搜档网
当前位置:搜档网 › 超声振动磨削技术、

超声振动磨削技术、

超声振动磨削技术、
超声振动磨削技术、

超声振动精密磨削技术的发展

1、引言

随着科学技术的进步,金属间化合物、工程陶瓷、石英、光学玻璃等硬脆材料以及各种增韧、增强的新型复合材料因其高硬度、耐磨损、耐高温、化学稳定性好、耐腐蚀等优点在航空航天、国防科技、生物工程、计算机工程等尖端领域中的应用日益广泛;但由于这些材料的脆硬特性,传统加工方法已不能满足对这些材料零件的精密加工要求,,因此有关其精密超精密磨削加工技术便成为世界各国研究的热点。超声振动精密磨削技术便是顺应这一需要而发展起来的技术之一。

超声振动磨削技术的基本原理为:由超声波发生器产生的高频电振荡信号(一般为16~25KHz)经超声换能器转换成超声频机械振动,超声振动振幅由变幅杆放大后驱动工具砂轮产生相应频率的振动,使刀具与工件之间形成周期性的切削。即工具砂轮在旋转磨削的同时做高频振动。

超声加工技术的经历了从传统超声波加工到旋转超声波加工的发展阶段,旋转式超声加工是在传统超声加工的工具上叠加了一个旋转运动。这种加工用水带走被去除的材料并冷却工具,不需要传统超声加工中的磨料悬浮液,因此,这种方法被广泛的运用于超声振动磨削加工中[6]。

2、超声振动磨削技术发展回顾

1927 年,R.W.Wood 和 A.L.Loomis 就发表了有关超声波加工的论文,超声加工首次提出。

1945 年L.Balamuth 就申请了关于超声加工的专利。

20 世纪 50~60 年代日本学者隈部淳一郎发表了许多对振动切削进行系统研究的论文,提出了振动切削理论,并成功实现了振动磨削等加工 [8] 。

1960 年左右,英国 Hawell 原子能研究中心的科学家发明了新的超声磨削复合加工方法。超声振动磨削加工在难加工材料和高精度零件的加工方面显示了很大的优越性。

1986 年日本学者石川健一受超声电机椭圆振动特性启发,首次提出了“椭圆振动

削方法”(elliptical vibration cutting)。

20 世纪 90 年代初,日本神户大学社本英二等人对超声椭圆振动切削技术进行了深入研究,其最具代表性的研究成果是利用金刚石刀具采用双激励双弯曲合成椭圆振动的方式对黑色金属淬火不锈钢进行精密车削,最小表面粗糙度可以达到 Ra0.0106um,不但解决了金刚石不能加工黑色金属的难题,而且使这项技术达到了实用化阶段。

20世纪50年代,在前苏联的影响下,我国进行了振动加工的初步应用研究工作,对超声振动磨削机理进行了探索研究。

1976年,我国再次开展超声加工的试验研究和理论探索。

1983年,我国机械电子工业部科技司委托《机械工艺师》杂志社在西安召开了我国第一次“振动与切削专题讨论会”。

1985 年前后机械电子工业部第 11 研究所研制成功超声旋转加工机,在玻璃、陶瓷、等硬脆材料的内外圆磨削等加工中取得了优异的工艺效果。

1987年北京市电加工研究所于研究成功了超硬材料超声电火花复合抛光技术。这项发明技术是世界上首次提出并实现采用超声频调制电火花与超声波复合的研磨、抛光加工技术。与纯超声波研磨、抛光相比,效率提高5倍以上,并节约了大量的金刚石磨料。

80年代后期,天津大学李天基等人在高速磨削的同时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高了6倍以上,表面质量也有了大幅提高。

90年代后,超声振动作为一种新型的高新技术成为了科研机构和大学院校的研究热点,

3、国内外研究现状

3.1超声振动磨削技术国外研究现状

1993年,美国堪萨斯州立大学D.Prabhakar等人提出了一种超声旋转加工陶瓷材料去除率的理论模型,并试验证明了与普通磨削相同的条件下旋转超声加工工具具有低的切削力和相对高的材料去除率。

1996年东京大学的增泽隆久等人用超声激振方式在结构陶瓷材料上加工出了直径

为5μm的微孔。

1998年德国工业大学E.Uhlman、G.Spur等人在48届CIPR年会上提出在加工表面的法向施加超声振动,材料的去除率大大提高,并试验证明了在提高材料去除率的同时,并不会对表层造成损伤。

1999年,德国Kaiserslautern大学的G.Warnecke指出,在磨削新型陶瓷和硬

金属等硬脆材料时,磨削过程及结果与材料去除机理紧密相关。

美国内布拉斯加大学和内华达大学对Al2O3陶瓷材料微去除量精密超声加工技术进行了研究。通过模拟陶瓷材料超声加工的力学特性对材料去除机制进行分析,研究发现,低冲击力会引起陶瓷材料结构的变化和晶粒的错位,而高冲击力会导致中心裂纹和凹痕。美国内布拉斯加大学还第一次分析了Al2O3陶瓷精密超声加工的机理、过程动力学以及发展趋势,并详细讨论了超声技术在陶瓷加工方面的应用情况。

巴西的研究人员对石英晶体的超声研磨技术进行了研究,发现石英晶体的材料去除率取决于晶体的晶向,研磨晶粒的尺寸影响材料去除率和表面粗糙度。研究指出,加工过程中材料产生微裂纹是材料去除的主要原因。

日本的吴勇波等人建立了超声振动辅助磨削的实验装置(装置如图 1-4)并研究了磨削不锈钢内孔时超声振动对表面粗糙度和切削力的影响,研究发现,当施加 19.2KHz 超声振动后,表面粗糙度可以减少 20%;法向力减少 65%,切向力减少 70%。

3.2超声振动磨削技术国内研究现状

国内众多知名院校均对超声振动加工方面进行了研究,超声振动磨削机理的研究在这一时期取得了一系列的理论成果。

哈尔滨工业大学的吴永孝、张广玉等人研制的超声波振动小孔内圆磨削系统在小孔磨削提高磨削效率和加工精度等方面取得了一定的成效,但其使用的磁致伸缩换能器发热大,需要加装制冷装置致使其结构复杂,且超声电能的供应采用的是碳刷集流环的传统供电方式。

河北工学院的李健中等人对超声振动磨削的材料去除机理、表面创成机理、表面粗糙度等进行了一系列的研究。利用自行研制的超声振动磨削装置使砂轮磨削的同时作轴向超声振动,通过试验得知,由于高频振动,砂轮不易堵塞,保持磨粒锋利性,提高了

磨削效率;磨削表面形成网状结构,加工表面质量较好。

1998 年前后兵器工业第五二研究所杨继先、张永宏等人通过对外圆磨床的改造进行了超声振动内圆磨削试验研究,验证了超声振动内圆磨削可明显地提高陶瓷加工效率,能有效地消除普通磨削产生的表面裂纹和崩坑的效果,提高磨削圆度。

1999年上海交通大学赵波等利用自行研制的超声振动珩磨机床对工程陶瓷发动机缸套类零件进行了超声振动磨削试验研究.加工表面微裂纹大幅度减少,加工效率和加工表面质量均得纠很大提高,加工工具耐用度比普通磨削提高至少3倍。

2000 年前后,天津大学于思远、刘殿通、李天基等人 [12] 对各种先进陶瓷小孔加工进行了系统研究,采用无冷压电陶瓷换能器制开发了一台陶瓷小孔超声波磨削加工机床,在工程陶瓷小孔磨削时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高 6 倍以上,表面质量也有大幅度提高。

南京航空航天大学对硬脆金属材料的超声电解复合加工工艺进行了实验研究。结果表明,该复合加工方法使加工速度、精度及表面质量较单一加工工艺有显著改善东北大学庞楠研究了新型陶瓷材料的超声波复合磨削加工中砂轮堵塞及自锐性分析,砂轮修整方法及最佳砂轮修整程度的分析,提出超声振动磨削的最佳工艺参数[11]。

上海交通大学吴雁在陶瓷材料的超声加工方面进行了深入研究,研究了二维超声振动磨削陶瓷材料的脆-塑性转变机理、塑性去除机理、高效去除机理等相关的超声磨削机理,提出了微-纳米复合陶瓷二维超声振动表面变质层结构模型以及精密磨削复合陶瓷材料是塑性变形为主的去除方式,并且还进行了纳米复相陶瓷超声振动表面微观特性的研究,提出了在特定的磨削条件下,陶瓷材料纳米增韧改性和二维超声振动磨削技术相结合,可实现以非弹性变形为主要去除机理的超精密磨削表面[12][13]。

河南理工大学闫艳燕等进行了陶瓷材料的超声磨削机理和试验研究,分析了陶瓷材料二维超声振动研磨、磨削的去除机理和磨削表面创成机理以及硬脆材料的表面形成和破碎状况,并建立了相关的数学模型,得出了陶瓷材料脆—塑性转化的临界公式,以及超声磨削提高陶瓷材料表面质量的相关结论[15][16]。

山东大学张洪丽、张建华等研究了工件沿砂轮轴向、径向、切向三种超声振动条件下的磨削特性,分析了三种情况下的运动学、磨削力、材料去除机理及表面加工质量,建立了三种加工方式下的表面粗糙度的计算模型,并进行了实验研究[14]。

北京航空航天大学和哈尔滨工业大学将超声振动引入普通聚晶金刚石(PCD)的研磨

加工,显著地提高了研磨效率,并在分析PCD材料的微观结构和去除机理的基础上,对PCD超声振动研磨机理进行了深入研究。研究指出,研磨轨迹的增长和超声振动脉冲力的作用是提高研磨效率的根本原因。

本人及团队在超声振动内圆磨削加工技术上取得了新的突破,通过在普通内圆磨削机床上添加超声振动内圆磨削磨头即可以实现超声内圆磨削,结构简单、成本低廉,并且采用了新型的回转式非接触超声波电能传输方式,解决了一直以来困扰众多学者的碳刷、集流环电能传输方式中存在的问题,并申请了一项有关非接触超声波电能传输的实用新型国家专利。

3.3超声振动磨削装置的研究进展

超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。超声振动磨削系统通常采用一维纵向(轴向)振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的发展和在不同领域实际应用的特殊需要,对超声振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展,二维超声振动磨削系统也得到了研究和应用。

超声振动磨削系统依据换能器的振动方式可以分为两大类,单方向激励超声振动磨削系统和复合振动磨削系统。

日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。

日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。

1994年日本多贺电气株式会社采用“纵一弯”型超声复合振动系统制成研磨机,用于放电加工后的模具沟槽侧壁研磨抛光。研磨工具做纵向振动和弯曲振动。研究结果表明,弯曲振动方向不同,可获得不同的研磨效果[8]。

哈尔滨工业大学的吴永孝、张广玉等人研制的超声波振动小孔内圆磨削系统,在小

孔磨削提高磨削效率和加工精度等方面取得了一定的成效,所用磁致伸缩换能器发热大,采用了加装制冷装置的方法解决冷却问题,但致使其结构复杂。

1996 年前后华北工学院辛志杰、刘刚通过对超声振动内圆磨削机理的探讨,研制了一套超声内圆磨削装置,在改善工件表面质量、提高生产率和内圆磨削系统结构设计上有了新的突破。

1997年英国研制了硬脆材料纳米磨削中心,可实现硬脆材料超声纳米表面加工;日本UNNO海野邦昭分别进行了工程陶瓷超声磨削的研究。多项研究结果表明:超声磨削陶瓷材料的加工效率可提高近一倍;当工具与工件上同时施加超声振动时,加工效率可提高2—3倍。

1997 年前后西北工业大学史兴宽等人研制了一种超声内圆磨削装置,此装置较专用超声磨床主轴系统结构简单,但因发热大而使用了冷却装置,这就使此超声磨头的结构显得复杂,虽然加工效率和加工质量有一定的提高,但其复杂的结构不利于推广使用。

2002年弗劳恩霍夫生产技术研究院研制出了新型超声研磨设备DMS 50,采用该设备对超声辅助磨削过程进行了技术性分析。并且,国外已研究出先进的超声振动主轴,其转速可达4000r/min至30,000r/min。可以实现加工过程中砂轮的振动,并使其转速达到传统磨削工艺的水平。

德国 Fraunhofer 研究中心和布莱梅大学精密工程中心采用非圆周对称结构在单纵振激励的条件下产生了 10:1 的椭圆振动,提高了刀具寿命,也保证了加工精度。另外新加坡制造技术研究所仿照德国研究人员的结构也制作除了超声椭圆振动切削不锈钢的装置。

天津大学于思远、刘殿通等人对各种先进陶瓷小孔加工进行了系统研究,采用无冷压电陶瓷换能器研制了一台陶瓷小孔超声波磨削加工机床,在工程陶瓷小孔磨削时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高6倍以上,表面质量也有大幅度提高[23]。

南京航空航天大学杨卫平、徐家文设计了用于加工三维型面的超声磨削装置,推导了用于数控加工的超声磨削装置变幅杆设计的数学模型,此装置采用电机直连进行旋转,电信号传输采用碳刷集流环的传输方式[24]。

河南工业大学机电工程学院李华、殷振等人设计了超声波椭圆振动内圆磨削磨头,

并在超声振动内圆磨削系统中采用了新型的回转式非接触超声波电能传输方式,解决了碳刷、集流环电能传输方式中存在的问题 [25]。

德国 DMG 公司和日本马扎克公司将超声振动头安装在加工中心上,进行了零件异形沟槽加工、内外圆磨削、平面磨削加工、以及导电陶瓷材料的超声振动磨削研究,取得良好效果,并已实现商业化生产应用。

在第八届中国国际机床展览会(CIMT2003)上,德国D MG公司展出了其新产品DMS35Ultrasonic超声振动加工机床,该机床主轴转速3 000~4 0000 r/min,特别适合加工陶瓷、玻璃、硅等硬脆材料。与传统加工方式相比,生产效率提高5倍,加工表面粗糙度Ra<0.2μm,可加工0.3 mm精密小孔,堪称硬脆材料加工设备性能的新飞跃。

图 1-2 德国 DMG 超声振动加工中心图 1-3 德国 DMG 超声振动加工中心刀具

4、超声加工技术的发展趋势和未来展望

随着传统加工技术和高新技术的发展,超声振动切削技术的应用日益广泛,振动切削研究日趋深入,主要表现在以下几个方面。

(1) 研制和采用新的刀具材料

在现代制造业中,钛合金、纯钨、镍基高温合金等难加工材料所使用的范围越来越大,对机械零件加工质量的要求越来越高。为了更好地发挥刀具的效能,除了选用合适的刀具几何参数外,在振动切削中,人们将更多的注意力转为对刀具材料的开发与研究上,其中天然金刚石、人造金刚石和超细晶粒的硬质合金材料的研究和应用为主要方向。

(2) 高效稳定超声振动系统研究

现有的实验及实用振动切削加工系统输出功率尚小、能耗高,因此,期待实用的大功率振动切削系统早日问世。到目前为止,输出能量为4 kW的振动切削系统已研制出来并投产使用。在日本,超声振动切削装置通常可输出功率1 kW,切削深度为0.01~0.06 mm。

(3) 超声椭圆振动切削的研究与推广

超声波椭圆振动切削已受到国际学术界和企业界的重视。美国、英国、德国和新加波等国的大学以及国内的北京航空航天大学和上海交通大学已开始这方面的研究工作。日本企业界如日立、多贺和Towa公司等已开始这方面的实用化研究。但是,超声波椭圆振动切削在理论和应用方面还有许多工作要做。尤其是对硬脆性材料的超精密切削加工、微细部位和微细模具的超精密切削加工等方面还需要进一步研究。

(4)微细超声加工技术

以微机械为代表的微细制造是现代制造技术中的一个重要组成部分,晶体硅、光学玻璃、工程陶瓷等硬脆材料在微机械中的广泛应用,使硬脆材料的高精度三维微细加工技术成为世界各国制造业的一个重要研究课题。目前可适用于硬脆材料加工的手段主要有光刻加工、电火花加工、激光加工、超声加工等特种加工技术。超声加工与电火花加工、电解加工、激光加工等技术相比,既不依赖于材料的导电性又没有热物理作用,与光刻加工相比又可加工高深宽比三维形状,这决定了超声加工技术在陶瓷、半导体硅等非金属硬脆材料加工方面有着得天独厚的优势。

随着东京大学生产技术研究所增泽研究室对微细工具的成功制作及微细工具装夹、工具回转精度等问题的合理解决,采用工件加振的工作方式在工程陶瓷材料上加工出了直径最小为5μm的微孔,从而使超声加工作为微细加工技术成为可能。

超声加工技术在不断完善之中,正向着高精度、微细化发展,微细超声加工技术有望成为微电子机械系统(MEMS)技术的有力补充。

超声加工技术的发展及其取得的应用成果是可喜的。

展望未来,超声加工技术的发展前景是美好的。000000000000000000000000000000000000000000000000000000000000000000000

图 1-5 超声椭圆振动切削出的镜面试件

当前普通磨削的加工精度大于1μm,表面粗糙度为Ra0.16~1.25μm;精密磨削技术是指被加工零件加工精度达到1~0.5μm,表面粗糙度为Ra 0.04~0.16μm的加工技术。主要靠对砂轮的精细修整。超精密磨削的加工精度小于0.5~0.1μm,表面粗糙度Ra0.01~0.04μm。使用金刚石或CBN砂轮。适合于合金钢、陶瓷等硬脆材料的加工;用磨具进行磨削和用磨粒进行研磨和抛光时实现精密超精密磨削的主要途径。

超声振动辅助磨削技术的现状与新进展

第31卷第11期2010年11月 兵工学报ACTA ARMAMENTARII Vol.31No.11Nov. 2010 超声振动辅助磨削技术的现状与新进展 梁志强1,2,王西彬1,吴勇波2,栗勇1,赵文祥1,庞思勤 1 (1.北京理工大学先进加工技术国防重点学科实验室,北京100081; 2.秋田県立大学系统科学技术学部,秋田290014,日本) 摘要:如何实现硬脆性材料的高效率、高质量、高精度加工是现代精密制造领域的技术难题,为解决这一难题超声波振动磨削技术被引入到硬脆性材料的加工中。综述了超声振动磨削技术的现状,基于现有的一维振动磨削与二维振动磨削技术,着重分析了不同超声振动施加方式对磨削 力、 加工表面完整性、砂轮磨损等加工特性的影响。作为二维振动磨削技术的最新进展,对垂直型椭圆振动磨削技术的加工原理以及加工特性进行初步介绍。 关键词:机械制造工艺与设备;超声辅助磨削;椭圆振动;硬脆材料;磨削力;粗糙度 中图分类号:TG156文献标志码:A 文章编号:1000- 1093(2010)11-1530-06Status and Progress of Ultrasonic Assisted Grinding Technique LIANG Zhi-qiang 1,2 ,WANG Xi-bin 1,WU Yong-bo 2,LI Yong 1,ZHAO Wen-xiang 1,PANG Si-qin 1 (1.Key Laboratory of Fundamental Science for Advanced Machining ,Beijing Institute of Technology ,Beijing 100081,China ; 2.Faculty of Systems Science and Technology ,Akita Prefectural University ,Akita 290014,Japan ) Abstract :In current precision machining field ,there is a critical problem to achieve high efficiency ,high-quality and high-precision machining for hard brittle material.Based on this background ,the ultra-sonic assisted grinding machining is widely introduced as a promising processing technology.In this pa-per ,the machining characteristics ,especially grinding forces ,ground surface integrality and wheel wear ,of both one-dimensional and two-dimensional ultrasonic assisted grinding techniques are analyzed.As a new progress ,the principle and fundamental characteristics of vertical elliptical ultrasonic assisted grind-ing method are introduced. Key words :machinofacturing technique and equipment ;ultrasonic assisted grinding ;elliptical vibra-tion ;hard brittle material ;grinding force ;surface roughness 收稿日期:2009-11-13 基金项目:国家自然科学基金资助项目(50935001);国防科研资助项目(62301090103)作者简介:梁志强(1984—),男,博士研究生。E-mail :liangdjx@yahoo.com ;王西彬(1958—),男,教授,博士生导师。E- mail :cutting0@bit.edu.cn 随着科技的发展对硬脆性材料、难加工材料和 新型先进材料的需求日益增多,对关键零件的加工效率、加工质量和加工精度提出了更高的要求。传统磨削方法因不可避免的产生较大的磨削力以及磨削热,引起工件表面/亚表面损伤以及砂轮寿命低等一系列问题。尤其在精密与超精密加工领域,这些加工缺陷的存在严重制约着零件加工精度及加工效 率的提高。为解决这些问题,超声振动被引入到磨 削加工中。国内外广泛研究证实超声振动磨削在提高材料去除率、提高加工表面质量与加工精度、降低工件表面损伤以及延长砂轮寿命等方面具有显著优势。 一维超声振动磨削技术较早应用到工业领域,近年在超精密加工领域,日本和中国的学者又

超声振动磨削机构的建模与仿真

摘要: 超声波加工是一门重要的特种加工技术,超声加工的总概述:其分为超声车、铣、磨、钻等。超声振动磨削是一种特殊的切削加工的方法,这种加工技术对于加工陶瓷、高强度复合材料以及硬脆材料具有独到的优势。本文从超声振动声学子系统设计超声振动磨削机构。从声学角度和波动方程角度分别介绍了变幅杆设计的理论基础。设计了机构与工件相连接以及机构与机床相连接装置。这个超声振动磨削机构,可以直接装配到一般普通机床上直接使用,因此非常方便。这种新型机构可以作为一种机床附件,它具有体积小、结构简单、成本低、可加工大型工件的优点,对超声波加工以及机床的发展具有十分重要的意义。 关键词:超声波发生器,换能器,变幅杆,珩磨头。

ABSTRACT: The ultrasonic machining is an important special machining technology, is the supersonic processing total outline: It divides into the supersonic vehicle, the mill, to rub, to drill and so on. The ultrasonic vibration grinding is one special machining method, this kind of process technology regarding the ceramics, the high strength compound materials as well as the hard crisp material has the original superiority. This article from ultrasonic vibration acoustics system design organization. Introduced the amplitude pole design rationale from acoustics angle and the wave equation angle. Has designed the organization and the work piece connects as well as the organization and the engine bed junction device. Designs this ultrasonic vibration grinding organization, may assemble directly to the engine bed on the direct use. This kind of new organization may take one kind of engine bed appendix, has the volume to be small, the structure is simple, the cost low merit, has the vital significance to the ultrasonic machining as well as engine bed‘s development. Key words:Ultrasonic generator, transducer, amplitude pole, top horizontal jade piece wheel head.

超声波加工技术

超声波加工技术 1.绪论 人耳能感受到的声波频率在20—20000HZ范围内,声波频率超过20000HZ被称为超声波。超声波加工(Ultrasonic Machining简称USM)是近几十年来发展起来的一种加工方法,它是指给工具或工件沿一定方向施加超声频振动进行加工的方法,或利用超声振动的工具在有磨料的液体介质或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀来去除材料,又或利用超声振动使工件相互结合的加工方法。它弥补了电火花加工的电化学加工的不足。电火花加工和电化学加工一般只能加工导电材料,不能加工不导电的非金属材料。而超声波加工不仅能加工硬脆金属材料,而且更适合于加工不导电的硬脆非金属材料,如玻璃、陶瓷、半导体锗和硅片等。同时超声波还可用于清洗、焊接和探伤等。 1.1超声波加工的发展状况 超声波加工是利用超声振动的工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。超声加工系统由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。超声波发生器的作用是将220V或380V的交流电转换成超声频电振荡信号;换能器的作用是将超声频电振荡信号转换为超声频机械振动;变幅杆的作用是将换能器的振动振幅放大;超声波的机械振动经变幅杆放大后传给工具,使工具以一定的能量与工件作用,进行加工。 超声加工技术是超声学的一个重要分支。超声加工技术是伴随着超声学的发展而逐渐发展的。 早在1830年,为探讨人耳究竟能听到多高的频率,F.Savrt曾用一多齿的齿轮,第一次人工产生了2.44 HZ的超声波,1876年加尔顿的气哨实验产生的超声波的频 10

机械加工过程中振动的影响

3、振动对工件表面质量的影响及其控制3.1振动对工件表面质量的影响 机械加工中产生的振动,一般说来是一种破坏正常切削过程的有害现象。各种切削和磨削过程都可能发生振动,当速度高、切削金属量大时常会产生较强烈的振动。 切削过程中的振动,会影响加工质量和生产率,严重时甚至会使切削不能继续进行,因此通常都是对切削加工不利的,主要表现在以下几个方面。 (1)影响加工的表而粗糙度。振动频率低时会产生波度,频率高时会产生微观不平度。 (2)影响生产率。加工中产生振动,会限制切削用量的进一步提高,严重时甚至会使切削不能继续进行。 (3)影响刀具寿命。切削过程中的振动可能使刀尖刀刃崩碎,特别是韧性差的刀具材料,如硬质合金、陶瓷等,要注意消振问题。 (4)对机床、夹具等不利。振动使机床、夹具等的零件连接部分松动,间隙增大,刚度和精度降低,同时使用寿命缩短。 此外,强烈的振动及伴随而来的噪声,还会污染环境,危省操作者的身心健康。 对于精密零件的精密加工和超精密加工,其尺寸精度要求多小于m 1μ,表面粗糙度值m .0以下,而且不允许出现波纹。因此,在切削过程中哪怕出现极Raμ 02 其微小的振动,也会导致被加工零件达不到设计的质量要求。 振动对机械加工有不利的一面,但又可以利用振动来更好地切削,如振动磨削、振动研抛、超声波加工等都是利用振动来提高表面质量或生产率的。 机械加工中产生的振动,根据其产生的原因,大体可分为自由振动、强迫振

动和自激振动三大类,如图1所示。 图1 切削加工中振动的类型 3.2自由振动 自由振动是当系统所受的外界干扰力去除后系统本身的衰减振动。由于工艺系统受一些偶然因素的作用(如外界传来的冲击力、机床传动系统中产生的非周期性冲击力、加工材料的局部硬点等引起的冲击力等),系统的平衡被破坏,只靠其弹性恢复力来维持的振动属于自由振动。 在机械加工中,自由振动是最简单的振动,所占振动比率仅5%左右。振动的频率就是系统的固有频率。由于工艺系统的阻尼作用,这类振动会很快衰减。可见,自由振动对机械加工过程影响较小,但是自由振动在一定条件下会诱发产生自激振动。 3.3强迫振动 强迫振动是由外界周期性的干扰力所支持的不衰减振动。

超声波切割机工作原理

超声波切割机 一、概述超声波切割机的原理与传统意义上的切割完全不同。它是利用超声波的能量,将被切割材料的局部加热熔化,从而达到切割材料的目的。所以超声波切割不需要锋利的刃口,也不需要很大的压力,不会造成被切割材料的崩边、破损。同时,由于切割刀在做超声波振动,摩擦阻力特别小,被切割材料不易粘在刀片上。这对粘性和弹性材料、冰冻材料,如食品,橡胶等,或不便加压力的物体切割,特别有效。超声波切割还有一个很大的优点,就是它在切割的同时,在切割部位有熔合作用。切割部位被完美地封边了,可防止被切割材料组织的松散(如纺织材料飞边)。超声波切割机的用途还可以扩展,如挖孔,铲挖,刮漆,雕刻,分条等等。 二、基本结构和特点超声波切割机是利用波能量进行切割加工的一类设备,它最大的特点是切割不用刃口。或者说,不用传统意义上的刃口。传统的切割是利用带有锋利刃口的刀具,压向被切割材料。此压力集中在刃口处,压强就非常大,超过了被切割材料的剪切强度,材料的分子结合被拉开,就被割断了。由于材料是被强大的压强硬性拉开的,所以切割刀具刃口就应该非常锋利,材料本身还要承受比较大的压力。对软性、有弹性的材料切割效果不好,对粘性材料困难更大。基本构成是超声波换能器、变幅杆、切割刀(工具头),驱动电源。超声波驱动电源将市电转换成高频高电压交流电流,输给超声波换能器。超声波换能器其实就相当于一个能量转换器件,它能将输入的电能转换成机械能,即超声波。其表现形式是换能

器在纵向作来回伸缩运动。伸缩运动的频率等同于驱动电源供出的高频交流电流频率。变幅杆的作用一是固定整个超声波振动系统,二是将换能器的输出振幅放大。切割刀(工具头)一方面进一步放大振幅,聚焦超声波。另一方面是输出超声波,利用切割刀的类似刃口,将超声波能量集中输入到被切割材料的切割部位。该部位在巨大超声波能量的作用下,瞬间软化、熔化,强度大大下降。此时,只要施加很小的切割力,就可达到切割材料的目的。类似于常规切割,所需要的基本的构件是切刀和砧板,超声波切割机也由有两种基本结构。根据超声波施加位置的不同,我们不妨可以把它分成超声波切刀式切割机和超声波砧板式切割机。超声波切刀式切割机是直接将超声波能量加载到切刀上,切刀就变成一把带有超声波的切刀。在切割材料时,材料主要是被超声波能量软化和熔化的,切刀的刃口只是起到切缝定位、超声波能量输出、分隔材料的作用。这种切割方式适用于粗、厚、长等不方便设置砧板的材料的切割。超音波切割机适用于:如炼胶机输出的生胶分切、管子切割、冻肉、糖果、巧克力切割、印刷线路板、工业、首饰业、塑料制品加工、食品加工、印刷工业、汽车工业天然纤维分割(可分细线路)、合成纤维深挖(多层电路切断)、塑料外壳加工、薄的人造树脂括漆(适合大面积)所有型式的纸张和底胶片原产地(中国)或手持式切割机等等。完。

磨削加工中常用的磨料有哪几种

1.磨削加工中常用的磨料有哪几种? 答:有两种即氧化物系和超硬磨料氧化物系有:棕刚白钢洛刚锡刚单晶刚微粒刚超硬磨料:碳化物系高硬磨料系 2.切削磨削加工采用冷却液使用方法有哪几种? 答:有4中即浇铸法交压冷却法和喷雾冷却法对于磨削还有渗透供液法。 3.衡量工件材料的切削加工性的指标通常有哪些? 答:1刀具使用寿命2切削力和切削温度3加工表面质量4断屑性花 4.机床夹具一般由哪些部分组成? 答:由5部分组成1定位元件2加紧装置3对刀和升导元件4夹具体5其他元件 5.什么叫6点定位? 答:用六个支承点来限制工件的六个自由度的定位方法称为六点定位。 6.切削加工中影响表面粗糙度的因素有哪些? 答:1刀具切削刃的形状的影响2工件材料的影响3切削用量的影响4工艺系统的交频振动的影响。 7.磨削加工中影响表面粗糙的因素有哪些? 答:1砂轮的粒度2砂轮的硬度3砂轮的修理4砂轮的速度5磨削切向进给量与光磨次数6工件圆周进给速度与轴向进给量7冷却润滑液 8.机械加工的强迫振动有哪些特点? 答:1该振动是外界周期性干扰力的作用下产生的,但振动本身并不能引起干扰力的变化。2强迫振动的频率总与外界干扰力的频率相同或成倍数关系3强迫振动振幅的大小在很大程度上取决于干扰力的频率W与加工系统固有频率W0的比值W/W0=1时振幅达最大值,称为共振4共振幅大小除与W/W0有关外还与干扰力系统刚度及组成系数有关 9.机械加工中的自激振动有哪些特点? 答:1自激振动是一种不衰减振动2其振动的频率等于或接近交频的固有频率3其振动的形成和持续是由切削过程产生的4其振动能否产生的及振幅的大小决定每一振动的周期内系统几个获得能量与所消耗的能量的对比情况。 10.叙述在机床加工过程中选择粗基准和精基准时各应遵循什么原则? 答:一,粗基准的选择1选择与加工表面间有较高位置精度要求的毛坯面为粗基准,并能一次装夹中加工较多的表面2选择工件上余量较少的表面为粗基准3以工件上某要求余量均匀的表面为粗基准4应尽量平整光洁有一定面积以便使工件定位准确加紧可靠5粗基准在同一尺寸方向上只能使用一次二,精基准的选择1基准重合的原则—选工序基准作为精基2准基准同一的原则3互为基准原则自为基准原则 11.机械加工中使用的零件毛坯有哪些种类? 答:铸造毛坯锻造毛坯此外还有型材焊接和其它毛坯零件 12.机械加工过程中一般划分为那几个加工阶段?为什么要划分加工阶段? 答:可分4个阶段1粗加工阶段2半精加工阶段3精加工阶段4光整加工阶段另件划分加工阶段的原因1可以保证质量2便于安排热处理工序3合理使用机床设备4粗精加工分开便于及时发现毛坯缺陷 二,名词解释 1.切削深度—指工件上待加工表面与已加工表面之间的垂直距离,称为背吃刀量 2.主偏角—在基面内度量的切削平面与进给平面间的夹角 3.刀具前角—在剖面内度量的基面与前刀面间的夹角 4.刀具主剖面—通过

超声加工技术的现状及发展趋势

超声加工技术的现状及 发展趋势 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

超声加工技术的现状及发展趋势 前言:超声波加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。超声波加工技术是一种涉及面广且更新快的机械加工技术。结合近年来超声加工技术的发展状况,综述了超声振动系统的研究进展和超声加工技术在深小孔加工、拉丝模及型腔模具研磨抛光、难加工材料的加工、超声振动切削、超声复合加工等方面的最新应用,并阐述了超声加工技术的发展趋势。 关键词:超声波加工、超声振动、声复合加工、应用、发展、 正文: 1、超声振动系统的研究进展及其应用 超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。 日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。日本还研制成一种新型“纵-弯”型振动系

统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。日本金泽工业学院的研究人员研制了加工硬脆材料的超声低频振动组合钻孔系统。将金刚石中心钻的超声振动与工件的低频振动相结合,制造了一台组合振动钻孔设备,该设备能检测钻孔力的变化以及钻孔精度和孔的表面质量,并用该组合设备在不同的振动条件下进行了一系列实验。实验结果表明,将金刚石中心钻的超声振动与工件的低频振动相结合是加工硬脆材料的一种有效方法。 另一种超声扭转振动系统已在“加工中心”用超声扭转振动装置上应用。主要用作电火花加工后的模具异形(如三角形、多边形)孔和槽底部尖角研磨抛光,以及非导电材料异形孔加工。该振动系统的换能器采用按圆周方向极化的8块扇形压电陶瓷片构成,产生扭转振动。 2、超声加工技术应用研究 深小孔加工 众所周知,在相同的要求及加工条件下,加工孔比加工轴要复杂得多。一般来说,孔加工工具的长度总是大于孔的直径,在切削力的作用下易产生变形,从而影响加工质量和加工效率。特别是对难加工材料的深孔钻削来说,会出现很多问题。例如,切削液很难进入切削区,造成切削温度高;刀刃磨损快,产生积屑瘤,使排屑困难,切削力增大等。其结果是加工效率、精度降低,表面粗糙度值增加,工具寿命短。采用超声加工则可有效解决上述问题。

功率超声振动加工技术教案

南通大学 Nan Tong University 功率超声振动加工技术 院系: 专业:自动化 班级: 学号: 姓名:李芸 关键词: 振动加工、换能器发生机理、熔焊、功率超声车削、珩磨技术 引言: 超声加工(ultrasonic machining),起源于20世纪50年代初期,是指给工具或工件沿一定方向施加超声频振动进行振动加工的方法。超声加工系统,由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。在难加工材料和精密加工中,功率超声加工技术具有普通加工无法比拟的工艺效果,具有广泛的应用范围。由于功率超声加工技术具有许多优点,与其他加工技术相比较,常常能大幅度提高加工速度、提高加工质量和完成一般加工方法难以完成的加工工作。因此,在工业、农业、国防和医药卫生、环境保护等部门得到越来越广泛的应用。 正文:

一、超声加工的基本原理 超声加工时,高频电源联接超声换能器,由此将电振荡转换为同一频率、垂直于工件表面的超声机械振动,其根幅仅0.005~0.01mm,再经变幅杆放大至0.05~0.lmm,以驱动工具端面作超声振动。此时,磨料悬浮液(磨料、水或煤油等赃工具的超声振动和一定压力下,高速不停地冲击悬浮液中的磨粒,并作用于加工区,使该处材料变形,直至击碎成微粒和粉末。同时,由于磨料悬浮液的不断搅动,促使磨料高速抛磨工件表面,又由于超声振动产生的空化现象,在工件表面形成液体空腔,促使混合液渗入工件材料的缝隙里,而空腔的瞬时闭合产生强烈的液压冲击,强化了机械抛磨工件材料的作用,并有利于加工区磨料悬浮液的均匀搅拌和加工产物的排除。随着磨料悬浮液不断地循环。磨粒的不断更新。加工产物的不断排除,实现了超声加工的目的。总之,超声加工是磨料悬浮液中 的磨粒,在超声振动下的 冲击、抛磨和空化现象综 合切蚀作用的结果。其中, 以磨粒不断冲击为主。由 此可见,脆硬的材料,受 冲击作用愈容易被破坏, 故尤其适于超声加工。 由超声发生器产生的高频 电振荡(频率一般为16~25千赫,焊接频率可更高)施加于超声换能器上(见图),将高频电振荡转换成超声频振动。超声振动通过变幅杆放大振幅(双振幅为20~80微米),并驱动以一定静压力压在工件表面上的工具产生相应频率的振动。工具端部通过磨料不断地捶击工件,使加工区的工件材料粉碎成很细的微粒,为循环的磨料悬浮液带走,工具便逐渐进入到工件中,加工出与工具相应的形状。 二、特点 ①不受材料是否导电的限制。 ②工具对工件的宏观作用力小、热影响小,因而可加工薄壁、窄缝和薄片工件。 ③被加工材料的脆性越大越容易加工;材料越硬或强度、韧性越大则越难加工。 ④由于工件材料的碎除主要靠磨料的作用,磨料的硬度应比被加工材料的硬度高,而工具的硬度可以低于工件材料。 ⑤可以与其他多种加工方法结合应用,如超声振动切削、超声电火花加工和超 声电解加工等。 超声加工主要用于各种硬脆材料,如玻璃、石英、陶瓷、硅、锗、铁氧体、宝石和玉器等的打孔(包括圆孔、异形孔和弯曲孔等)、切割、开槽、套料、雕刻、成批小型零件去毛刺、模具表面抛光和砂轮修整等方面。超声打孔的孔径范围是0.1~90毫米,加工深度可达100毫米以上,孔的尺寸精度可达 0.02~0.05毫米。表面粗糙度在采用 W40碳化硼磨料加工玻璃时可达Rα 1.25~0.63微米,加工硬质合金时可达Rα0.63~0.32微米。 ⑥切削力大及温度幅度降低,工件寿命大幅度提高。 ⑦大大节省能源,简化机床结构。 ⑧提高已加工表面的耐磨性、耐腐蚀性。

浅谈机械加工过程中机械振动的成因与改善方法

浅谈机械加工过程中机械振动的成因与改善方法 发表时间:2018-10-16T17:27:33.240Z 来源:《基层建设》2018年第27期作者:刘冬霍有平[导读] 摘要:社会生产力的发展促使机械生产效率的提升问题受到社会的关注,机械设备在生产加工的过程中,不可避免地会出现不同程度的机械振动问题,在某种程度上来说,机械设备的振动程度暗示着机械设备的运行状态,所以生产厂家除了要注意机械设备的技术以外,机械运行和使用中的振动问题同样不容忽视。 青海桥头铝电股份有限公司青海 810100 摘要:社会生产力的发展促使机械生产效率的提升问题受到社会的关注,机械设备在生产加工的过程中,不可避免地会出现不同程度的机械振动问题,在某种程度上来说,机械设备的振动程度暗示着机械设备的运行状态,所以生产厂家除了要注意机械设备的技术以外,机械运行和使用中的振动问题同样不容忽视。本文在对在现有的技术条件下,几种机械振动的类型和特点进行阐述的基础上,分析了机械加工过程中振动现象的成因,最后,就如何改善机械的这种震动状态和提升机械的运行效率问题提出几点对策,以为企业的机械加工管理工作提供借鉴。 关键词:机械加工;机械振动;成因;改善措施引言:从事实体生产的企业要想维持自身的生存与发展,就必须要使用到机械设备以提升生产效率,但是在实际的机械运行过程中,常常会由于人为因素和机械本身质量的影响,而产生不同程度的振动现象,如果机械设备出现了大幅度的振动问题,很有可能是设备故障的信号,所以机械振动问题不容忽视。首先,机械振动的最简单的影响就是噪音问题,如果振动噪音超出了国家规定,会直接影响到企业的生产,同时也为周围的居民生活造成了困扰;其次,机械的振动会在很大程度上加大刀具的磨损,长此以往,机械设备可能会出现崩刀问题;最后,从物理学的角度上来讲,机械设备的振动会加大加工物体表面的粗糙程度,如果企业所要生产的实物对表面的粗糙程度要求较高,就会直接影响到企业接下来的生产。 一、机械加工过程中产生振动的类型与特点 1、自由振动 振动系统在机械运转时会受到被称为激振力的外界作用力的影响,从而使系统的平衡状态遭受影响,这种情况下产生的振动方式就是自由振动。 2、强迫振动 在周期性的外力作用下,系统会而产生强迫振动。在磨削过程中产生的机械振动较为典型。泵件状态不稳定、三角皮带的长短厚薄不等、轮系结构与电动机的配合不均匀等情况都会不同程度的造成机床的强迫振动。 3、自激振动 与强迫振动存在明显的不同,自激振动并不是在外力的作用下产生的,而是自身交变力作用的结果,且其并不会衰减。 二、机械加工过程中出现机械振动的原因 1、自由振动的成因 一方面,在机械使用的过程中,考虑到机械的切削力是不稳定的,如果机械切削力发生变化,就会产生比较大幅度的自由震动;另一方面,由于机械的运行受到周围环境的影响,如果机械所处的环境对机械造成了冲击,也是会产生自由振动的。以上两种自由振动实际上都是物理上性能的,尽管一种来自于外界,另一种来自于机械本身,但是由于这两种振动在所有生产机械的使用和加工过程中都是普遍存在的,所以被归结为自由振动的成因,但是从另一个侧面说明,由于机械切削力的不稳定和外界冲击力造成的机械振动是可以被人为的阻止的。 2、强迫振动的成因 强迫振动是机械生产和运行中最主要的振动方式,而且强迫振动发生的频率也比较高,此外,强迫振动还具有易受外界影响的性质,机械出现强迫振动的原因一般可以归结为三点。具体来讲,首先,一般情况下,尽管生产企业对机床的平整性有一定的要求,但是却不能保障完全意义上的平衡,这种情况实际上加大了机械出现皮带失衡现象的概率,一旦皮带失衡就会牵连到整个机械,进而造成机械强迫振动;其次,在企业进行生产加工的过程中,需要机床上的零部件辅助机械的运行,但是在实际的生产过程中,由于企业对于零部件的检查不到位,当机床上的零部件出现问题,不能够被及时发现,而这些受损的零部件在生产的过程中,就会不可避免地对机械生产造成影响,不仅会造成机械振动,甚至可能会影响机械的使用寿命,这也就要求企业在进行生产的同时,除了要检查重要器械设备的部件,也不能忽视机床零部件的维修与检测;最后,尽管机械化生产是遵循一定的周期来完成的,但是在实际的生产和使用的过程中,并不都是完全按照周期来进行切削的,会存在不均匀切削的情况,这种情况在相对老旧一些的设备中表现的尤为明显,所以也就会导致出现机械的强迫振动。 3、自激振动的成因 在机械加工的过程中,出现自激振动的原因可以归结为以下几点。首先,切削设备的刀具之间会产生摩擦力,也就会带动出现机械振动;其次,就是刀具的问题,具体来讲,如果切削刀具的质量比较好,在切割的过程中也就会更稳定一些,反之,如果刀具的质量比较差,或者说,刀具的刚性要差一些,切割的时候就会产生刀具的振动,由于其来源于机械本身,所以称为自激振动;还有一种情况与此类似,就是细长轴刚性过差造成的自激振动,但是与刀具刚性过差产生自激振动的原因不同的是,细长轴是对加工部件的表面产生影响,间接出现机械振动;最后,就是进刀量过多和切削量过大,也会造成机械的自激振动,这是因为,机械设备是根据一定的生产需要来设计的,不管是机械的材料还是机械的性能上,都无法负荷过大的生产,但是在实际的生产过程中,很多企业不顾机械的性能盲目地加大机械的切削量,就会导致出现自激振动。 三、机械加工过程中机械振动的控制措施 1、强迫振动的控制措施 第一,外部环境是强迫振动的主要起因,所以,应首先对引起振动的源头进行控制。对于转速要求较高的加工工具,应在使用前进行平衡性的检测。这就需要在使用之前对其进行多次检测,在运行时最大程度上避免振动,以确保平稳性。另外,合适的传送带与轴承可减少噪声与振动。

超声波高频振动车削工艺

超声波高频振动车削工艺 超声振动切削,是使以20-50KHz的频率、沿切削方向高速振动的一种特种切削技术。 1.工作原理 超声振动切削从微观上看是一种脉冲切削。在一个振动周期中,的有效切削时间很短,大于80%时间的里与工件、切屑完全分离。与工件、切屑断续接触,这就使得所受到的摩擦变小,所产生的热量大大减少,切削力显著下降,避免了普通切削时的“让刀”现象,并且不产生积屑瘤。利用这种振动切削,在普通机床上就可以进行精密加工,圆度、圆柱度、平面度、平行度、直线度等形位公差主要取决于机床主轴及导轨精度,最高可达到接近零误差,使以车代磨、以钻代铰、以铣代磨成为可能。与高速硬切削相比,不需要高的机床刚性,并且不破坏工件表面金相组织。在曲线轮廓零件的精加工中,可以借助数控车床、加工中心等进行仿形加工,可以节约高昂的数控磨床购置费用。 2.性能指标 2.1切削力小,约为普通切削力的1/3-1/10。 2.2加工精度高,主要取决于所用机床精度,所加工工件形位公差几乎可接近机床相关精度。 2.3切削温度低,工件保持室温状态。 2.4不产生积屑瘤,工件变形小,没有毛刺。 2.5切削表面粗糙度低,可接近理论粗糙度值,最高可达Ra0.2以下。 2.6被加工零件的“刚性化”,即与普通切削相比,相当于工件刚性提高。 2.7加工过程稳定,能有效消除颤振。 2.8切削液的冷却、润滑作用提高。

2.9耐用度呈几倍到几十倍提高。 2.10被加工表面呈压应力状态,零件疲劳强度、耐磨性、耐腐蚀性提高。 2.11切削后的工件表面呈彩虹效果。 3.应用范围 由于超声振动切削有如此多的优点,所以可广泛应用于航空、航天、军工等领域各种难加工材料的切削加工。 3.1难加工材料切削:如耐热钢、钛合金、恒弹性合金、高温合金、不锈钢、冷硬铸铁、工程陶瓷、复合材料和花岗岩等。 3.2加工淬硬钢零件及超硬零件,能得到很高的加工精度和表面质量:用硬质合金可以很轻松地加工硬度达HRC60以上的淬硬钢零件,如高速钢、轴承钢等;用PCD加工硬质合金,可以大大提高的耐用度。 3.3成型切削:利用成型切削加工各种类型的轮廓曲面及内外球面、过度圆弧、锥面等。 3.4细长杆件及薄壁件车削加工。 3.5超细直径零件车削加工。 3.6超精密加工。 产品相关词组: 超声波振动切削装置,超声波椭圆振动切削,超声切削,超声椭圆振动,超声振动切削加工中心,二维超声振动磨削,旋转超声钻削,振动切削,超声振动加工,椭圆超声振动微雕刻装置,高频椭圆振动切削,超声振动磨削,振动加工,超声椭圆振动切削,椭圆振动切削,振动车削,超声车削

超声振动切削加工

超声振动切削加工的研究现状及进展 摘要:简述了超声振动切削技术的发展、优点及应用领域。通过将超声振动切削与普通切削比较以及对振动切削过程特点的描述,探讨了超声振动切削的切削机理。文章还分析了振动切削技术的最新发展, 认为超声振动切削是一项有发展前途的新型技术。 关键词:超声振动切削;难加工材料:切削机理 Research of vibration assisted turning cutting technology and

Its development Abstract:Introduces the history, advantages and application field of the ultrasonic cutting technology(UCT). By compared with ordinary cutting and the characteristics description of the ultrasonic vibration cutting process, explored Ultrasonic vibration cutting of the cutting mechanism. The paper also analyzes an up- to- date vibrating cutting technology and summarizes that the ultrasonic vibration cutting is a promising new technology. Key Words: Ultrasonically vibrating cutting; Difficult - to - machine materials; Cutting Mechanism 0 前言 超声振动切削技术是把超声波振动的力有规律地加在刀具上,使刀具周期性地切削和离开工件的加工技术, 是结合超声波技术和传统切削工艺的一种新型切削技术。在20 世纪60 年代,日本隈部淳一郎先生就对该项技术做了大量的研究工作。

偏心轴磨削振动分析研究

No. 9Sep. 2019 第9期2019年9月组合机床与自动化加工技术 Modular Machine Tool & Automatic Ma/ufacturiiig Technique 文章编号:1001 -2265(2019) 09 -0107 -04 DOI : 10.13462/j. aki.2019.09.026 偏心轴磨削振动分析研究! 张山山,韩秋实,彭宝营,李启光 (北京信息科技大学机电工程学院,北京100192) 摘要:针对偏心轴在磨削过程中存在冲击和振动而影响加工表面精度和质量的问题,文章分析了偏 心轴磨削系统产生的几种振动,通过CATIA 三维软件建立了磨削简化模型,同时通过接口互换导 入ADAMS 进行运动仿真,分析研究了偏心轴磨削过程中换向冲击产生的自由振动导致的加速度曲 线变化、砂轮架质量、砂轮架水平进给速度等因素对振动的影响,又分析了工件偏心、砂轮偏心引起 的振动,可以为进一步提高表面质量和磨削稳定性的研究提供理论支撑。关键词:偏心轴;磨削振动;振动分析 中图分类号:TH113 :TG65 文献标识码:A Research on ViCration Analysis of Ecceetric Shaft Grinding ZHANG Shan-shan , HAN Qiu-shi , PENG Bao-ying , LI Qi-guang (School of Mechanical and Electrical Engineeong , Beijing Infoonation Science and Technology University , Beijing 100192, China) Abstrach : Aiming at the prob.m that the eccentric shaft has impact and vibration during the grinding process and affects the accuracy and quality ot the machined surface , several vibrations generated by the eccentric shaft grinding system ara analyzed. The simplified modei ot grinding is established by CATIA software. The ADAMS was imported and exchanged for mohon simulation. The influence ot the accelera - tion curve ceused by the free vibration generated by the commutation shock during the eccenWi.c shaft grind - ing , the quality of the wheel frame and the horizontal feed rate of the wheel frame on the vibration wer analyzed. The eccenthcity of the workpiece and the vibration ceused by the eccenthcity of the grinding wheel is analyzed , which can provide theoretical support for elrther research on surface quality and grind - ing shabilihy. Key words : eccenWi.c shaft ; grinding vibration ; vibration analysit 0引言 偏心轴类零件,其结构的回转中心和几何中心不 重合,存在一个偏心距,如机器人里的RV 减速器、发 动机曲轴等部件,它们作为核心部件广泛应用于机器 人、汽车、航天、采矿等产业里,它们质量的好坏对于机 器的运转起着决定性的作用。RV 减速器的核心零件 是偏心轴,当下世界上许多国家的机器人大多采用RV 减速器,并且一台机器人成本中除了控制器外,减速器 要占到总成本的三分之一⑴)磨削是精加工的主要方 法之一,要得到较高的加工表面质量,应尽可能地保持 磨削过程的稳定性,避免产生颤振。而在实际的机械 加工中,几乎所有机械振动过程,都包含有非线性振 动[2-4]。湖南大学周秦源研究了外圆磨削存在的振 动[5],国内的关于非圆磨削的研究相对较少,偏心轴在 磨削加工过程中,因为偏心距的存在,在!(砂轮架水 平进给)-U 工件转动)联动的过程中,在!方向砂轮 对于偏心轴转动(C )进行跟踪,这样就会在!方向行 程终点处由于换向惯性存在产生往复冲击振动,这些 振动以及其它振动会影响到工件表面质量以及磨削的 稳定性。基于此背景,主要深入研究在非圆磨削过程 中!方向换向导致的惯性冲击振动以及影响因素,这 对于提高磨削稳定性以及工件表面质量有着重要的意 义。 1偏心轴加工模型 偏心轴的加工采取“逆磨”的方式,图1为偏心轴 磨削加工的示意图。0'为偏心轴轮廓中心,01位偏心 轴回转中心,。2为砂轮中心,e 为偏心距,*为偏心轴 轮廓圆半径,*为砂轮半径,,为偏心轴旋转角度," 为偏心轴的回转中心到砂轮中心线段与!轴方向的 夹角,)为磨削接触点,!为砂轮中心到偏心轴回转中 心的水平距离。建立如图1的!。1 X-0,-Y 坐 标叫 收稿日期:2018 - 11 -29; 修回日期 :2018-12-21 * 基金项目:国家自然科学基金(51375056);北京市教 育委员会科技计划项目(KM201711232001 )作者简介:张 山山(1992—),男,安徽阜阳人,北京 信息科技大学硕士研究生,研究方向为智能制造,(E-mail ) mzshs@ 126. com ;通 讯作者:韩秋 实(1956一),男,吉林省吉林市人,北京信息科技大学 教授, 博 士生导师,研究方向为智能化制造装备,(E - mail )hanqs@ bistu. cn o

超声波振动切削原理

超声波振动切削原理 一、超声波振动切削原理 超声振动切削,是使刀具以20-40KHz的频率,沿切削方向高速振动的一种特种切削技术。超声振动切削从微观上看是一种脉冲切削,在一个振动周期中,刀具的有效切削时间很短,一个振动周期内绝大部分时间里刀具与工件切屑完全分离,刀具与工件切屑断续接触,切削热量大大减少,并且没有普通切削时的“让刀”现象。?利用这种振动切削,在普通机床上就可以进行精密加工,圆度、圆柱度、平面度、平行度、直线度等形位公差主要取决于机床主轴及导轨精度,最高可达到接近零误差,使以车代磨、以钻代铰、以铣代磨成为可能。与高速硬切削相比,不需要过高的机床刚性,并且不破坏工件表面组织,在曲线轮廓零件的精加工中,可以借助数控车床、加工中心等进行仿形加工,可以节约高昂的数控磨床购置费用。 超声波振动切削用于各种难以磨削而对表面质量及精度要求较高的零件的精加工,具有很大的优越性。超声波振动切削装置由超声波发生器、换能器、变幅杆及刀具等四部分组成,由超声波发生器发出的高频电讯号经换能器转化为高频机械振动,再由变幅杆将振动的振幅放大并施加到道具上,一般将换能器与变幅杆组成的部件称为声学头。 二、超声振动切削的优势特点 1.切削力小,约为普通刀具切削力的1/3—1/10; 2.加工精度高; 3.切削温度低,工件保持室温状态; 4.不产生积屑瘤,工件变形小,没有毛刺; 5.粗糙度低,可接近理论粗糙度值; 6.被加工零件的“刚性化”,即与普通切削相比,相当于工件刚性提高;

7.加工过程稳定,有效消除颤振; 8.切削液的冷却,润滑作用提高; 9.刀具耐用度呈几倍到几十倍提高; 10.工件表面呈压应力状态,耐磨性、耐腐蚀性提高; 11.切削后的工件表面呈彩虹效果。 三、超声振动切削的应用范围 (一)难切削材料的加工 不锈钢、淬硬钢、高速钢、钛合金、高温合金、冷硬铸铁以及陶瓷、玻璃、石材等非金属材料,由于力学、物理、化学等特性而难以加工,如采用超声振动切削则可化难为易。 (二)难加工零件的切削加工 如易弯曲变形的细长轴类零件、小径深孔、薄壁零件、薄盘类零件与小径精密螺纹以及形状复杂、加工精度与表面质量要求又较高的零件。 (三)高精度、高表面质量工件的切削加工 (四)排屑、断屑比较困难的切削加工 四、超声振动切屑的应用领域 广泛应用于航空、航天、军工等领域。

相关主题