成的?这两条线是否处在同一平面上?

答:

我们假设造斜工具放在井内时不受井眼地限制,钻头将在井底地外面。旋转钻柱,则钻头中心点将画出一个与井底圆同心地圆。井底圆上地最高点与圆心的连线称为“高边方向线”,转头中心与圆心的连线称为“装置方向线”。两条线都在井底平面上。

25.装置角有什么重要意义?当装置角等于240 时,井眼轨迹将如何发展?

答:

可以根据装置角算出钻具的高边,确定钻头的位置。

26.有了装置角为什么还要有装置方位角?它们之间有什么关系?

答:

装置方位角可以正确指出弯接头在井下的装置角的大小。装置方位角是装置角与井斜方位角之和。

27.动力钻具反扭角是如何产生的?为什么反扭角总是使装置角减小?

答:

动力钻具在工作中,液流作用于转子并产生扭矩,传给钻头去破碎岩石。液流同时也作用于定子,使定子受到一反扭矩。此反扭矩将有使钻柱旋转的趋势,但由于钻柱在井口处是被锁住的,所以只能扭转一定的角度,此角度称为反扭角。

28.什么是定向?定向的目的和意义是什么?

答:

定向就是把造斜工具的工具面摆在预定的定向方位线上。在扭方位计算中,我们可以算出造斜工具的定向方位角,定向可以知道造斜工具在井下的状况,以及使造斜工具的工具面正好处在预定的定向方位。

29.井下定向的工艺过程有哪些?

答:

井下定向法是先用正常下钻法将造斜工具下到井底,然后从钻柱内下入仪器测量工具面在井下实际方位;如果实际方位与预定方位不符,亦可在地面上通过转盘将工具面扭到预定的定向方位上。

30.定向键法是如何使测量仪器中罗盘的”发线”与造斜工具的工具面对准?

.

.

在测量仪器的罗盘面上有一个“发线”,在测量仪器的最下面有一个“定向鞋”,定向鞋上有一个“定向槽”,在仪器安装时使“发线”与“定向槽”在同一个母线上对齐。当仪器下到井底时,定向鞋的特殊曲线将使定向槽自动卡在定向键上,从而使罗盘面上的发线方位能表示造斜工具的工具面方位。

31.无磁钻铤在定向中的作用是什么?什么情况下需要使用无磁钻铤?

答:

使用无磁钻铤是为了消除钻铤磁性对磁性测斜仪的影响。在安装磁性测量装置的位置,应使用无磁钻铤。

32.水平井分类的依据是什么?为什么要分类?

答:

水平井的分类是根据从垂直井段向水平井段转弯时的转弯半径(曲率半径)的大小进行的。因为各类水平井的曲率半径不同,钻井所用的设备、工具和方法不同,固井、完井方法也不一样。

33.水平井的难度主要表现在哪些方面?引起这些难度的原因是什么?

答:

(1)水平井的轨迹控制要求高,难度大。

要求高,是指轨迹控制的目标区要求高。水平井的目标区是一个扁平的立方体,不仅要求井眼准确进入窗口,而且要求井眼的方位与靶区轴线一致,俗称“矢量中靶”。难度大,是指在轨迹控制过程中存在“两个不确定性因素”。一是目标垂深的不确定性;二是造斜工具的造斜率的不确定性。这两个不确性的存在,对直井和普通定向井来说,不会有很大的影响,但对水平井来说,则可能导致脱靶。

(2)管柱受力复杂。

由于井眼的井斜角大,井眼曲率大,管柱在井内运动将受到巨大的摩阻,致使起下钻困难,下套管困难,给钻头加压困难;在大斜度和水平井段需要使用“倒装钻具”,下部的钻杆将受轴向压力,压力过大将出现失稳弯曲,弯曲之后摩阻更大;摩阻力、摩扭矩和弯曲应力将显著增大,使钻柱的受力分析、强度设计和强度校核比直井和普通定向井更为复杂;由于弯曲应力很大,在钻柱旋转条件下应力交变,将加剧钻柱的疲劳破坏。

(3)钻井液密度选择范围变小,容易出现井漏和井塌。

地层的破裂压力和坍塌压力随井斜角和井斜方位角而变化;在水平井段,地层破裂压力不变,而随着水平井段的增长,井内钻井液液柱的激动压力和抽吸压力将增大,也将导致井漏和井塌。

(4)岩屑携带困难。

由于井眼倾斜,岩屑在上返过程中将沉向井壁的下侧,堆积起来,形成“岩屑床”。特别是在井斜角45°~60°的井段,已形成的“岩屑床”会沿井壁下侧向下滑,形成严重的堆积,从而堵塞井眼。

(5)井下缆线作业困难。

在大斜度和水平井段,测井仪器不可能依靠自重滑到井底。

(6)保证固井质量的难度大。

一方面由于大斜度和水平井段的套管在自重下贴在下井壁,居中困难;另一方面钻井液在凝固过程中析出的自由水将集中在井眼上侧,从而形成一条沿井眼上侧的“水槽”,大大影响固井质量。

(7)完井方法选择和完井工艺难度大。

水平井井眼曲率较大时,套管将难以下入,无法使用射孔完井法,将不得不采用裸眼完井或筛管完井法等。这将使完井方法不能很好地与地层特性相适应,将给采油工艺带来难度。

34.井斜方位角与象限角的换算:

(1)将下列方位角用象限角表示:50 ,90 ,175 ,200 ,315 ,0 ;

(2)将下列象限角用方位角表示:S13.5 E,S70 W,N50 E,N33 W。

.

.

答:

35.试用两种井眼曲率公式分别计算表中所列三个测斜的井眼曲率。

测段123

3533段长/m 35

353井斜角80

393井斜角85

30315100方位角

295194160方位角

)曲率(方法1

曲率(方法2)

答:

和平均井斜方位角。求下列各测段的井斜方位角增量

36.

段测 4 2 3 1

45 3 185 300

230 25 355 10

答:

。请分别用平均角法和校正平均角法完成下表数据的测斜计算。已知设计方位角37.

DLS/ /30m E/m V/m N/m D/m L/m

1.06 6.11 1524.24

17.34 1532.24 0.89

1542.89 19.00 358.2

1551.94 20.12

0.99

答:

验算表.38 中某些测段及测点的计算结果。5-1 答:

(内径,, mmmm钟摆钻具组合扶正器最优距离的计算。已知条件为:.39

。试求该组合75mm3 =1.33kg/L ,),E=20.594 Pa,设计允许最大井斜角P=120kN,钻压的中扶正器距离钻头的最优距离。1.8 40.,造斜点垂深200m800m某定向井设计目标点垂深,水平位移为,造斜率500m /30m,设计轨道形状为三段式。试设计该井轨道,并按表列项目计算有关未知参数。垂深水平位移点节井深井斜角O

K

t

.

.

41.某井拟设计为双增轨道,设计条件如下:造斜点垂深,完钻点垂深,完钻点位移,目标段长,第一造斜率,第二造斜率。试设计该轨道,并按表列项目计算有关未知参数。

节点井斜角垂深水平位移井深

O

K

42.某井拟设计为多靶三段式轨道,已知设计条件为造斜点垂深,目标点垂深,目标段井斜角,目标段长,给定造斜率。试设计该轨道,并按表列项目计算有关未知参数。

节点井斜角垂深水平位移井深

O

K

使井100m102 。根据轨迹控制要求,希望钻进深处,井斜方位角.43 某井钻至2000m 。求造斜工具的装置角和造斜率。70 斜角达到33 ,井斜方位角达到,造斜工具的造斜率.44 某井方位控制计算:已知目前井底井斜角22.5 ,井斜方位角205

120m95 ,求钻进以后的井斜角和井斜方位角值。4.5 /30m为,装置角定为定向井方位与方向的区别何在?井斜方位角有那两种表示方法?二者之间如何换算?.45 答:是有区别的。方位线是水平面上的矢量,而方向线则是空间的矢量。只要讲到方位、方位方向方位””与““线、方位角,都是在某个水平面上;而方向和方向线则是在三维空间内(当然也可能在水平面上)。井眼方向线是指井眼轴线上某一点处井眼前进的方向线。该点的井眼方位线则指该点井眼方向线在水平面上的投影。目前广泛使用的磁性测斜仪是以地球磁北方位为基准的。磁北方位与正北方位并不重合而是有个夹角,称为磁偏角。磁偏角又分为东磁偏角和西磁偏角。东磁偏角指磁北方位线在正北方位线的东面,西磁偏角指磁北方位线在正北方位线的西面。用磁性测斜仪测得的井斜方位角称为磁方位角,并不是真方位角,需要经过换算求得真方位角。这种换算称为磁偏角校正。换算的方法如下:真方位角=磁方位角+东磁偏角真方位角=磁方位角-西磁偏角

,井斜,方位角680m110°;第二测点测深7°650m 46.已知某井第一测点测深,井斜角和东,方位角角11°130°(单位:m)、北坐标增量单位:(。用平均角法计算两测点间的垂深增量m) /100m)°(并计算出两测点间的井眼曲率m);(坐标增量单位:单位:。答:= Lcos =30cos(9)=29.63m

垂深增量= Lsin cos = 30sin(9)cos(120)= 2.346m 北坐标增量= Lsin sin =30sin(9)sin(120) =4.063m 东坐标增量.

.

井眼曲率:

=16.9 °/100m

47.分析造成井斜的原因,简述控制井斜的基本方法和原理。

答:08

造成井斜的原因主要有:

(1)地质因素

a. 地层可钻性的各向异性,即地层可钻性在不同方向上的不均匀性。

b. 地层可钻性的纵向变化。

C. 地层可钻性的横向变化。

(2)钻具原因

下部钻具的倾斜和弯曲,引起钻头倾斜,在井底形成不对称切削;或使钻头受到侧向力的作用,迫使钻头进行侧向切削。(3)井眼扩大

井眼扩大,钻头可在井眼内左右移动,靠向一侧,也可使受压弯曲的钻柱挠度加大,于是钻头轴线与井眼轴线不重合,导致井斜。

控制井斜的基本方法有:

(1)满眼钻具组合控制井斜

如果钻具直径与钻头直径完全相等,上述三个井斜原因就都会被克服。

(2)钟摆钻具组合控制井斜

钻柱的下部适当位置加一个扶正器,该扶正器支撑在井壁上,使下部钻柱悬空,则该扶正器以下的钻柱就好像一个钟摆,产生一个钟摆力,其作用是使钻头切削井壁的下侧,从而使新的井眼不断降斜。

48.分析(图示)斜井内下部钻柱的受力情况,指出作用在钻头上的力中哪些力为造斜力,哪些力为减斜力?各项同性地层中,井斜平衡角数值主要取决哪些因素?

答:

如图所示为下部钻柱在斜井内的受力情况。井斜角为,钻铤靠在井壁的低边,并在切点T处与井壁接触,作用在钻头上的力有:

(1)钻压P

钻压分解为:

=P cos 对井斜无影响P 平行于井眼轴线的力O=P sin 是增斜力F垂直于井眼轴线的力i(2)钟摆力是减斜力

F 地层造斜力(3)f F是增斜还是减降斜取决于地层倾角大小和各向异性因素。f井斜平衡角的数值主要取决于三个因素:钻压、钻铤尺寸和井眼尺寸。

49.简述定向井剖面的具体设计方法。所设计的井眼曲率要受到哪些因素的制约,为什么?

答:

具体方法:

(1)掌握原始资料主要是该地区的地质剖面,地表对井位的限制条件,目的层位的垂直井深和总的水平位移,自然造斜规律,工具的造斜能力,钻井技术水平以及故障提示等。

.

.

(2)根据井身剖面确定原则,选定一个井身剖面类型。

(3)根据原始资料选定造斜点的位置,并确定造斜率和将斜率的大小。

(4)确定最大井斜角

(5)计算剖面上各井段的井斜角,方位角,垂直井深,水平位移。

(6)校核井眼曲率,使其满足对各种条件的限制,并作出井身的控制圆柱。

井眼曲率的限制:

(1)井下动力钻具的限制,应力问题。

(2)套管的限制,应力问题。

(3)测井及完井的限制,下入问题。

(4)起下钻阻卡及键槽的限制,高摩阻问题。

50.简述定向井扭方位作业中装置角的定义及其对方位和井斜的影响。

答:

井底平面上以高边方位线为始边顺时针旋转到造斜工具装置方向线所转过的角度。

0 0

90 0

270 0

180 0增斜

增方位

降斜

增方位

降斜

减方位增斜减方位

.

三维多靶点井眼轨迹控制技术

三维多靶点深井轨迹控制技术 一、概况 QK18-2油田位于歧口区块,大大小小的断层很多,地层相当复杂。QK18-2油田分北块、南块、中块,主要钻探沙河街的油层,平台结构3X4,间距2.0X2.3m,结构北角358.9度,井身剖面全部为三维多靶点定向井,方位最大变化68度,井斜最大变化35.86度。平均井深3515.64米,最深井深3938.42米,靶区半径控制范围:50m。QK18-2平台分两次批钻方式,第一批钻5口井,第二批钻7口井。QK18-2平台全部钻三维定向井的第一个丛式井平台,是丛式井集束作业难度最大的一个平台之一。 二、井身设计 第一类定向井(P3、P4、P6):平均井深在3247米左右,目的层为沙河街。 井身结构:17-1/2”井眼+12-1/4”井眼+8-1/2”井眼 第二类定向井(P1、P8):平均井深在3919米左右,目的层为沙河街。 井身结构:26”井眼+17-1/2”井眼+12-1/4”井眼+8-1/2”井眼 四、平台槽口图和井位图

五、项目难点 1、深井作业安全问题。 2、克服摩阻,保证滑动钻进。 3、二次造斜,二次造斜点深,是否容易造斜,是否滑得动。 4、合理优化轨迹。 六、施工思路 大位移三维多靶点定向井最大的困难是如何克服摩阻,保证滑动钻进和井眼轨迹合理控制。在井眼轨迹需要调整时,能够及时的调整,如果各方面原因不能调整时,怎样合理的把困难有效的克服,顺利中靶,是我们工作的重点。 1、总结本地区各地层的漂移规律,合理利用地层的自然漂移规律,达到有效控制井眼轨迹的目的。 2、裸眼井段长,摩阻大,扶正器托压严重,不能滑动钻进时,在轨迹控制不失控的情况下,合理利用井身结构,把困难转移到下一个井段或改变钻具组合。 3、合理选择第二造斜点,合理选择造斜率。 4、从始至终,要准确的预测井眼轨迹。 5、合理选择马达弯角,使之能够满足井眼轨迹控制的需要。 6、优化井眼轨迹,降低作业难度。 七、井眼轨迹控制 下面以P8井为例介绍井眼轨迹控制技术,中间穿插其它井遇到特殊情况下的轨迹控制:1、26"井眼轨迹控制 26"井眼主要任务是防斜打直,做好防碰扫描。利用大钟摆钻具,轻压吊打,钻进至208米,投测多点起钻。钻井参数控制:钻压:0.5~2.5吨;排量:4200升/分;转速:80转/分;平均机械钻速:62.45米/小时。 2、17-1/2"井眼轨迹控制 钻具组合:17-1/2"PDC+9-5/8"AKO(1.5)+16-1/2"STB+8"F/V+8"NMDC1+8"MWD+8"NMDC1 +7-3/4"(F/J+JAR)+X/O+5"HWDP13 P8井17-1/2"井眼造斜,造斜点248米,按照设计轨迹开始造斜,平均机械钻速45米/小时,钻进至683米造斜结束。反扭角20~40度。17-1/2"井眼主要在平原组和明化段,可钻性好,钻进至1213米17-1/2"井眼结束。井眼轨迹控制较困难: 1)17-1/2"井眼的欠扶正器尺寸选择有限,只有16-5/8"和16-1/2"两种,几乎没有选择的余地。 2)降斜率0.5~1度/30米,漂移率0.4~1.5度/30米。 3)裸眼井段长,滑动困难。裸眼井段超过600米之后,摩阻大,钻具托压严重。 3、12-1/4"井眼轨迹控制 钻具组合: 12-1/4"PDC+9-5/8"AKO(1.15)+11-1/4"STB+8"F/V+8"NMDC1+8"MWD+8"NMDC+7-3/4"(F/J +JAR)+X/O+5"HWDP10 P8井三维多靶点定向井,12-1/4"井眼主要控制好井斜、方位,越靠近设计轨迹越好。轨迹控制原则是,12-1/4"井眼稳斜稳方位,把二次造斜点推迟到8-1/2"井眼,降低作业时间。轨迹控制原则从始而终贯穿12-1/4"井眼。12-1/4"井眼完钻原则是进入东营组50米下9-5/8"套管。明化镇地层的漂移规律:降斜率为0.2~0.5度/30米,漂移率-0.2~0.3度/30米;进入馆陶组,降斜率为0.1~0.3度/30米,馆陶底部井斜有微增斜趋势,增斜率0.1~0.5度/30米;方位较稳定。馆陶底部有微增斜趋势后,滑动钻进非常困难,这也是使用PDC钻头的缺点,采取划眼和降低钻压的方法控制井眼轨迹。12-1/4"井眼的困难是裸眼井段长,滑动困难,必

井眼轨道设计与轨迹控制培训教材习题集

井眼轨道设计与轨迹控制培训教材习题集 四、简答题 1. 井眼轨迹的基本参数有哪些?为什么将它们称为基本参数? 答:井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置。 2. 方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二 者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3. 水平投影长度与水平位移有何区别?视平移与水平位 移有何区别?答:水平投影长度是指井眼轨迹上某点至井口的长度在水平

面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4. 狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹 角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5. 垂直投影图与垂直剖面图有何区别? 答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6. 为什么要规定一个测段内方位角变化的绝对值不得超 过180 实际资料中如果超过了怎么办? 答:因为假设一个测段内方位角沿顺时针变化超过180° 时,沿逆时针其变化则小于180°,所以一个测段内方位角变化的绝对值不得 超过180°。实际资料中超过了,则可用如下方法计算: 当4- 4-1 > 180°时, △①i =O i -①i-1 -360 当①i-①i-i v -180 o时, △①i=O i-①i-i +360 o 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要

井眼轨道设计及监控软件的开发_王慕玮

第24卷 第12期2008年6月 甘肃科技 Gansu S cience and Technolo gy Vol.24 N o.12 J un. 2008井眼轨道设计及监控软件的开发 王慕玮1,范海燕2 (1.新疆油田公司井下作业公司,新疆克拉玛依834000;2.新疆油田公司装备处,新疆克拉玛依834000) 摘 要:W PM S井眼轨道设计及监控软件实现了井眼二维轨道和三维轨道设计模型的统一,轨道设计参数关系明确,剖面类型任意组合,采用解析法对设计参数精确求解,且能任意求解轨道设计参数,克服了以往在三维井眼轨道设计中利用数值法等难以求解的缺点,能在极短时间之内设计出合理的井眼轨道。满足定向井、水平井、侧钻井、分支井及多目标井等各种类型的井眼轨道设计和随钻轨道设计的需要。 关键词:水平井;井眼;轨迹;设计;监控 中图分类号:T E242 1 井眼轨道的设计 1.1 二维井眼轨道模型 典型的二维井眼轨道形式如图1,二维井眼轨道设计一般模型如图2所示。(所有图进单栏,排版时将此句删掉) 设计模型不仅包含了常规的三段制(J型),五段制(S型)和双增型轨道,而且还可令直线段长度为零,由此组成多种轨道剖面型式。具有8个轨道设计变量,任意给定6个参数,即可判定方程是否含有解。在有解的情况下,可唯一确定另外2个设计参数。对8个变量,任选2个进行求解组合,可得到28种求解方式。 应用所建立的二维经验轨道设计模型和求解公式,开发了井眼轨道设计软件。在设计时,可作到灵活,快速,精确的设计,能满足用户多种设计需求,在实践中得到了很好的应用,同时也验证了模型的正确性和有效性。 1.2 三维井眼轨道模型 三维井眼轨道设计模型如图3。

钻井工程:第五章井眼轨道设计与轨迹控制.

第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别? 答: 水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同? 答: 狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5.垂直投影图与垂直剖面图有何区别? 答: 垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办? 答: 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系? 答: 测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角)。

水平井井眼轨迹控制

水平井井眼轨迹控制 第一章水平井的分类及特点 (2) 第二章水平井设计 (4) 第三章水平井井眼轨迹控制基础 (8) 第四章水平井井眼轨迹控制要点 (13) 第五章水平井井眼轨迹施工步骤 (21)

第一章水平井的分类及特点 水平井的概念:是最大井斜角保持在90°左右(大于86°),并在目的层中维持一定长度的水平井段的特殊井(通常大于油层厚度的6倍)。 一、水平井分类 二、各类水平井工艺特点及优缺点

三、水平井的优点和应用 1、开发薄油藏油田,提高单井产量。

2、开发低渗透油藏,提高采收率。 3、开发重油稠油油藏,有利于热线均匀推进。 4、开发以垂直裂缝为主的油藏,钻遇垂直裂缝多。 5、开发底水和气顶活跃油藏,减缓水锥、气锥推进速度。 6、利用老井侧钻采出残余油,节约费用。 7、用丛式井扩大控制面积。 8、用水平井注水注气有利于水线气线的均匀推进。 9、可钻穿多层陡峭的产层。 10、有利于更好的了解目的层性质。 11、有利于环境保护。 第二章水平井设计 一、设计思路和基本方法: 简而言之,就是“先地下后地面,自下而上,综合考虑,反复寻优”的过程。

二、水平井靶区参数设计 与定向井不同,水平井的靶区一般是一个包含水平段井眼轨道的长方体或拟柱体。靶区参数主要包括水平段的井径、方位、长度、水平段井斜角、水平段在油藏中的垂向位置、靶区形状和尺寸。 1、水平段长度设计 设计方法:根据油井产量要求,按照所期望的产量比值(即水平井日产量是临近直井日产量的几倍),来求解满足钻井工艺方面的约束条件的最佳水平段长度值。约束条件主要有钻柱摩阻、扭矩,钻机提升能力,井眼稳定周期,油层污染状况等。 2、水平段井斜角的确定 应综合考虑地层倾角、地层走向、油层厚度以及具体的勘探开发要求。 βα±?=90H ,β为地层真倾角 当地层倾角较大而水平段斜穿油层时,则应考虑地层视倾角的影响,[])cos(90H H d tg arctg Φ-Φ-?=βα, d Φ为地层下倾方位角,H Φ为 水平段设计方位角 3、水平段垂向位置确定 油藏性质决定了水平段的设计位置。对于无底水、无气顶的油藏,水平段宜置于油层中部;对于有底水或气顶的油藏,水平段应尽量远离油水或气水边界;对于既有底水又有气顶的油藏,

井眼轨迹的三维显示

中文摘要 井眼轨迹的三维显示 摘要 本文介绍了国内外井眼轨迹三维显示技术的研究现状,归纳了常规二维定向井轨道设计原则和几种轨道类型的计算方法,以及井眼轨迹测斜计算的相关规定、计算模型假设和轨迹计算方法。从井位、井下测量和计算三个方面对井眼轨迹误差进行了讨论并简要说明了不同的井眼轨迹控制。在此基础之上,利用VB和MATLAB软件编制了井眼轨迹的三维显示软件,并简要介绍了该软件的设计流程、主要功能和难点处理,指出了软件的不足之处,展示了井眼轨迹三维绘图的所有运行界面,并附上软件说明书。最后,对井眼轨迹三维显示开发的研究方向进行了展望。 关键字井眼轨迹三维显示 MATLAB Visual Basic 轨迹计算轨道设计误差分析

重庆科技学院本科生毕业设计英文摘要 Abstract In this paper, at home and abroad well trajectory 3-D display technology of the status quo,Summarized the conventional two-dimensional directional well the track design principles and track several types of calculation method,And the well trajectory inclinometer terms of the relevant provisions, the model assumptions and trajectory calculation. From the wells, underground measurement and calculation of the three aspects of the well trajectory error was discussed and a brief description of the different well trajectory control. On this basis, using VB and MATLAB software produced a hole trajectory of the three-dimensional display software, and gave a briefing on the software design process, and difficulties in dealing with the main function, pointed out the inadequacy of the software, demonstrated the well trajectory 3-D graphics interface all the running, along with software manuals. Finally, the well trajectory 3-D display development direction of the prospect. Keyword:Well trajectory;3-D display;MATLAB ;Visual Basic;trajectory calculation ;trajectory design ;Error Analysis

井眼轨道设计与轨迹控制》专业技术人员竞赛钻井试题doc

钻井工程专业竞赛试题 一、选择题:(每题只有一个是正确的,将正确的选项填入括号内)(每题1分,共10分) 1、一口井钻进之前人们预想的该井井眼轴线形状称()。 (A)井眼轨迹(B)井眼轨道(C)井眼曲线(D)井眼图形 2、一口已钻成的井实际井眼轴线形状叫( C )。 (A)井眼轨迹(B)井眼轨道(C)井眼曲线(D)井眼图形 3、水平井技术的迅速发展是从20世纪()年代开始的。 (A)60 (B)70 (C)80 (D)90 4、只能纠斜不能防斜的钻具是()。 (A)钟摆钻具(B)塔式钻具(C)偏重钻铤(D)满眼钻具 5、测斜仪入井后,为防止卡钻,活动钻具()。 (A)时间越长越好(B)不能连续长时间活动(C)尽可能转动(D)范围越小越好 6、水平井的摩擦阻力随井斜角的增大而()。 (A)不变(B)增大(C)减小(D)影响不大 7、()是确定水平井各项技术方案的依据。 (A)地面设备(B)工艺要求(C)曲率半径(D)储层特征 8、井眼轴线上某一点到()之间的距离,为该点的水平位移。 (A)井口铅垂线(B)井口坐标(C)井口(D)井口直线 9、根据井眼曲率的大小,水平井可分为()类。

(A) 2 (B)3 (C)4 (D)5 10、常规定向井的最大井斜角在()以内。 (A)60°(B)70°(C)80°(D)90° 11、水平井的最大井斜角保持在()左右。 (A)60°(B)70°(C)80°(D)90° 12、定向井中通常所说的“井深”是指()。 (A)斜深(B)垂深 (C)设计井深(D)井眼某点到井口直线长度 13、常规定向井和丛式井中的最大井眼曲率不应超过()。 (A)4°/30m (B)5°/30m (C)5°/35m (D)7°/35m 14、上扶正器能保证钻具上至少有3个稳定点与井壁接触,从而保证井眼的直线性。 (A) 2 (B)3 (C)4 (D)5 15、井眼间隙对钟摆钻具组合性能的影响() (A)非常明显(B)不太明显(C)比较明显(D)不明显 一、单项选择答案: 1、B; 2、A; 3、C; 4、A; 5、B; 6、B; 7、D; 8、A; 9、C;10、A;11、D;12、A;13、B;14、B;15、C 二、多项选择题:(每题有两个或两个以上答案是正确的,将正确的选项填入括号内)(每题2分,共20分,每道题答案中只要有一个错误选择就不能得分,答案选择两个或以上都正确但不全的得1分,全部正确得2分) 1、定向井应用领域大体有以下情况(A、C、D )

第六章井眼轨迹设计与控制第一次作业答案

第六章井眼轨迹设计与控制 第一次作业 1、已知某井的几个测段数据如下表所示(测段长均为30m),试计算每个测段的井眼曲率。分别用最小曲率法和空间曲线法计算,并加以对比。 解: 此处前二个测段采用的是最小曲率法,后二个测段的是采用空间曲线法。因此解题并不完整. (1)采用最小曲率法计算前二个测段井眼曲率 由公式:K=cos-1[cosαA cos B+sinαA sinαB cos(φB-φA)]*30/(L B-L A)(°/30m) 并注意到测段长均为30m,可得: 对于第一个测段:K=cos-1[cos35cos38+sin35sin38cos8]*30/30=5.62(°/30m)对于第二个测段:K=cos-1[cos25cos30+sin25sin30cos0]*30/30=5.00(°/30m) (2)采用空间曲线法计算后二个测段井眼曲率 由公式:Δα=αB-αA(°) αV=(αA+αB)/2(°) K=[Δα2+Δφ2sin2αV]1/2/ΔL*30(°/30m) 并注意到测段长均为30m,可得: 对于第三个测段: Δα=15-10=5(°) Δφ=80(°) αV=(10+15)/2=12.5(°) K=[52+802sin212.5]1/2/30*30=18.02(°/30m) 对于第四个测段: Δα=56-60=-4(°) Δφ=79(°) αV=(60+56)/2=58(°) K=[(-4)2+792sin258]1/2/30*30=67.12(°/30m) 答:该四个测段的井眼曲率依次为5.62°/30m、5.00°/30m、18.02°/30m、67.12°/30m。

井眼弯曲度、扭矩、钻井参数和能源与井眼轨道设计的关系

SPE 123710 井眼曲折、扭转、钻井参数和能量:在井眼轨道设计中起什么作用? Robello Samuel, 哈里伯顿,刘修善,中石化 版权所有2009年,石油工程师学会 这篇论文准备是2009SPE 技术年会上的演示文稿并于2009年10月在美国路易斯安那州新奥尔良展览。 摘要 井身质量通常与井身的“光滑度”相关,它有很多的衡量方法,这些方法都与钻井过程和钻进的效率以及完井成本息息相关。目前,有几个参数如井眼的曲折、曲率、扭转角和钻井的各项指标,都被用于量化的井眼轨迹,或评估钻得光滑井眼的难度。除此之外,没有明确的标准来衡量的井身质量。与定性地量化井眼相比,钻井指数更主观地描述井身质量。在某些情况下,他们仅作为衡量井的难钻程度,而不是实钻井眼多么光滑。 另外一个在计算时被忽略重要参数是井眼的扭转。井眼的扭转描述了井眼轨迹的副法线向量对弧长的旋转速度,或密切面改变副法线方向的程度。它确保光滑的井眼轨并减少大位移和超深大位移井的摩阻扭矩。由于还没有行业标准量化这些参数,它们很容易混淆,在还没有适当的证明和理解时,就互换使用它们。本文提供这些参数,以及它们明确的定义和可以使用环境。几个计算示例以作简单指导。本文还提供了评价相对和绝对项在光滑井眼轨迹上应用这些参数的方法。本文还提供了用于衡量井身质量的最小能量,它是基于薄弹性梁非线性弯曲的数学标准。 介绍 随着更新的、更复杂的井底钻具组合的出现,监测这些工具的性能和井身质量的要求就更加迫切。滑动钻进和旋转钻进的交替进行,导致井眼成螺旋形;经常的滑动钻进,使井眼振荡变的更加明显。对摩阻扭矩定性的质量评价和定性估计在钻井施工的很多阶段相当的重要。当地质导向工具配合使用时,它们可以调

钻井工程井眼轨道设计与轨迹控制

. 第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 方位线位置真方位角与象限角关系 真方位角=象限角第一象限 真方位角=180°第二象限-象限角 真方位角=180°+象限角第三象限 -象限角360°真方位角=第四象限 水平投影长度与水平位移有何区别?视平移与水平位移有何区别.?3 答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 .5 垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.?实际资料中如果超过了怎么办?180 为什么要规定一个测段内方位角变化的绝对值不得超过答: 测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测7.点计算有什么关系?答:坐标增量和井眼曲率;测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E 坐标、视平移)对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、E坐标、N 和两个极坐标(水平位移、平移方位角)。. .

浅析复杂地层钻井井眼轨迹控制技术

云南化工Yunnan Chemical Technology Mar.2018 Vol.45,No.3 2018年3月第45卷第3期 1 井眼轨迹控制技术 我们主要根据某一台井,其中5口定向井以及1口水平井。1)对这6口井来说,其造斜点是比较高的,而且地层比较软,在进行下钻的过程中,倾斜的地方就会非常容易出现由于发生阻碍二采区划眼手段,这样就容易形成新的井眼;2)对于底层的深度大于1000m的井而言,其成岩的性质是比较差的,这时候需要注意防止坍塌现象的出现,并且避免粘附性卡钻;当钻进等操作遇到不是非常平整的面的时候,这时候必须要注意防止倾斜以及防止泄露;3)对于下部地层来说,其地质情况是相对比较复杂的,而且可钻性是非常差的,这样就会容易出现坍塌以及泄露的情况。4)对于目的层而言,其中靶的半径大概是30m,因此对中靶的质量要求还是比较高的,这时候应该对井眼的轨迹进行严格的控制,如果有必要可以对作业的方位进行调整,如果井是比较深的,就必然会将施工难度增加。 2 对钻具组合进行设计 对于从式井钻井的钻具来说,通常采取的就是井下动力钻具,并且根据MWD将钻测量以及动力钻具组合起来提供导向。 对于钻井系统,通常采取的技术就是滑动导向复合钻井技术,不仅可以非常轻松的实现定向以及增斜的目的,还可以轻松的实现稳斜以及降斜的目的。在对井眼轨迹的实际情况进行参考之后可以对轨迹进行必要的调整,这样不仅可以将井的倾斜角降低,将定向速度提升上去,还可以将扭方位的次数降低下去。 3 井眼轨迹控制技术 3.1 直井段 对于定向井以及水平井直井来说,在对井身的轨迹进行控制的主要原则就是防止斜打直。当直井段并不是非常直得时候,钻井过程中钻到造斜点时,在这个地方会存在一定的井斜角,这对定向造斜是不是可以顺利的完成具有直接影响,而且位于上面部分的井斜所产生的位移也会对下一步井身轨迹控制造成一定的影响。如果在造斜点的位移小于零,为了能够满足实际的设计需求,在进行实际的施工过程中应该进行更大的造斜率以及更大的井斜角度;但是如果位移大于零,需要操作的与上述情况相反。如果在造斜点的位移是朝着所设计的方向两侧有所偏移,就会由原来的二维定向井变成三位定向井,而且在接下来的井身轨迹过程中也会产生一定的困难。对于丛式井而言,如果在直井段发生一定的井斜,会非常容易产生由于从式井里面的两口定向井的直井段的井眼发生相互碰撞而产生一定的安全事故,不仅会让新的井眼报废,也会让原来的井眼破坏。如果在直井段防斜打直已经与钻好的井发生相互碰撞时,为了在这种情况也可以顺利进行,通常采取的措施就是通过利用井下动力钻具,MWD随着钻侧斜仪与动力钻具的导向钻井技术相互配合。 3.2 造斜段 对于造斜段而言,其主要的特点就是造斜点比较高,而且地层也是比较软的,在向下钻进的过程中在造斜段会非常容易发生由于遭遇阻碍而采取划眼手段,这时候就会非常容易出现重新钻出来的井眼。因此在进行下钻或者是通井的过程中,如果遭遇阻碍,应该马上采取划眼的方式从而避免出现新的井眼。在进行造斜的过程中通常会采取滑动钻进同旋转钻进相互结合的方式并且缓慢的进行增斜,并且在已经规定好的造斜率进行造斜。为了确保井眼的轨迹是非常平滑的,对造斜率而言所遵循的方式应该是先低后高,对井眼的轨迹进行严格的控制,这样可以减少过大的不平衡情况。 4 结语 当从式井组的井槽位置已经确定以后,相关工作人员可以将位移大的井放在外围,位移小的井放置于内部。对于定向井而言,通常可采用井下动力钻具完成多种滑动导向符合钻井工序,通过上提造斜点、降低井斜角以及提升定向速度等措施延长稳斜段、缩短降斜断。 参考文献: [1] 蒋维.石油钻井工艺技术优化[J].云南化工,2017,44(12):77-78. [2] 党文辉,张文波,刘颖彪,等.金龙2井区复杂地层水平井井眼方 位优化探讨[J].钻采工艺,2015(5):99-101. [3] 何秋延.塔里木油田钻井过程中的安全管理措施[J].云南化 工,2017,44(12):84+86. 收稿日期:2018-1-22 作者简介:边跃龙,中石化中原石油工程有限公司技术公司。 doi:10.3969/j.issn.1004-275X.2018.03.131 浅析复杂地层钻井井眼轨迹控制技术 边跃龙 (中石化中原石油工程有限公司技术公司,河南 郑州 450000) 摘 要:主要针对钻井过程中遇到的一些比较复杂的地层特点以及轨迹控制的难点进行了介绍,对不同井段轨迹数据以及轨迹控制的难点进行了分析、对不同井眼轨迹控制技术进行了研究,还对各项钻井参数进行优化、对井深的轨迹进行了合理的控制,这样可以很好的达到施工标准。因为选择了比较好合适的井眼轨迹控制技术,所以可以很好的将轨迹的控制能力提升上去。 关键词:大位移钻井;底部钻具组合;轨迹控制 中图分类号:TE242 文献标识码:B 文章编号:1004-275X(2018)03-169-01 ·169·

水平井井眼轨迹控制

水平井井眼轨道控制 班级:采油60901 学号:200962276 序号:4 姓名:蒋凯 指导老师:卢林祝

在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。 一、水平井的中靶概念 地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。 二、水平井增斜井段井眼轨迹控制的特点及影响因素 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。 水平井钻井工程设计中所给定的钻具组合是在一定的理论计算

和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中或滞后。 实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是: ①实钻轨迹点的位置超前,相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。 ②轨迹点位置适中,若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。 ③轨迹点的位置滞后,相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。 实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。 在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新

定向井井眼轨迹预测与控制论述

龙源期刊网 https://www.sodocs.net/doc/821380399.html, 定向井井眼轨迹预测与控制论述 作者:于肖臣 来源:《中国科技纵横》2016年第04期 【摘要】定向井的施工是石油钻探开发过程中的关键环节。影响井眼轨迹的因素包括地 质结构、钻具的类型、井眼的几何形状、钻井工艺的选择等。为了确保定向井井眼轨迹的准确,在钻井的过程中需要对井眼的轨迹做好预测工作。本文对定向井井眼轨迹的预测方法进行了总结和分析,并结合实际的工作经验探究了定向井井眼轨迹预测的方案。 【关键词】定向井井眼轨迹预测控制 1 井眼轨迹预测的内涵 所谓的井眼轨迹预测就是指根据井眼当前的走向判断井眼的延伸方向。图1 描述的是井眼轨迹和轨道示意图,影响井眼轨迹的因素有很多,包括地质特点、地层的倾斜度、岩石的种类和强度等。井眼轨迹的形成是这些因素共同作用的结果,但当前无法根据这些因素对井眼的轨迹进行精确的判断,只能在施工的过程中不断总结经验,并借助一定的数据进行辅助的判断。为了确保井眼轨迹的精确度,在实际钻井的过程中需要实时的监控和调整钻头的前进的方向。井眼的实际走向在地面上是无法观察到的,只能在施工的过程中采用专门的仪器进行实时的观测。 2 井眼轨迹的预测依据 从力学的角度来看,外力的作用是改变物体运动轨迹的根本原因。物体的运动状态包括运动的方向、速度两个方面,反映到钻井上来就是指钻速的大小和钻井的方向。钻井的过程中会产生井斜角和井斜方位角。根据实际的工作经验可以知道,在钻井的过程中,钻头的前进方向主要由钻头的受力情况所决定。而钻头的受力状况又受到钻具的形状、钻具的形变程度、地质特性等因素影响。 截至当前,对于井眼轨迹的预测还无法建立数学模型进行精确的计算,但通过一定的实践经验和辅助工具,可以制定出一套准确性较高的预测方法。 这套预测方法主要包括三个方面的内容。首先是测斜结果计算对比分析。在钻井的过程中需要对钻头的状态进行实时的监控,并记录下观测的测斜结果,通过绘图的方式将测斜结果反映出来,并进行分析对比。其次是待钻地层因素分析。由于地质特性会对井眼的轨迹产生一定的影响,应当在钻井前对待钻地层的地质特点进行深入全面的分析,结合相关的数据来预测井眼的轨迹方向。最后是近钻头钻具组合受力分析。这一过程需要从地层结构、井眼轨迹的形状、钻头的组合方式等方面进行综合考虑,构建一定的数学模型进行井眼的延伸方向预测。 3 井眼轨迹控制原则

基于地质导向的给定井眼方向待钻轨道设计

基于地质导向的给定井眼方向待钻轨道设计 摘要:在地质导向钻进过程中,井眼方向及其变化规律是井眼轨道监测与控制的关键参数,给定目标点井眼方向待钻轨道设计是水平井轨迹控制的重要技术之一。分析认为给定井眼方向的待钻轨道剖面由“斜面圆弧段+直线段+斜面圆弧段”组成,是最简单且合理的剖面形式,为了避开求解非线性约束方程组,使得求解过程具有一致收敛性,并且所有计算公式在理论上都是精确解,因此提出了逐点寻优设计法待钻轨道设计方法,并对其进行了改进,形成了非常有效的改进型逐点寻优设计法;算例分析表明改进型逐点寻优设计法是可行的,其计算过程、普适性、精确性及稳定性均得到了保证,因此可广泛应用于定向井、水平井、大位移井、多目标井的待钻井眼轨道设计。 关键词:地质导向,待钻井眼,井眼方向,轨道,定向井,水平井 引言 地质导向钻井技术是近年来国内外发展起来的前沿钻井技术之一。它是在世界范围内的勘探开发面临复杂地质条件的背景下和随钻测量(MWD)技术日趋成熟的基础上发展起来的,是地质信息、随钻测井(LWD)仪器响应和用于引导井眼进入目的层并保持在目的层内的解释技术的综合[1]。地质导向水平井钻井是在先期建立的地质和油藏模型的基础上,对随钻测井和综合录井数据进行解释处理,然后根据解释结果及时待钻地质和油藏模型,通过调整井眼空间姿态来跟踪地质目标,整个过程是动态的,直至确定油层位置并钻穿油层。显然,地质导向水平井在开发那些薄油藏、复杂断块油气藏、老油田长期开采剩余的边底水构造油气藏、隐蔽油气藏等复杂油气藏方面有较大优势。然而,由于在国内地质导向钻井技术仍然处于初级阶段,参数测点另长有8至20米长的距离,定向工程师对于井眼轨迹的控制仍有一定的难度,在钻进过程需要根据地质目标空间位置的变化来对井眼空间姿态进行待钻轨道设计以保证以最佳方式中靶。 1 待钻轨道设计中存在的问题 随着定向钻井工艺技术的发展,对井眼轨道设计、监测和控制不断提出了更高的要求。在钻井施工过程中,如果实钻轨道与设计轨道之间的偏差超出了允许范围,就需要进行钻轨道进行校正设计,使其回到设计轨道上或直接钻向目标点。在地质导向钻井中,如果预计的储层构造和位置与实际不符,而导致中途调整目标点时,也需要进行类似的调整设计。以往的待钻轨道设计只强调击中目标,对击中目标时的井眼方

第六章井眼轨迹设计与控制

第六章、井眼轨迹设计与控制 第一节、概述 当今的科学技术提供了预测地下油气藏位置的手段,而从地面确定位置到地下确定油气藏通道的建立,只有通过钻井工程来达到。钻井工程的钻进原理前面的章节已经阐述,本章要解决的问题是如何来设计这一条通道的轨迹以及如何控制钻进过程,使实际钻进路径和设计轨迹一致。一种情况是:当地面井口位置就在地下油气藏的正上方,采用铅直井井眼轨迹设计,此时设计的轨迹就是从地面井口位置到地下油气藏的一条铅直线,轨迹控制的问题是如何防止实钻轨迹过大地偏离出铅垂线(这一过程称为“井斜控制”)。另一种情况是:当地面井口位置不在地下油气藏的正上方或钻井目标有特殊要求,将按专门的钻井目的和要求设计对应的井眼轨迹,并在钻进过程中一直进行井眼轨迹控制,使井眼沿预先设计的井眼轨迹钻达预定目标。工程上把第一种情况的井称为直井,第二种情况的井称为定向井或根据目标和轨迹的情况分为丛式井、侧钻井、水平井、大位移井、分支井等。 定向井的应用范围广阔: 1.地面限制。油田所处地面不利于或不允许设置井场钻井或搬家安装受到极大障碍。如房屋建筑、城镇、河流、沼泽、高山、港口、道路、海洋、沙漠等地面条件限制。 图6-1 定向井在油气田勘探开发中的应用 a-勘探海底油田;b-海上钻井利用平台;c-控制断层;d-地面条件限制; e-盐丘附近钻井;f-增大出油量;g-多底井;h-救援井 1

2.地下地质条件要求。由于地质构造特点,定向井能更有利于发现油藏、增加开发速度。如控制断层、探采盐丘突起下部的油气层、探采高角度裂缝性油气藏、开发薄油层油藏等。 3.钻井技术的需要。需用定向井来处理井下复杂情况或易斜地层的钻井。如我国自行设计、施工的数口成功的定向救援井:濮2-151井(中原油田)、永59井(胜利)、南2-1井(青海)。均成功地制服了井喷失控事故。 4.其它方面的应用如过江管道的铺设、煤层气的开发、地热井的钻井等。 定向井引入石油钻井界约在19世纪后期,当时的定向井是在落鱼周围侧钻。世界上第一口真正有记录的定向井是1932年美国人在加利福尼亚亨延滩油田完成。当时浅海滩下油田的开发是在先搭的栈桥上竖井架钻井。美国一位有创新精神的钻进承包商改变了这种做法,他在陆地上竖井架,使井眼延伸到海床下,由此开创了定向钻井新纪元。1934年,德国的克萨斯康罗油田一口井严重井喷。一位有丰富想象力的工程师提出用定向井技术来解决。在距失控井一定距离钻一口定向井,井底与失控井相交,然后向井内泵入重浆压住失控井,这是世界上第一口定向救援井。二战后随着生产的发展、海洋石油的开发、井下动力钻具的研制以及计算技术的进步,促进了定向井技术的发展。 我国的第一口定向井是1955年在玉门油田钻成,井号为C2-15井。1965年在四川油田钻成了我国第一口水平井,磨三井,水平延伸160m,是世界上第二个钻成水平井的国家。四川油田的草16井,1987年钻成,是一口过长江定向井。70年代以来,我国海洋定向井迅速发展,在渤海湾海上钻丛式定向井,在一个钻井平台上施工多达12口(目前已达35口以上)定向井。胜利油田的河50丛式井组,1988年完成,一个陆地平台钻成42口定向井。 由于石油天然气勘探开发的需要,在我国第七个五年计划期间,定向井、丛式井钻井工艺技术获得突破性进展,大踏步进入生产实用阶段,其水平跨入世界先进行列。采用这项技术打成了一大批多目标并、三维绕障井、高精度定向勘探井,满足了地质勘探上的特殊需要,并且成功地运用丛式井组整装开发了沈阳、二连、江苏的卞杨等三个油田。“七五”期间全国共钻成定向井4317口,为“六五”期间的4.65倍,少占用土地万亩以上,节约资金3亿元。 辽河油田在杜48断块的10号平台钻17口井,平均井深2344.2m,最大井斜28°,最大水平位移1633.3m,中靶率达到100%,平均建井周期32天,平均机械钻速9.12m/hr,这个平台和相同日数的单井相比少占工业用地123亩,节约76%,节约成本119.7万元。 四川石油管理局1987年成功地钻成隆40-1丛式井组,最大井斜角90°,开创了我国深层、硬地层打大斜度井的先河。该井完钻井深3130米,垂直井深2290.04米,最大水平位移1459.44米,在气层内进尺532米,等于目的层垂直厚度的5倍,该井打出了我国大斜度定向井的新水平。 胜利油田根据油藏地面建设十分密集,地下老井很多(达14口)的实际情况,采用了多目标、绕障打油田开发井的先进技术,应用计算机剖面绘图,防碰扫描、三维绕障程序、丛式井防干扰装置,随钻定向造斜与扭方位技术以及电子多点测量等一系列井眼轨迹控制技术,打成了我国目前陆上丛式井完井口数最多的井组—河50丛式井组,共有42口井,其中多目标井有5口,平台占地面积65亩,比单井少占地335亩,节约土地84.5%。 2

钻井工程一体化软件功能列表——井眼轨迹设计与控制

钻井工程一体化软件-井眼轨迹设计与控制 功能一:实钻井眼轨迹质量评价模块 在实际钻井施工过程中,受多种因素影响,实钻轨迹与设计轨道存在偏差。这种偏差可能导致实钻轨迹与设计轨道偏离太远,甚至不能钻达靶区。 本模块对实钻轨迹与设计轨道的偏差程度、中靶情况进行量化分析。实钻轨迹偏差分析需要计算水平偏距、垂直偏距、总偏距等指标。中靶分析需要计算靶心距、偏转角等指标。这些指标的计算,对于指导钻井作业施工具有重要的指导意义。 功能二:实钻井眼轨迹中靶预测与控制模块 钻井过程中,实钻轨迹不可避免地偏离设计轨道,因此,很有必要根据实钻轨迹的延伸趋势进行中靶预测,如果预测结果不理想,则进行待钻设计,实时对井眼轨迹进行控制,确保中靶质量。 本模块主要包含两部分工作:中靶预测及待钻设计两部分。 功能三:井眼轨迹不确定性分析模块 实钻井眼轨迹分析得到的井眼空间位置,是经过实际测量并经过计算得到的,不可避免地会产生误差并传递下去,所以井眼位置的计算结果存在不确定性。 本模块对影响井眼位置计算精确度的各个因素进行定量分析,从而确定井眼位置的置信水平。 功能四:方位漂移井眼轨道设计与控制模块 对于易于产生方位漂移的地层,按照二维井眼轨道设计结果进行实钻,往往会产生偏离原设计轨道的情况。如果针对所钻地层的方位漂移特性进行方位漂移轨道设计,在钻井施工时就会减少扭方位操作和起下钻次数,降低井眼控制的难度,提高钻井速度和井身质量,降低钻井成本。 功能五:水平井井眼轨道设计与控制 水平井井眼轨道设计分为水平段设计与水平段前设计两个步骤,一般由用户利用定向井井眼轨道设计软件进行两步设计,操作比较麻烦,也不能保证设计效果。 本模块采取水平井井眼轨道一体化设计思想,同时完成水平段设计与水平段前设计,并满足水平井入靶的软着陆控制要求。本模块还提供水平井钻井过程中实钻轨迹的预测与控制功能,尤其做好井眼轨迹在靶区内的控制工作,为提高水平井靶区内钻井质量具有重要意义。

相关主题