搜档网
当前位置:搜档网 › 用因式分解法解一元二次方程的步骤

用因式分解法解一元二次方程的步骤

用因式分解法解一元二次方程的步骤

用因式分解法解一元二次方程的步骤

(1)将方程右边化为0;

(2)将方程左边分解为两个一次式的积;

(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.

第1页共1页

解一元二次方程(直接开方法-配方法)练习题100+道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

一元二次方程因式分解法

解一元二次方程(因式分解法) 教学内容 用因式分解法解一元二次方程. 教学目标 掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重难点关键 1.重点:用因式分解法解一元二次方程. 2.?难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程 一、复习引入 (学生活动)解下列方程. (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为1 2 , 1 2 的一半应为 1 4,因此,应加上( 1 4 )2,同时减去( 1 4 )2.(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (老师提问)(1)上面两个方程中有没有常数项 (2)等式左边的各项有没有共同因式 (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解: 2x2+x=x(2x+1),3x2+6x=3x(x+2) 因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0, 所以x1=0,x2=-1 2 . (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,?另一边为

配方法解一元二次方程的教案

配方法解一元二次方程的教案 教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。 一、教学目标 (一)知识目标 1、理解求解一元二次方程的实质。 2、掌握解一元二次方程的配方法。 (二)能力目标 1、体会数学的转化思想。 2、能根据配方法解一元二次方程的一般步骤解一元二次方程。 (三)情感态度及价值观 通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。 二、教学重点 配方法解一元二次方程的一般步骤 三、教学难点 具体用配方法的一般步骤解一元二次方程。 四、知识考点 运用配方法解一元二次方程。 五、教学过程 (一)复习引入 1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 2、引入: 二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。 (二)新课探究 通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。 问题1: 一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来, 具体解题步骤: 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。 1、用直接开平方法解一元二次方程

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

人教版九年级数学上册因式分解法解一元二次方程练习题

因式分解法解一元二次方程 1、方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 2、下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x =21 B .x =2 C .x =1 D .x =-1 3、方程5x (x +3)=3(x +3)解为( ) A .x 1= 53,x 2=3 B .x =5 3 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 4、方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 5、方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 6、已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长 是( ) A .5 B .5或11 C .6 D .11 7、用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;

(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. (9)x 2-4x +3=0; (10)x 2-2x -3=0; (11)(2t +3)2=3(2t +3); 8、解关于x 的方程: (1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6; 9、已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值. 10、已知x 2+3x +5的值为9,试求3x 2+9x -2的值. 综合训练题 一、填空: 1.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。 3.若a 是方程2x -x -2=0的一个根,则代数式2a -a = 4.已知方程x 2+k x +3=0 的一个根是 - 1,则k= , 另一根为 5.若代数式5242--x x 与122 +x 的值互为相 反数,则x 的值是 。

因式分解法解一元二次方程练习题及答案(汇编)

因式分解法解一元二次方程练习题 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0;

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

因式分解法解一元二次方程

因式分解法解一元二次方程 因式分解法解一元二次方程的一般步骤 因式分解法解一元二次方程的一般步骤是: (1)移项 把方程的右边化为0; (2)化积 将方程的左边分解为两个一次因式的乘积; (3)转化 令每个因式等于0,得到两个一元一次方程; (4)求解 解这两个一元一次方程,得到一元二次方程的两个解. 例1. 用因式分解法解方程:x x 32=. 解:032=-x x ()03=-x x ∴0=x 或03=-x ∴3,021==x x . 例2. 用因式分解法解方程:()()01212 =---x x x . 解:()()0211=---x x x ()()()()0 11011=+-=---x x x x ∴01=-x 或01=+x ∴1,121-==x x . 例3. 解方程:121232-=-x x . 解:0121232=+-x x ()()0230 44322=-=+-x x x ∴221==x x . 例4. 解方程:332+=+x x x . 解:()0332=+-+x x x ()()()()0310 131=-+=+-+x x x x x

∴01=+x 或03=-x ∴3,121=-=x x . 因式分解法解高次方程 例5. 解方程:()()013122 2=---x x . 解:()()031122=---x x ()()()()()()022*******=-+-+=--x x x x x x ∴01=+x 或01=-x 或02=+x 或02=-x ∴2,2,1,14321=-==-=x x x x . 例6. 解方程:()()034322 2=+-+x x . 解:()()043322=-++x x ()()()()()0113013222=-++=-+x x x x x ∵032>+x ∴()()011=-+x x ∴01=+x 或01=-x ∴1,121=-=x x . 用十字相乘法分解因式解方程 对于一元二次方程()002≠=++a c bx ax ,当ac b 42-=?≥0且?的值为完全平方数时,可以用十字相乘法分解因式解方程. 例7. 解方程:0652=+-x x . 分析:()124256452 =-=?--=?,其结果为完全平方数,可以使用十字相乘法分解因式. 解:()()032=--x x ∴02=-x 或03=-x ∴3,221==x x .

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】 把方程ax2+c=0(a≠0), 这解一元二次方程的方法叫做直接开平方法。 例:用直接开平方法解方程: 1.9x2-25=0; 2.(3x+2)2-4=0; 4.(2x+3)2=3(4x+3). 解:1.9x2-25=0 9x2=25 2.(3x+2)2-4=0 (3x+2)2=4 3x+2=±2 3x=-2±2

∴x1=x2=3. 4.(2x+3)2=3(4x+3) 4x2+12x+9=12x+9 4x2=0 ∴x1=x=0. 【配方法解一元二次方程】 将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如 x2+ 例:用配方法解下列方程: 1.x2-4x-3=0;2.6x2+x=35; 3.4x2+4x+1=7;4.2x2-3x-3=0. 解:1.x2-4x-3=0 x2-4x=3 x2-4x+4=3+4 (x-2)2=7 2.6x2+x=35

3.4x2+4x+1=7 4.2x2-3x-3=0 【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a

广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法 =0(a≠0)的求根公式。 例:用公式法解一元二次方程: 2.2x2+7x-4=0; 4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x). 2.2x2+7x-4=0 ∵a=2,b=7,c=-4. b2-4ac=72-4×2×(-4)=49+32=81

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x ] 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 * 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 $ 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)… (3)公式法:平方差: 完全平方: (4)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

24解一元二次方程的方法练习

知识要点 ★直接开平方法:对于形式如()n m x =+2 (n ≥0)的方程,根据平方根的意义,即两边同时开平方,变形为n m x ±=+,得到两个一次方程,解一次方程得到未知数的值。 ★配方法:把一元二次方程通过配成完全平方式的方法转化为()n m x =+2 的形式,从而得到这个一元二次方程的根。步骤如下: (1)把常数项移到方程的右边; (2) 把二次项系数化为1,(如果二次项系数不是1,给方程两边同除以二次项系数) (3) 给方程两边都加上一次项系数的一半的平方 (4) 方程左边是一个完全平方式,将方程变形为()n m x =+2 的形式 在()n m x =+2中,当0>n 时,方程有两个不相等的实数根n m x n m x --=+-=21,。 当0=n 时,方程有两个相等的实数根m x x -==21。 当0

一元二次方程的解法 有哪些简便解题步骤

一元二次方程怎么解呢,有哪些解题的步骤呢,下面小编为大家提供一元二次方程有 哪些解题方法,仅供大家参考。 一元二次方程的解题方法有哪些 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=±根号下n+m . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法: 用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b^2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方) 解:将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法: 把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0

一元二次方程解法练习题(四种方法)

一元二次方程解法练习题 姓名 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3、9642=-x x 4、0542=--x x 5、01322=-+x x 6、07232=-+x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322 =- 3、2260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x 7、()02152 =--x 8、0432=-y y 9、03072=--x x

10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、3631352= +x x 15、()()213=-+y y 16、) 0(0)(2≠=++-a b x b a ax 17、03)19(32=--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x 21、 x 2+4x -12=0 22、030222=--x x 23、01752=+-x x

(完整版)解一元二次方程配方法练习题

解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1 ; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1 ?用适当的数填空: ①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2; ③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 2 2 .将二次三项式2X2-3X-5进行配方,其结果为 ? 3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ . 4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b 的形式为_______ , ?所以方程的根为___________ . 5. 若x2+6x+m2是一个完全平方式,则m的值是() A . 3 B . -3 C.± 3 D .以上都不对 6. 用配方法将二次三项式a2-4a+5变形,结果是( ) A. (a-2) 2+1 B. (a+2) 2-1 C. (a+2) 2+1 D . ( a-2) 2-1 7. 把方程X+3=4X配方,得() A . ( X-2 ) 2=7 B . ( X+2)2=21 C. (X-2 ) 2=1 D . ( X+2)2=2 &用配方法解方程X2+4X=10的根为() A. 2± \10 B. -2 ±14 C. -2+ 10 D. 2- -10 9. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数 D .可能为负数 10. 用配方法解下列方程: (1) 3X2-5X=2 . (2) X2+8X=9 (5) 6X2-7X+仁0 (6) 4X2-3X=52 11.用配方法求解下列问题 (1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。 12.将二次三项式 A . ( 2X—2) 2+3 C. (2X+2 ) 2 4X2—4X+1配方后得( B. (2X— 2) 2—3 D. (X+2)2—3 13 .已知X2—8X+15=0 ,左边化成含有X的完全平方形式, 其中正确的是( ) A . X2—8X+ (—4) 2=31 B . X2—8X+ (—4) 2=1 C . X2+8X+42=1 D . x2—4X+4=— 11 14 .已知一元二次方程X2— 4x+1+m=5请你选取一个适当 的m的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m的值是;(2)解这个方程. 15 . 如果X2— 4x+y2+6y+ 71 +13=0 ,求(xy) z的值 (3) X2+12X-15=0 (4)X2-X-4=0 4 1

一元二次方程定义及其解法(配方法)

班级 姓名 课题 一元二次方程定义及其解法(配方法) 一、目标导航 1. 掌握一元二次方程的定义及a,b,c 的含义; 2. 掌握配方法解一元二次方程的方法. 二、教学重难点 重点:1.掌握一元二次方程的定义及a,b,c 的含义; 2.掌握配方法解一元二次方程的方法. 难点:配方法解一元二次方程. 三、走进教材 知识点一:一元二次方程的定义 1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最高次数为2的方程叫做一元二次方程。 2. 一元二次方程的一般形式:()200ax bx c a ++=≠,其中2 ax 叫做二次项,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。举例:2230x x +-= 3. 一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。 自主练习: 下列方程中,是一元二次方程的有 。(填序号) ①25x =; ②30x y +-=; ③253302x x + -=; ④2(5)2x x x x +=-; ⑤23580x x -+=; ⑥204y y -=。 知识点二:配方法解一元二次方程 1. 解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。 2. 配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是一个非负数,即把一个方程转化成()2 x n p +=(p ≥0)的形式,这样解方程的方法叫做配方法。 3. 配方法具体操作: (1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举例:解方程2230x x +-=, (2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,

一元二次方程的解法知识点汇总

一元二次方程的解法知识点汇总 知识点一:直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。一般地,对于形如x=a(a≧0)的方程,根据平平方根的定义,可解的x =,x=-。 知识点二:用因式分解法解一元二次方程 1.因式分解法的意义:因式分解法就是利用因式分解求出方程的解的 方法,如对于方程x-4=0,左边分解因式可得(x+2)(x-2)=0, 则必有x+2=0或x-2=0,所以x=-2,x=2,这种解法叫做因式分解 法,即利用因式分解法的方法解方程称为因式分解法。 2.因式分解法一元二次方程的一般步骤: ①将方程的右边化为0 ②将方程的左边分解为两个一次因式的乘积 ③令每一个因式分别为零,就得到两个一元一次方程 ④解这两个一元一次方程,它们的解就是原方程的解 知识点三:配方法 把一个一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 知识点四:公式法

1.一般地,对于一元二次方程ax+bx+c=0(a≠0),如果b-4ab≥0, 那么方程的两个根为x=-b±/2a。 这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二次方程的系数a、b、c的值,直接求得方程的解,这种解一元二次方程的方法叫做求根公式法。 2.一元二次方程的求根公式的推导过程 一元二次方程的求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax+bx+c=0(a≠0)的过程。 解:a≠0,方程两边都除以a,得x+bx/a+c/a=0 移项,得x+bx/a=- c/a, 配方,得x+2*x*b/2a+(b/2a)=(b/2a)- c/a 即(x+ b/2a)=b-4ac/4a ∵a≠0,∴4a>0,当b-4ac≥0时,直接开平方,得 x+ b/2a=±/2a ∴x=- b/2a±/2a, 即x=-b±/2a

21.2.1直接开平方法解一元二次方程练习题1

21.2.1 直接开平方法解一元二次方程 要点感知1 对于方程x 2=p.(1)当p>0时,方程有_______的实数根,_______;(2)当p=0时,方程有_______的实数根,_______0;(3)当p<0,方程_______. 预习练习1-1 下列方程可用直接开平方法求解的是( ) A.9x 2=25 B.4x 2-4x-3=0 C.x 2-3x=0 D.x 2-2x-1=9 1-2若x 2-9=0,则x=_______. 要点感知2 解形如(mx+n)2=p(p ≥0)的一元二次方程,先根据_______的意义,把一元二次方程“_______”转化为两个_______元_______次方程,再求解. 预习练习2-1 方程(x-2)2=9的解是( ) A.x 1=5,x 2=-1 B.x 1=-5,x 2=1 C.x 1=11,x 2=-7 D.x 1=-11,x 2=7 知识点 用直接开平方法解一元二次方程 1.下列方程能用直接开平方法求解的是( ) A.5x 2+2=0 B.4x 2-2x+1=0 C.(x-2)2=4 D.3x 2+4=2 2.方程100x 2-1=0的解为( ) A.x 1=101,x 2=101- B.x 1=10,x 2=-10 C.x 1=x 2=101 D.x 1=x 2=10 1- 3.(丽水中考)一元二次方程(x+6)2=16可化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( ) A.x-6=4 B.x-6=-4 C.x+6=4 D.x+6=-4 4.(鞍山中考)已知b <0,关于x 的一元二次方程(x-1)2=b 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有两个实数根 5.关于x 的一元二次方程2x 2-3x-a 2+1=0的一个根为2,则a 的值为( ) A.1 B.3 C.-3 D.±3 6.一元二次方程ax 2-b=0(a ≠0)有解,则必须满足( ) A.a 、b 同号 B.b 是a 的整数倍 C.b=0 D.a 、b 同号或b=0 7.对形如(x+m)2=n 的方程,下列说法正确的是( ) A.用直接开平方得x=-m ±n B.用直接开平方得x=-n ±m C.当n ≥0时,直接开平方得x=-m ±n D.当n ≥0时,直接开平方得x=-n ±m 8.若代数式(2x-1)2的值是25,则x 的值为_______ 9.完成下面的解题过程: (1)解方程:2x 2-8=0; (2)解方程:3(x-1)2-6=0. 解:原方程化成_______, 解:原方程化成_______, 开平方,得_______, 开平方,得_______, 则x 1=_______,x 2=_______ .则x 1=_______,x 2=_______. 10.用直接开平方法解下列方程: (1)x 2-25=0; (2)4x 2=1; (3)3(x+1)2=31 ; (4)(3x+2)2=25. 11.方程2x 2+8=0的根为( )

相关主题