搜档网
当前位置:搜档网 › 旋转超声波+磨削

旋转超声波+磨削

旋转超声波+磨削
旋转超声波+磨削

超声辅助磨削通常分为:一维超声辅助磨削技术、二维振动磨削技术与旋转超声磨削技术,如图1所示。一维超声辅助磨削技术可归结为三类①砂轮轴向振动磨削,即工件相对于砂轮做轴向反复振动;②砂轮径向振动磨削;③砂轮切向振动磨削。二维振动磨削技术有两类:①平行于工件平面的二维振动磨削,即对工件同时施加砂轮切向与砂轮轴向的超声振动;②平行于砂轮端面的二维振动磨削。

一维轴向超声振动磨削关注的焦点在于加工表面质量的显著提高;一维径向超声辅助磨削关注的焦点在于加工效率的大幅度提高。二维振动磨削技术充分利用了一维振动磨削的特点,具有优越的综合加工性能,但就是加工过程中磨削速度较低,这在一定程度上限制了该技术的广泛应用。

(a)一维轴向超声磨削(b)一维径向超声磨削(c)一维切向超声磨削

(d)二维超声磨削(e)旋转超声磨削

超声振动辅助磨削技术的现状与新进展

第31卷第11期2010年11月 兵工学报ACTA ARMAMENTARII Vol.31No.11Nov. 2010 超声振动辅助磨削技术的现状与新进展 梁志强1,2,王西彬1,吴勇波2,栗勇1,赵文祥1,庞思勤 1 (1.北京理工大学先进加工技术国防重点学科实验室,北京100081; 2.秋田県立大学系统科学技术学部,秋田290014,日本) 摘要:如何实现硬脆性材料的高效率、高质量、高精度加工是现代精密制造领域的技术难题,为解决这一难题超声波振动磨削技术被引入到硬脆性材料的加工中。综述了超声振动磨削技术的现状,基于现有的一维振动磨削与二维振动磨削技术,着重分析了不同超声振动施加方式对磨削 力、 加工表面完整性、砂轮磨损等加工特性的影响。作为二维振动磨削技术的最新进展,对垂直型椭圆振动磨削技术的加工原理以及加工特性进行初步介绍。 关键词:机械制造工艺与设备;超声辅助磨削;椭圆振动;硬脆材料;磨削力;粗糙度 中图分类号:TG156文献标志码:A 文章编号:1000- 1093(2010)11-1530-06Status and Progress of Ultrasonic Assisted Grinding Technique LIANG Zhi-qiang 1,2 ,WANG Xi-bin 1,WU Yong-bo 2,LI Yong 1,ZHAO Wen-xiang 1,PANG Si-qin 1 (1.Key Laboratory of Fundamental Science for Advanced Machining ,Beijing Institute of Technology ,Beijing 100081,China ; 2.Faculty of Systems Science and Technology ,Akita Prefectural University ,Akita 290014,Japan ) Abstract :In current precision machining field ,there is a critical problem to achieve high efficiency ,high-quality and high-precision machining for hard brittle material.Based on this background ,the ultra-sonic assisted grinding machining is widely introduced as a promising processing technology.In this pa-per ,the machining characteristics ,especially grinding forces ,ground surface integrality and wheel wear ,of both one-dimensional and two-dimensional ultrasonic assisted grinding techniques are analyzed.As a new progress ,the principle and fundamental characteristics of vertical elliptical ultrasonic assisted grind-ing method are introduced. Key words :machinofacturing technique and equipment ;ultrasonic assisted grinding ;elliptical vibra-tion ;hard brittle material ;grinding force ;surface roughness 收稿日期:2009-11-13 基金项目:国家自然科学基金资助项目(50935001);国防科研资助项目(62301090103)作者简介:梁志强(1984—),男,博士研究生。E-mail :liangdjx@yahoo.com ;王西彬(1958—),男,教授,博士生导师。E- mail :cutting0@bit.edu.cn 随着科技的发展对硬脆性材料、难加工材料和 新型先进材料的需求日益增多,对关键零件的加工效率、加工质量和加工精度提出了更高的要求。传统磨削方法因不可避免的产生较大的磨削力以及磨削热,引起工件表面/亚表面损伤以及砂轮寿命低等一系列问题。尤其在精密与超精密加工领域,这些加工缺陷的存在严重制约着零件加工精度及加工效 率的提高。为解决这些问题,超声振动被引入到磨 削加工中。国内外广泛研究证实超声振动磨削在提高材料去除率、提高加工表面质量与加工精度、降低工件表面损伤以及延长砂轮寿命等方面具有显著优势。 一维超声振动磨削技术较早应用到工业领域,近年在超精密加工领域,日本和中国的学者又

超声波加工的应用

超声波加工的应用及发展前景 摘要:随着生产发展和科学实验的需要,很多工业部门,尤其是国防工业部门,要求尖端科学技术向着高精度、高温、高压、大功率、小型化等方向发展。因此,特种加工作为一个时代强音等上舞台,它就具备了上述特点。超声波加工是利用工具断面的超声振动,通过磨料悬浮液加工脆硬材料的一种成型方法。特别对于一些常规加工方式无法完成的或者加工精度无法达到要求的工件。目前经过几十年的发展,超声波加工技术已逐步成熟,并已在一些要求条件高、加工工艺复杂、精度要求高的领域逐步发展起来,相信随着技术的发展它的应用围及领域会越来越广。 关键词:超声波;研究前沿;应用领域;超声加工的应用 引言:超声波随着技术的发展越来越为人们所应用,他通过自身的一些特性一步步奠定自己在切削、拉丝模、深小孔加工等的地位。特别在现代这个迅猛发展的社会它的地位越来越重要,我们应该加快它的发展速度,为我们所用。 超声波加工(USM)是利用工具端面作超声频振动,通过磨料悬浮液加工硬脆材料的一种加工方法。超声波加工是磨料在超声波振动作用下的机械撞击和抛磨作用与超声波空化作用的综合结果,其中磨料的连续冲击是主要的。加工时在工具头与工件之间加入液体与磨料混合的悬浮液,并在工具头振动方向加上一个不大的压力,超声波发生器产生的超声频电振荡通过换能器转变为超声频的机械振动,变幅杆将振幅放大到0.01~0.15mm,再传给工具,并驱动工具端面作超声振动,迫使悬浮液中的悬浮磨料在工具头的超声振动下以很大速度不断撞击抛磨被加工表面,把加工区域的材料粉碎成很细的微粒,从材料上被打击下来。虽然每次打击下来的材料不多,但由于每秒钟打击16000次以上,所以仍存在一定的加工速度。 与此同时,悬浮液受工具端部的超声振动作用而产生的液压冲击和空化现象促使液体钻入被加工材料的隙裂处,加速了破坏作用,而液压冲击也使悬浮工作液在加工间隙中强迫循环,使变钝的磨料及时得到更新。 一、超声波加工的原理 1.1 超声波概述 “超声波”这个名词术语,用来描述频率高于人耳听觉频率上限的一种振动波,通常是指频率高于16kHz以上的所有频率。超声波的上限频率围主要是取决

微细超声加工的发展及应用

微细超声加工的发展现状及应用 摘要:对微细超声加工的加工原理、材料去除机理和特点进行了阐述,重点在于对国内外微细超声加工的发展和应用进行总结和举例,包括旋转超声加工、成形加工和分层扫描超声加工及微细超声复合加工,最后总结了微细超声加工未来发展趋势 关键词:微细超声加工;旋转超声加工;成形加工;分层扫描;微细超声复合加工 Current Situation and application of micro ultrasonic machining Abstract:Through describing the machining principle、material removal mechanism and characteristics of micro-ultrasonic machining, this paper emphasize on the development and application of micro ultrasonic machining at home and abroad. And the application includes rotary ultrasonic machining, molding process and layered scanning ultrasonic machining and micro-ultrasonic composite processing. Finally the future development trend of micro ultrasonic machining is summarized. Key words:micro-ultrasonic machining rotary ultrasonic machining molding process layered scanning micro-ultrasonic composite processing 前言 科技的日新月异不仅对材料的性能提出了更高的要求,同时对具有微小特征的精密零件有了越来越多的需求。尤其在电子、光学、医疗、生物科技、通信以及航天等领域,零件的小型化和精密化已经成为当前的发展趋势[1,2]。随着微机械(Micro Electro Mechanical System)技术的发展,高新技术产品呈现微型化、精确化,晶体硅、陶瓷和光学玻璃等非金属材料得到广泛应用,微细加工成为现代制造技术重要的发展方向。 MEMs技术具有集成度高、便于大批量生产等优点。但是这种方法难以加工具有特殊性质的金属材料,例如一些极限作业环境下所要求的高强度、高韧性、耐磨、耐高温、抗疲劳等性能的材料。微细切削与某些特种加工相比,生产率高、容易保证加工精度。但是,这类加工方法都存在宏观切削力,而且不能加工比刀具硬的材料。 特种加工方法采用各种物理、化学及其各种理化效应,直接去除材料以达到所要求的形状和尺寸。它们多属于非接触加工,一般没有宏观切削力作用。因此它们在加工微小尺度的零件时具有独特的优越性。目前适合硬脆材料的材料加工手段有光刻加工、电火花加工、激光加工和超声加工等特种加工技术。但是对于晶体硅和陶瓷等非金属材料,材料本身不导电,所以无法用电火花和电化学等方法加工;材料的耐高温和导热性不好,激光加工时加工区域会受热影响作用而开裂;光刻加工虽然可以加工非金属材料同时不受导热性的影响,但是在加工高深径比和复杂三维型腔时难度依然很大。而超声波加工既不受材料导电性和导热性的限制,又可以加工出深径比很大且形状复杂的三维型腔,尤其适用于硬脆性材料的加工。所以超声加工在加工陶瓷和半导体硅等非金属硬脆材料上有得天独厚的优势。随着压电材料及电子技术的发展,微细超声、旋转超声、超声复合等加工技术成为了当前超声加工研究的热点。 1微细超声加工的特点和原理 声波是人耳能感受的一种纵波,频率在16Hz-16kHz。“超声波”,用来描述频率高于人

超声波加工技术

超声波加工技术 1.绪论 人耳能感受到的声波频率在20—20000HZ范围内,声波频率超过20000HZ被称为超声波。超声波加工(Ultrasonic Machining简称USM)是近几十年来发展起来的一种加工方法,它是指给工具或工件沿一定方向施加超声频振动进行加工的方法,或利用超声振动的工具在有磨料的液体介质或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀来去除材料,又或利用超声振动使工件相互结合的加工方法。它弥补了电火花加工的电化学加工的不足。电火花加工和电化学加工一般只能加工导电材料,不能加工不导电的非金属材料。而超声波加工不仅能加工硬脆金属材料,而且更适合于加工不导电的硬脆非金属材料,如玻璃、陶瓷、半导体锗和硅片等。同时超声波还可用于清洗、焊接和探伤等。 1.1超声波加工的发展状况 超声波加工是利用超声振动的工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。超声加工系统由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。超声波发生器的作用是将220V或380V的交流电转换成超声频电振荡信号;换能器的作用是将超声频电振荡信号转换为超声频机械振动;变幅杆的作用是将换能器的振动振幅放大;超声波的机械振动经变幅杆放大后传给工具,使工具以一定的能量与工件作用,进行加工。 超声加工技术是超声学的一个重要分支。超声加工技术是伴随着超声学的发展而逐渐发展的。 早在1830年,为探讨人耳究竟能听到多高的频率,F.Savrt曾用一多齿的齿轮,第一次人工产生了2.44 HZ的超声波,1876年加尔顿的气哨实验产生的超声波的频 10

超声振动磨削机构的建模与仿真

摘要: 超声波加工是一门重要的特种加工技术,超声加工的总概述:其分为超声车、铣、磨、钻等。超声振动磨削是一种特殊的切削加工的方法,这种加工技术对于加工陶瓷、高强度复合材料以及硬脆材料具有独到的优势。本文从超声振动声学子系统设计超声振动磨削机构。从声学角度和波动方程角度分别介绍了变幅杆设计的理论基础。设计了机构与工件相连接以及机构与机床相连接装置。这个超声振动磨削机构,可以直接装配到一般普通机床上直接使用,因此非常方便。这种新型机构可以作为一种机床附件,它具有体积小、结构简单、成本低、可加工大型工件的优点,对超声波加工以及机床的发展具有十分重要的意义。 关键词:超声波发生器,换能器,变幅杆,珩磨头。

ABSTRACT: The ultrasonic machining is an important special machining technology, is the supersonic processing total outline: It divides into the supersonic vehicle, the mill, to rub, to drill and so on. The ultrasonic vibration grinding is one special machining method, this kind of process technology regarding the ceramics, the high strength compound materials as well as the hard crisp material has the original superiority. This article from ultrasonic vibration acoustics system design organization. Introduced the amplitude pole design rationale from acoustics angle and the wave equation angle. Has designed the organization and the work piece connects as well as the organization and the engine bed junction device. Designs this ultrasonic vibration grinding organization, may assemble directly to the engine bed on the direct use. This kind of new organization may take one kind of engine bed appendix, has the volume to be small, the structure is simple, the cost low merit, has the vital significance to the ultrasonic machining as well as engine bed‘s development. Key words:Ultrasonic generator, transducer, amplitude pole, top horizontal jade piece wheel head.

CSiC复合材料旋转超声振动辅助铣削实验研究

C/SiC复合材料旋转超声振动辅助铣削实验研究通过碳纤维增强的碳化硅陶瓷基复合材料(C/SiC)是一种耐高温、耐磨损、抗氧化和力学性能出色的航空级复合材料,采用传统的机械加工工艺对其进行加工,因加工性差,精度不高且加工成本高导致无法满足当今航空航天等领域的需求。利用旋转超声振动辅助加工技术,将旋转超声振动引入到C/SiC复合材料的铣削加工中,可有效地降低铣削力、切削热,减小刀具的损耗,提高加工质量。 本文主要完成了以下工作内容:利用压电陶瓷的逆压电效应,根据夹心式压电换能器的设计理论,设计了一款可用于旋转超声铣削加工的纵振型超声振子;采用PZFlex仿真软件对影响超声振子谐振频率的因素进行了仿真分析,结果表明:超声振子的谐振频率随刀具有效长度和过渡圆柱长度的增加而减小,随预紧螺栓长度和后端盖孔深度的增加而增大;依据仿真结果加工了纵振型超声振子,并对其进行阻抗分析,测得纵振型超声振子在有无刀具及夹头螺母两种状态下的谐振频率分别为17.41 kHz、18.71kHz,与仿真结果中模型的谐振频率18.4762 kHz和19.312 kHz,误差率分别为5.7636%和3.1428%;基于超声振子的谐振频率,对有夹头螺母及刀具状态下的超声振子振幅输出进行测量,结果表明:在100 V、140 V和200 V电压激励下振子输出的振幅与电压成正比,且在200 V电压激励时纵向振幅为2.016 um,可以满足旋转超声振动辅助铣削加工的要求,证实了纵振型超声振子设计的可行性,为纵振型超声振子模型的优化设计提供参考。设计纵振型超声振子的夹持装置、桥接盘和机床主轴连接装置,实现超声振子与机床主轴的连接;设计电能传输装置对纵振型超声振子进行供电;设计保护外壳、安装插销等装置,建立起旋转超声振动辅助铣削加工系统;依据该系统采用单因素实验法和正交试验法,研究了传统铣削下不同切削参数对C/SiC复合材料铣槽和铣

小型超声波切割机毕业设计翻译中文

利用旋转超声加工技术加工陶器 旋转超声加工技术为陶瓷和玻璃的加工应用上提供快速的高质量的加工途径。 旋转超声加工技术是一种混合了利用钻石磨削超声机械来切削材料的工艺,和那些单独利用钻石磨削或者超声加工技术相比,它可以提供一个更高的材料切削速率。通过利用钙、铝、硅酸盐和稳定的氧化镁、氧化锆来做实验可以得出在同样的条件下利用旋转超声加工技术加工材料的切削速率是利用惯例的磨削加工工艺的六到十倍,是超声加工技术的十倍。利用旋转超声加工技术来打很深的洞比超声加工技术更容易,而且洞的精确性更高。这种工艺的其他好处包括有一个更好的表面光洁度和刀具所受到的压力也会更小。 图1 在超声加工中,刀具的形状正好和工件表面的洞或腔的形状一致,在两万赫兹的高速频率中摆动,利用一个恒定的压力插入工件表面(见图1)。在刀尖和工件表面加上一种由水和小磨粒组成的磨粉浆。当磨粒悬浮在刀具和工件表面的

泥浆中时,工件表面的材料被切削掉了,利用震动刀具往下走来作用在工件表面。 图2 在旋转超声加工中,当机器的轴在一个恒定的压力下被动的靠近工件表面是,一个用金属黏合带腐蚀性的钻石做成的空心旋转钻头在轴向做超声震动(见图2)。空心的钻头中喷出冷却液冲走切削垃圾,同时防止切削垃圾干扰钻头,并且让它冷却。通过刀具上直接黏合的腐蚀物,并且结合同时发生的转动和震动,旋转超声加工技术为多种玻璃和陶瓷生产应用提供了一个更快,更高质量的加工途径。 旋转超声加工的历史 尽管超声加工的原理在1927年被认识到,超声加工技术的第一次使用没有在工业文明中被描述直到1940年。自从那是以后,超声加工被引起很大的注意,并被运用在工业中相对很大的领域。在1953年到1954年,第一代超声加工工具的发明,很大程度上是依据钻头和压磨机。到1960年,可以看到各种类型和尺寸的超声加工工具运用在各种运用上,同时很多模型开始进行批量生产。 在陶瓷的应用中,超声加工和普通机械加工相比有很多的优势。导体和绝缘体材料都可以被加工,同时加工复杂的三维立体外形可以像加工简单的外形一样

超声波加工

第四节超声波加工 人耳能感受到的声波频率在16—16000Hz范围内。当声波频率超过16000Hz时,就是超声波。前两节所介绍的电火花加工和电解加工,一般只能加工导电材料,而利用超声波振动,则不但能加工像淬火钢、硬质合金等硬脆的导电材料,而且更适合加工像玻璃、陶瓷、宝石和金刚石等硬脆非金属材料。 1.超声波加工原理 超声波加工是利用工具端面的超声频振动,或借助于磨料悬浮液加工硬脆材料的一种工艺方法。超声波发生器产生的超声频电振荡,通过换能器转变为超声频的机械振动。变幅杆将振幅放大到0.01一0.15mm,再传给工具,并驱动工具端面作超声振动。在加工过程中,有“超声空化”现象产生。因此,超声波加工过程是磨粒在工具端面的超声振动下,以机械锤击和研抛为主,以超声空化为辅的综合作用过程. 2.超声波加工的特点 (1)超声波加工适宜加工各种硬脆材料,尤其是利用电火花和电解难以加工的不导电材料和半导体材料,如玻璃、陶瓷、玛瑙、宝石、金刚石以及锗和硅等。对于韧性好的材料,由于它对冲击有缓冲作用而难以加工,因此可用作工具材料,如45钢常被选作工具材料。 (2)由于超声波加工中的宏观机械力小,因此能获得良好的加工精度和表面粗糙度。尺寸精度可达0.02~0.01mm;表面粗糙度R a值可达0.8一0.1μm。 (3)采用的工具材料较软,易制成复杂形状,工具和工件无需作复杂的相对运动,因此普通的超声波加工设备结构较简单。但若需要加工复杂精密的三维结构,可以预见,仍需设计与制造三坐标数控超声波加工机床。 二、超声波加工的基本工艺规律 1.加工速度及其影响因素 加工速度指单位时间内去除材料的多少,通常以g/min或mm3/min为单位表示。影响加工速度的主要因素有: (1)进给压力的影响超声波加工时,工具对工件应有一个适当的进给压力。工具端面与工件加工表面间的间隙随进给压力的大小而改变。压力减小,间隙增大,从而减弱磨料对工件的锤击力;压力增大,间隙减小,当间隙减小到一定程度,则会降低磨料和工作液的循环更新速度,从而降低加工速度。 (2)工具振幅和频率的影响超声波加工中,设备的振幅和频率都在一定范围内可

超声波旋转加工设备的详细介绍

超声波旋转加工设备的详细介绍 随着传统加工技术和高新技术的发展,超声波旋转加工技术的应用日益广泛,超声波旋转加工设备机理的研究日趋深入,随着技术的发展,对零件的加工精度、加工表面粗糙度和加工表面质量提出了很高的要求,因此使超声波旋转加工设备加工向精密与超精密加工方向发展是非常必要的,因此,越来越引起人们的重视而受到世界各国的瞩目。 一、超声波旋转加工设备的工作原理 超声波加工是利用工具端面做超声频振动,通过磨料悬浮液加工硬脆材料的一种加工方法。超声波加工是磨料在超声波振动作用下的机械撞击和抛磨作用与超声波空化作用的综合结果,其中磨料的连续冲击是主要的。加工时,在工具头与工件之间加入液体与磨料混合的悬浮液,并在工具头振动方向加上一个不大的压力,超声波发生器产生的超声频电振荡通过换能器转变为超声频的机械振动,变幅杆将振幅放大到0.01~0.15mm,再传给工具,并驱动工具端面作超声振动,迫使悬浮液中的悬浮磨料在工具头的超声振动下以很大速度不断撞击抛磨被加工表面,把加工区域的材料粉碎成很细的微粒,从材料上被打击下来。虽然每次打击下来的材料不多,但由于每秒钟打击16000次以上,所以仍存在一定的加工速度。与此同时,悬浮液受工具端部的超声振动作用而产生的液压冲击和空化现象促使液体钻入被加工材料的隙裂处,加速了破坏作用,而液压冲击也使悬浮工作液在加工间隙中强迫循环,使变钝的磨料及时得到更新。 二、超声波旋转加工设备的特点 第一超声波旋转加工设备可以使切削力大幅度降低,使摩擦热减小、刀具寿命提高和已加工表面粗糙度值减少,即有以下特点:

1)在钻铣过程中,刀具前面不是始终与工件保持接触状态,而是处于有规律的接触、分离状态。 2)有规律的脉冲冲击切削力取代了连续切削力。 3)刀具(或工件)的有规律强迫振动取代了刀具和工件无规律的自激振动。 4)切削力大部分来自刀具(或工件)的振动,刀具(或工件)的运动仅是为了满足工件加工几何形状而设置的。 第二在振动钻铣中,因振动提高了实际的瞬间钻铣速度,并以动态冲击力作用于工件,使得局部变形减少、作用力集中、瞬间切削力增大。从而获得较大的波前切应力,有利于金属的塑性脆化,减小塑性变形,利于切削。在超硬材料的加工方面,这一优点更为突出。 第三超声钻铣设备,在超声波的作用下有利于刀具的冷却。刀具的高速振动对刀具的散热十分有利,同时由于刀具的前面周期性脱离工件,使得切削液更容易进入刀具和工件之间,也增加了系统的散热能力。 三、超声波钻铣设备的应用范围 超声钻铣设备可加工一些普通钻铣床加工不了的材料,难切削材料的加工。如不锈钢、淬硬钢、高速钢、钛合金、高温合金、冷硬铸铁以及陶瓷、玻璃、石材等非金属材料,由于力学、物理、化学等特性而难以加工的材料等。主要适用行业有航空、汽车零件、电极制作、电子、计算机等相关配件及医疗器材、光学仪器等紧密组件的制造加工业,是机械制造、模具、仪器、仪表、汽车等行业理想加工设备。

超声波加工论文

超声波加工 摘要:超声波加工是利用工具断面的超声振动,通过磨料悬浮液加工脆硬材料的一种成型方法。它能广泛应用于各个领域,特别对于一些常规加工方式无法完成的或者加工精度无法达到要求的工件。目前经过几十年的发展,超声波加工技术已逐步成熟,并已在一些要求条件高、加工工艺复杂、精度要求高的领域逐步发展起来,相信随着技术的发展它的应用范围及领域会越来越广。 关键词:超声波;研究前沿;应用领域 引言:超声波随着技术的发展越来越为人们所应用,他通过自身的一些特性一步步奠定自己在切削、拉丝模、深小孔加工等的地位。特别在现代这个迅猛发展的社会它的地位越来越重要,我们应该加快它的发展速度,为我们所用。 超声波加工(USM)是利用工具端面作超声频振动,通过磨料悬浮液加工硬脆材料的一种加工方法。超声波加工是磨料在超声波振动作用下的机械撞击和抛磨作用与超声波空化作用的综合结果,其中磨料的连续冲击是主要的。加工时在工具头与工件之间加入液体与磨料混合的悬浮液,并在工具头振动方向加上一个不大的压力,超声波发生器产生的超声频电振荡通过换能器转变为超声频的机械振动,变幅杆将振幅放大到0.01~0.15mm,再传给工具,并驱动工具端面作超声振动,迫使悬浮液中的悬浮磨料在工具头的超声振动下以很大速度不断撞击抛磨被加工表面,把加工区域的材料粉碎成很细的微粒,从材料上被打击下来。虽然每次打击下来的材料不多,但由于每秒钟打击16000次以上,所以仍存在一定的加工速度。 与此同时,悬浮液受工具端部的超声振动作用而产生的液压冲击和空化现象促使液体钻入被加工材料的隙裂处,加速了破坏作用,而液压冲击也使悬浮工作液在加工间隙中强迫循环,使变钝的磨料及时得到更新。 一、超声波加工的原理 1.1 超声波概述 “超声波”这个名词术语,用来描述频率高于人耳听觉频率上限的一种振动波,通常是指频率高于16kHz以上的所有频率。超声波的上限频率范围主要是取决于发生器,实际用的最高频率的界限,是在5000MHz的范围以内。在不同介质中的波长范围非常广阔,例如在固体介质中传播,频率为25kHz的波长约为200mm;而频率为500MHz的波长约为0.008mm。 超声波和声波一样,可以在气体、液体和固体介质中传播。由于超声波频率高、波长短、能量大,所以传播时反射、折射、共振以及损耗等现象更显著。在不同的介质中,超声波传播的速度c亦不同,例如c空气=331m/s;c水=1430m/s;

超声波加工以及机床设计-机械设计论文设计

1. 绪论 1.1 论文的提出及其应用价值 1.1.1 课题所属研究领域 由于各种新材料、新结构、形状复杂的精密机械零件大量涌现,对机械制造业提出了一系列迫切需要解决的问题。对这些材料用传统加工方法十分困难,于是产生了特种加工技术,双面超声波加工就是其中一种。 超声波加工(USM)是利用超声波振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声波频振动进行振动加工,或利用超声波振动使工件相互结合的加工方法。几十年来,超声波加工技术的发展迅速,在超声波振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声波复合加工领域均有较广泛的研究和应用,尤其是在难加工材料领域解决了许多关键性的工艺问题,取得了良好的效果。超声波加工非常适合于加工硬脆材料,而且不会损害工件表面,所以是加工硅工件的理想方法[1]。 超声波加工方法是近50年来逐步发展的一种新型加工方法。在难加工材料和精密加工中,超声波加工方法具有普通加工无法比拟的工艺效果,具有广泛的应用围。超声波加工技术横跨机械学、电学、和声学三个学科,因而可把超声波加工视为交叉学科[1]。 1.1.2 课题的理论意义和应用价值 如今的一些材料,如硅晶体具有强度高、硬度高、耐磨损、耐腐蚀、耐高温、比重低和自润滑等优良特性,已在电子、机械、能源、航空航天等众多领域显示出相当广泛的应用前景。然而,硅材料的加工十分困难,尤其是对于具有复杂型面的硅材料零件至今尚无有效的加工手段。目前硅材料的加工技术已成为制造业研究的热点。 材料的加工技术中,金刚石磨削方法只能加工简单型面的零件,而对于较复杂的型面,如有锐角要求的槽形零件和非回转体表面,就无能为力了;激光束加工(LBM)技术虽然可用于硅零件的加工,但会使加工表面产生达50m 的微观裂纹,很难适应航空航天重要零件的要求;此外,由于硅材料电导率低且化学稳定性好的限制,使得电火花(EDM)及电化学(ECM)加工方法不适于加工硅零件。而超声波加工(USM)不需工件导电,可加工任何超硬材料,且不属于热过程,

超声磨削装置设计

学校代码: 本科毕业设计题目:超声磨削装置设计 学院: 姓名: 学号: 专业: 年级: 指导教师:

摘要 旋转超声磨削是在传统机械磨削的基础上,将超声振动加入到磨削工具上的一种新型的复合加工方法。该方法不仅保留了传统机械磨削的一些优良特性,又因加入超声振动后,能较大地提高加工效率,有效地改善工程陶瓷、复合材料等难加工材料磨削表面质量。本文旨在研制出旋转超声磨削装置,该装置能以附件的形式安装在数控机床上或普通机床上,进行常见表面、甚至一些较复杂型面的旋转超声磨削加工。 关键词:旋转超声磨削,工程陶瓷,碳刷,

ultrasonic machining design Abstract:Rotary ultrasonic grinding (RUG) is a new machining method which integrates rotary movement of traditional grinding with ultrasonic oscillation. This method can keep down some excellent grinding characters of Mechanical grinding, greatly enhance process rate and effectively improve the effect of grinding surface of difficult-to-cut materials (stainless steel and composite material and the like). The aim of this paper is that we design and manufacture the grinding device of rotary ultrasonic machining, This device can be installed on numerical control machine or common machine tool as an accessory and can carry out rotary ultrasonic grinding for usual surface and even some complicated surface. Keyword:rotary ultrasonic grinding, engineering chinaware, carbon brush,

超声振动切削加工

超声振动切削加工的研究现状及进展 摘要:简述了超声振动切削技术的发展、优点及应用领域。通过将超声振动切削与普通切削比较以及对振动切削过程特点的描述,探讨了超声振动切削的切削机理。文章还分析了振动切削技术的最新发展, 认为超声振动切削是一项有发展前途的新型技术。 关键词:超声振动切削;难加工材料:切削机理 Research of vibration assisted turning cutting technology and

Its development Abstract:Introduces the history, advantages and application field of the ultrasonic cutting technology(UCT). By compared with ordinary cutting and the characteristics description of the ultrasonic vibration cutting process, explored Ultrasonic vibration cutting of the cutting mechanism. The paper also analyzes an up- to- date vibrating cutting technology and summarizes that the ultrasonic vibration cutting is a promising new technology. Key Words: Ultrasonically vibrating cutting; Difficult - to - machine materials; Cutting Mechanism 0 前言 超声振动切削技术是把超声波振动的力有规律地加在刀具上,使刀具周期性地切削和离开工件的加工技术, 是结合超声波技术和传统切削工艺的一种新型切削技术。在20 世纪60 年代,日本隈部淳一郎先生就对该项技术做了大量的研究工作。

超声波旋转加工机结构设计

摘要 超声加工技术是近30年来逐步发展的一种特种加工方法,并以它的工艺效果得到了广泛的应用。由于它横跨机械学、电学和声学三个学科,因而也可把超声加工技术视为边缘学科。 超声加工,是指给工具或工件沿一定方向施加超声振动进行振动加工的方法。超声加工系统,由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。超声波发生器的作用是,将220V或380V的交流电源转换成超声频电振荡信号;换能器的作用是,将超声频电振荡信号转换为超声频机械振动;变幅杆的作用是,将换能器的振动振幅进行放大。 近20多年来,国外采用烧结或镀金刚石的先进工具,既作超声波频振动,同时又绕本身轴线以1000—5000r/min的高速旋转的超声波旋转加工,比一般超声波加工具有更高的生产效率和孔加工的深度,同时直线性好、尺寸精度高、工具磨损小,除可加工硬脆材料外,还可加工碳化钢、二氧化钢、二氧化铁和硼环氧复合材料,以及不锈钢与钛合金叠层的材料等。目前,已用于航空、原子能工业,效果良好。 本文设计的超声波旋转加工机,包括整机的工具头、进给装置等机械结构设计和驱动元件的选择。 关键词:超声波;结构设计;旋转加工;变幅杆;换能器 全套图纸,加153893706

ABSTRACT The technology of ultrasonic process is a special method process in recent 30 years, and it has a wide application because of its good crafty result. Since the technology of ultrasonic process is relative with mechanism, electricity and acoustics, it can be considered as frontier science. Ultrasonic process, it is a processing method which manufacture the work piece ultrasonic vibration at a direction. The system of ultrasonic process is consist of the manufacturing install of ultrasound, the ultrasonic transforming install, the pole of changed flap , the system of transmitting vibration, tools, and the system of craft, and so on. The function of the manufacturing install of ultrasound is to transform the 220 or 380 mains to the ultrasonic electric vibrating signal;the function of the ultrasonic transforming install is to transform the ultrasonic electric vibrating signal to the machining vibration;and the function of the pole of changed flap is to amplify the amplitude. The Rotary Ultrasonic Machining that the text designed, which include tools,feeding device etc. selection of driver is either included. Key words:Ultrasonic; Structure Design; Rotary Ultrasonic Machining Amplitude Transformer;Transducer

超声波振动切削原理

超声波振动切削原理 一、超声波振动切削原理 超声振动切削,是使刀具以20-40KHz的频率,沿切削方向高速振动的一种特种切削技术。超声振动切削从微观上看是一种脉冲切削,在一个振动周期中,刀具的有效切削时间很短,一个振动周期内绝大部分时间里刀具与工件切屑完全分离,刀具与工件切屑断续接触,切削热量大大减少,并且没有普通切削时的“让刀”现象。?利用这种振动切削,在普通机床上就可以进行精密加工,圆度、圆柱度、平面度、平行度、直线度等形位公差主要取决于机床主轴及导轨精度,最高可达到接近零误差,使以车代磨、以钻代铰、以铣代磨成为可能。与高速硬切削相比,不需要过高的机床刚性,并且不破坏工件表面组织,在曲线轮廓零件的精加工中,可以借助数控车床、加工中心等进行仿形加工,可以节约高昂的数控磨床购置费用。 超声波振动切削用于各种难以磨削而对表面质量及精度要求较高的零件的精加工,具有很大的优越性。超声波振动切削装置由超声波发生器、换能器、变幅杆及刀具等四部分组成,由超声波发生器发出的高频电讯号经换能器转化为高频机械振动,再由变幅杆将振动的振幅放大并施加到道具上,一般将换能器与变幅杆组成的部件称为声学头。 二、超声振动切削的优势特点 1.切削力小,约为普通刀具切削力的1/3—1/10; 2.加工精度高; 3.切削温度低,工件保持室温状态; 4.不产生积屑瘤,工件变形小,没有毛刺; 5.粗糙度低,可接近理论粗糙度值; 6.被加工零件的“刚性化”,即与普通切削相比,相当于工件刚性提高;

7.加工过程稳定,有效消除颤振; 8.切削液的冷却,润滑作用提高; 9.刀具耐用度呈几倍到几十倍提高; 10.工件表面呈压应力状态,耐磨性、耐腐蚀性提高; 11.切削后的工件表面呈彩虹效果。 三、超声振动切削的应用范围 (一)难切削材料的加工 不锈钢、淬硬钢、高速钢、钛合金、高温合金、冷硬铸铁以及陶瓷、玻璃、石材等非金属材料,由于力学、物理、化学等特性而难以加工,如采用超声振动切削则可化难为易。 (二)难加工零件的切削加工 如易弯曲变形的细长轴类零件、小径深孔、薄壁零件、薄盘类零件与小径精密螺纹以及形状复杂、加工精度与表面质量要求又较高的零件。 (三)高精度、高表面质量工件的切削加工 (四)排屑、断屑比较困难的切削加工 四、超声振动切屑的应用领域 广泛应用于航空、航天、军工等领域。

超声磨削装置结构设计

超声磨削装置 摘要 带有旋转的超声磨削加工是在原有机械加工磨削的根本原理上,将超声加工的振动和磨削器械混合到一起的新型式加工的方法。该方式保存了原有机械磨削的某些好的特点,有了超声振动的参与,能极大地提升加工时的工作效率,更能对难加工材料磨削表面质量有所改善。这篇论文的意义是研究出旋转超声磨削装置结构,使用这个装置从事一些加工实验。全文主要内容概括如下: 探讨分析旋转超声磨削机构这个装置,材料如何除去的原理。这个装置中去除材料的原理有相同时间具备冲击(磨具上的磨粒对工作件表面的高快速撞击)和磨蚀(旋转的磨削加工工具和进给中的运动可以变为模型化为磨削加工的过程)的作用。 研究并制作一种新型式的旋转超声磨削装置。该结构装置能安装在不同种类的机床上,进行旋转超声磨削加工对常规表面和某些较多样型面的材料。 关键词超声加工意义;旋转超声磨削;结构设计与校核

Ultrasonic grinding device Abstract Rotary ultrasonic grinding is a new machining method that combines ultrasonic vibration with grinding tools in the basic principle of the original mechanical grinding. This method saves some of the good features of the original mechanical grinding. With the participation of ultrasonic vibration, it can greatly improve the working efficiency and improve the quality of the grinding surface of difficult to machine materials. The significance of this paper is to study the structure of a rotating ultrasonic grinding device and to do some machining experiments with this device. The main contents are summarized as follows: The principle of how to remove material of rotary ultrasonic grinding mechanism is discussed. The material removal principle of this device in the same time (with the impact of abrasive abrasive on the work piece surface high impact and abrasion (fast) rotating grinding tool and feed movement in can be modeled as process of grinding) role. A new type of rotary ultrasonic grinding device is studied and fabricated. The structure can be installed on different kinds of machine tools, and rotary ultrasonic grinding is applied to conventional surfaces and some kinds of materials with various shapes. Keywords Ultrasound processing significance,Rotate ultrasound grind,Structure design and checking

相关主题