搜档网
当前位置:搜档网 › 基因定点突变全攻略

基因定点突变全攻略

基因定点突变全攻略
基因定点突变全攻略

基因定点突变全攻略

一、定点突变的目的

把目的基因上面的一个碱基换成另外一个碱基。

二、定点突变的原理

定点突变是指通过聚合酶链式反应(PCR)等方法向目的DNA片段(可以是基因组,也可以是质粒)中引入所需变化(通常是表征有利方向的变化),包括碱基的添加、删除、点突变等。定点突变能迅速、高效的提高DNA所表达的目的蛋白的性状及表征,是基因研究工作中一种非常有用的手段。

体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是实验室中改造/优化基因常用的手段。蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于人类了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。而利用定点突变技术改造基因:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。

通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就行了。

三、引物设计原则

引物设计的一般原则不再重复。

突变引物设计的特殊原则:

(1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。一般都是以要突变的碱基为中心,加上两边的一段序列,两边长度至少为11-12 bp。若两边引物太短了,很可能会造成突变实验失败,因为引物至少要11-12个bp才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个bp,并且合成多一条反向互补的引物。

(2)如果设定的引物长度为30 bp,接下来需要计算引物的Tm值,看是否达到78℃(GC 含量应大于40%)。

(3)如果Tm值低于78℃,则适当改变引物的长度以使其Tm值达到78℃(GC含量应大于40%)。

(4)设计上下游引物时确保突变点在引物的中央位置。

(5)最好使用经过纯化的引物。

Tm值计算公式:Tm=0.41×(% of GC)–675/L+81.5

注:L:引物碱基数;% of GC:引物GC含量。

四、引物设计实例

以GCG→ACG为例:

5’-CCTCCTTCAGTATGTAGGCGACTTACTTATTGCGG-3’

(1)首先设计30 bp长的上下游引物,并将A (T)设计在引物的中央位置。

Primer #1: 5’-CCTTCAGTATGTAGACGACTTACTTATTGC-3’

Primer #2: 5’-GCAATAAGTAAGTCGTCTACATACTGAAGG-3’

(2)引物GC含量为40%,L为30,将这两个数值带入Tm值计算公式,得到其Tm=75.5(Tm=0.41×40-675/30+81.5)。通过计算可以看出其Tm低于78℃,这样的引物是不合适的,所以必须调整引物长度。

(3)重新调整引物长度。

Primer #1: 5’-CCT CCTTCAGTATGTAGACGACTTACTTATTGC GG-3’

Primer #2: 5’-CC GCAATAAGTAAGTCGTCTACATACTGAAGG AGG-3’

在引物两端加5mer(斜体下划线处),这样引物的GC含量为45.7%,L值为35,将这两个数值带入Tm值计算公式,得到其Tm为80.952(Tm=0.41×47.5-675/35+81.5),这样的引物就可以用于突变实验了。

五、突变所用聚合酶及Buffer

引物和质粒都准备好后,当然就是做PCR喽,不过对于PCR的酶和buffer,不能用平时的,我们做PCR把整个质粒扩出来,延伸长度达到几个K,所以要用那些GC buffer或扩增长片段的buffer,另外,要用保真性能较好的PFU酶来扩增,防止引进新的突变。

除了使用基因定点突变试剂盒,如Stratagene和塞百盛的试剂盒,但价格昂贵。可以使用高保真的聚合酶,如博大泰克的金牌快速taq酶、Takara的PrimeSTAR TM HS DNA polymerase。

六、如何去掉PCR产物

最简单的方法就是用DpnI酶,DpnI能够识别甲基化位点并将其酶切,我们用的模板一般都是双链超螺旋质粒,从大肠杆菌里提出来的质粒一般都被甲基化保护起来(除非你用的是甲基化缺陷型的菌株),而PCR产物都是没有甲基化的,所以DpnI酶能够特异性地切割模板(质粒)而不会影响PCR产物,从而去掉模板留下PCR产物,所以提质粒时那些菌株一定不能是甲基化缺陷株。

DpnI处理的时间最好长一点,最少一个小时吧,最好能有两三个小时,因为如果模板处理得不干净,哪怕只有那么一点点,模板直接在平板上长出来,就会导致实验失败。

七、如何拿到质粒

直接把通过DpnI处理的PCR产物拿去做转化就行了,然后再筛选出阳性克隆,并提出质粒,拿去测序,验证突变结果。

八、图示

九、定点突变操作步骤

[A] 诱导突变基因(PCR反应)以待突变的质粒为模板,用设计的引物及Muta-direct?酶进行PCR扩增反应,诱导目的基因突变。

1. 设计点突变引物。

[注]参考引物设计指导

2. 准备模板质粒DN A

[注]用dam+型菌株(例如DH5α菌株)作为宿主菌。在end+型菌株中常有克隆数低的现象,但是对突变效率没有影响。提取质粒DNA时我们建议您使用本公司的质粒提纯试剂盒。

3. [选项]对照反应体系(50μl反应体系)

10×Reaction Buffer 5μl

pUC18 control plasmid(10ng/μl,total

2μl

20ng)

Control primer mix(20pmol/μl)2μl

dNTP mixture(each 2.5mM)2μl

dH2O 38μl

Muta-direct? Enzyme 1μl

4. 样品反应体系(50μl反应体系)

10×Reaction Buffer 5μl

Sample plasmid(10ng/μl,total

2μl

20ng)

Sample primer (F)(10pmol/μl)1μl

Sample primer (R)(10pmol/μl)1μl

dNTP mixture(each 2.5mM)2μl

dH2O 38μl

Muta-direct? Enzyme 1μl

5. PCR反应条件

[注]按如下参数设置PCR扩增条件。

6. PCR扩增反应完成后冰育5分钟,然后置于室温(避免反复冻融)。

[注] 按下列提供的PCR条件进行扩增,控制PCR循环数。注意当突变点位点超过4个时会发生突变率降低的现象。

[B] 突变质粒选择

PCR反应结束后使用Mutazyme?酶消化甲基化质粒从而选择突变质粒DNA。

1. 准备PCR反应产物

2. 加入1μl(10U/μl)Mutazyme?酶37℃温育1小时。

[注]当质粒DNA用量过多时Mutazyme?酶可能发生与样品反应不完全的现象。因此我们建议为了保证突变率请严格遵照实验步骤进行操作。如果突变率低,可以适当延长反应时间或增加Mutazyme?酶用量。

[C]转化

反应完毕后在质粒DNA上会产生缺口,当把这个质粒DNA转入E.coli中时请选择dam+型菌株,例如DH5α。

1. 将10μl样品加到50μl感受态细胞里,然后放置在冰上30分钟。

2. 接下来可以参照一般的转化步骤进行。

序列分析

通常当LB平板上出白色菌落则表明发生了突变。

为了证实这一结果,我们建议对白色单菌落进行测序分析。

先讲最简单的一个点的定点突变技术,其它较长片段的突变,删除,插入技术以后会慢慢奉上:在做实验之前,我们首先要搞清楚实验的目的和实验的原理。

实验的目的应该比较明确吧:就是要把自己的基因上面的一个碱基换成另外一个碱基。一般情况下我们会有几种可能使我们需要这样去做:

第一:我们吊出来的基因有点突变,相信这可能是大家经常会遇到的问题。基因好不容易吊出来,并装进了自己的载体,却发现有一两个碱基跟自己的预期序列或所有的公共数据库不匹配,然后暴昏。

大家实验室里面还是用Taq酶为主吧,Pfu这样的高保真酶大家应该用得不多吧,Taq 酶的优点和缺点都很明显:优点就是扩增效能强,缺点就是保真性差,其错配机率是比较高的,相关数字忘了,大家可以去网上查那个数字,不过感觉如果是2000bp的基因,如果扩四五十个循环的话,很大机率会出现点突变,当然这也跟具体PCR体系里的Buffer有很大关系,详细情况这里就不讨论了。

第二:要研究基因的功能,在基因上自己选定位置更换碱基的保守序列,或者改造成不同的亚型,总之就是要人工改造碱基序列符合自己的实验需要,相信这也是那些研究基因的人经常的一种思路吧。

对于第一种情况:我们首先要分析出现碱基不匹配的位置是不是重要的位置,如果不是很重要,大可不必管它,比如说是三联密码子的最后一位,碱基的改变并没有引起相应氨基酸的改变,那么一般情况下也可以不去理它。另外,在NCBI上人类的基因的版本一直在变化,也就是说同一个基因有不同的版本,或者称不同的亚型,其碱基序列有些许的差异,只要自己克隆出来的碱基序列与其中一个相匹配,一般也就可以不做定点突变了。如果有时间没钱,那干脆重新PCR然后再克隆进自己的载体了,不过最好换个保真性好一点的酶如PFU,或者PCR循环数低一点,不过这些东西有时候也得靠运气啦。实在不行的话再来做定点突变。对于第二种情况:这种情况下一般也就只能做定点突变了。

接下来开始聊一聊定点突变的原理吧,那个Stratagene试剂盒!上面有一个说明书,说得好像很正规,不过上面好多都是什么专利啊什么注意之类的话,看都不看,我们简明扼要地只讲实验方面,通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就行了。

大家马上就会想到几个问题了:

第一:引物怎么设计呢?

第二:模板怎么去掉呢?

第三:怎么拿到质粒呢?

对于第一个问题:怎么设计引物?

我只能讲一些原则,并举一些例子。

引物设计的原则其它贴子上都有讲,这里就不重复了:

不过这种突变引物要加上一个原则:

一般都是以要突变的碱基为中心,加上两边的一段序列,两边长度至少为11-12base pair。

若两边引物太短了,很可能会造成突变实验失败,大家应该都知道,引物至少要11-12个base pair才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个base pair,并且合成多一条反向互补的引物。

这么说大家可能不是很清楚,那我就举个例子吧:

X71661.1 TATCAGGAGGAATTTGAGCACTTTCAACAAGAATTGGATAAAAAAAAAGAGGAATTCCAG 960

现有序列 TATCAGGAGGAATTTGAGCACTTTCAACAAGAATTGGATAAAAAAAAAGAGGAATTCCAG 924

*********************************************** ************

|----deletion

X71661.1 AAGGGCCACCCCGACCTCCAAGGGCAGCCTGCGGAGGAAATATTTGAGAGTGTAGGAGAT 1020

现有序列 AAGGGCCACCCCGACCTCCAAGGGCAGCCTGCGGAGGAAATATTTGAGAGTGTAGGAGAT 984(上面为目的序列,下面为现有序列:我们发现有一个A碱基的缺失,其直接结果是在表达蛋白时后面的氨基酸全部错配)

我们以它为中心设计引物:两边各至少12个碱基,左边由于含有较多的A造成引物GC%含量过低,故拉长引物使GC%含量不至过低,也使引物退火温度升高。

故合成引物CAACAAGAATTGGATAAAAAAAAAGAGGAATTCCAGAAG

并合成反向互补引物CTTCTGGAATTCCTCTTTTTTTTTATCCAATTCTTGTTG

其实也不一定要反向互补序列,只要反向引物也是两边都有大于12个碱基,同时符合引物设计的原则就行了。

引物合成公司有很多家,大家可以去寻找,不同厂家的引物在价钱质量上有一些差别,不过价钱一般都是一块多一个碱基,合成时间约为一周。

这样的结果是PCR时把整个质粒都给扩出来了,得到的PCR产物是一条链完整,另一链有缺刻的PCR产物

对于第二个问题:

怎么去掉模板呢?再简单的方法就是用DpnI酶,DpnI能够识别甲基化位点并将其酶切,我们用的模板一般都是双链超螺旋质粒,从大肠杆菌里提出来的质粒一般都被甲基化保护起来(除非你用的是甲基化缺陷型的菌株),而PCR产物都是没有甲基化的,所以DpnI酶能够特异性地切割模板(质粒)而不会影响PCR产物,从而去掉模板留下PCR产物,所以提质粒时那些菌株一定不能是甲基化缺陷株,不会那么凑巧吧,哈哈。

关于第三个问题:

直接把通过DpnI处理的PCR产物拿去做转化就行了,呵呵,然后再筛选出阳性克隆,并提出质粒,拿去测序(这个就不用我多说了吧),验证突变结果,一般都没问题的啦,我做了几十个突变了,到目前为止还没有做不出来的,呵呵,不要砸我啊。

下面讲一下具体的实验步骤以及一些实验中要注意的事情:

1、根据现有基因设计引物;

2、合成引物并准备好模板;

3、 PCR,

4、 DpnI处理酶切产物;

5、转化酶切产物;

6、筛选阳性克隆;

7、送测序并测全长。

最后就是庆祝啦,呵呵,没什么复杂的。

引物和质粒都准备好后,当然就是做PCR喽,不过对于PCR的酶和buffer,不能用平时的,我们做PCR把整个质粒扩出来,延伸长度达到几个K,所以要用那些GC buffer或扩增长片段的buffer,另外,要用保真性能较好的PFU酶来扩增,防止引进新的突变。

那种Quick change试剂盒分为几种不同的类型

什么QuikChange?Site-Directed Mutagenesis Kit标准点突变试剂盒、QuikChange?XL Site-Directed Mutagenesis Kit长模板单点突变试剂盒(>8kb)从原理上是一样的,只是PCR的酶和BUFFER不一样,后面用了比较适合长片段扩增的酶和BUFFER罢了,没什么特别的东西。另外,DpnI处理的时间最好长一点,最少一个小时吧,最好能有两三个小时,因为如果模板处理得不干净,哪怕只有那么一点点,模板直接在平板上长出来,就会导致实验失败。

实验板长出来的菌有两种可能

一种是质粒DPNI没处理干净长出来的(模板),一种是PCR产物转化出来的

(突变体)

不过这两种菌长得一模一样^_^,即使提出质粒来也是一样(酶切和PCR都无法区分),除了测序,是分不出来的,

做PCR时也最好做一个负对照(不加引物),

实验管由于PCR时有引物,所以在DNPI处理前里面既含有模板又含有PCR产物,而对照管由于PCR时没放引物,所以在DPNI处理前里面只有模板。

如果两者都拿去DNPI处理

就能够证明模板已经被去除干净。

若实验顺利的话应该是:正对照长菌负对照不长菌。

如果出现正负对照都长菌,那么就是DpnI没处理好,

如果正负对照都不长菌,那么有两种可能,一种是PCR阴性,也就是说PCR出问题了,另外一个可能就是转化出问题了。要搞清楚是哪个问题,跑胶说明不了问题,那就做个转化的对照,拿试剂盒的对照实验去试感受态,马上就能知道转化有没问题。

如果正对照很多菌,负对照有几个菌,那么就是DPNI处理得不干净,这个时候就得靠运气了^_^

大家有什么问题我们可以继续讨论。

另外,如果大家既没有DpnI酶也没有好的PCR酶和BUFFER的话,那也有其它办法进行定点突变,只是麻烦一点,如果大家有需要的话,我会把方法贴上来。

对于多点突变技术及较长片段的缺失插入技术,同样的,如果大家有需要的话,我会把方法贴上来。

不过,如果你有钱的话,那就去买那个试剂盒吧,其中QuikChange? Site-Directed Mutagenesis Kit标准点突变试剂盒、QuikChange? XL Site-Directed Mutagenesis Kit 长模板单点突变试剂盒(>8kb)的原理我上面已经说了,只是补充了一些我认为的注意事项。如果你更有钱的话,那么你可以叫其它公司帮你做定点突变服务,大约是改一个点1000元左右。如果有需要我可以提供公司的联系方式。

下面我以一个例子为例来讲100个bp以下的碱基插入缺失或者改变实验方案。其实这种方案并不是那么好的,只不过考虑到大家一般都没有TYPEII限制性内切酶或者UDG and NTHIII(另外两种方法),所以才打算先介绍这种方法。

首先先说明一点,这种方法在原理上存在一定成功机率,也就是说有运气成分。而定点突变则一般都是百分之百成功的,而这种100bp以下的插入缺失或者碱基改变可能要测几个克隆才能挑到一个好的克隆,大家如果要用请慎重考虑。

同样的,我只变那几十个碱基,并没有改变载体及其它地方,所以我还是依赖于DPNI 酶。

举例:

Homo sapiens FzE3 是一个人类基因,其含有32个氨基酸的信号肽MRDPGAAAPLSSLGLCALVLALLGALSAGAGA,后面是成熟肽QPYHGEKGISVPDHGFCQPISIPLCTDI AYNQTILPNLLGHTNQEDAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLDQAIPPC RSLCERARQGCEALMNKFGFQWPERLRCENFPVHGAGEICVGQNTSDGSGGPGGGPTAYP TAPYLPDLPFTALPPGASDGRGRPAFPFSCPRQLKVPPYLGYRFLGERDCGAPCEPGRAN GLMYFKEEERRFARLWVGVWSVLCCASTLFTVLTYLVDMRRFSYPERPIIFLSGCYFMVA VAHVAGFLLEDRAVCVERFSDDGYRTVAQGTKKEGCTILFMVLYFFGMASSIWWVILSLT WFLAAGMKWGHEAIEANSQYFHLAAWAVPAVKTITILAMGQVDGDLLSGVCYVGLSSVDA LRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGTKTEKLEKLMVRIGVFSVLYTV PATIVLACYFYEQAFREHWERTWLLQTCKSYAVPCPPGHFPPMSPDFTVFMIKYLMTMIV GITTGFWIWSGKTLQSWRRFYHRLSHSSKGETAV,想在信号肽和成熟肽之间插入一个FLAG标签并在标签前面加上一个Leucine。即在信号肽和成熟肽之间插入一段序列:TTAATGGACTACAAAGACGATGACGACAAG(一共三十个bp)、

实验设计:

信号肽:ATGCGGGACCCCGGCGCGGCCGTTCCGCTTTCGTCCCTGGGCTTCTGTGCCCTGGTGCTG GCGCTGCTGGGCGCACTGTCCGCGGGCGCCGGGGCG

成熟肽:

CAGCCGTACCACGGAGAGAAGGGC ATCTCCGTGCCGGACCACGGCTTCTGCCAGCCCATCTCCATCCCGCTGTGCACGGACATC GCCTACAACCAGACCATCCTGCCCAACCTGCTGGGCCACACGAACCAAGAGGACGCGGGC CTCGAGGTGCACCAGTTCTACCCGCTGGTGAAGGTGCAGTGTTCTCCCGAACTCCGCTTT TTCTTATGCTCCATGTATGCGCCCGTGTGCACCGTGCTCGATCAGGCCATCCCGCCGTGT

CGTTCTCTGTGCGAGCGCGCCCGCCAGGGCTGCGAGGCGCTCATGAACAAGTTCGGCTTC CAGTGGCCCGAGCGCCTGCGCTGCGAGAACTTCCCGGTGCACGGTGCGGGCGAGATCTGC GTGGGCCAGAACACGTCGGACGGCTCCGGGGGCCCAGGCGGCGGGCCCACTGCCTACCCT ACCGCGCCCTACCTGCCGGACCTGCCCTTCACCGCGCTGCCCCCGGGGGCCTCAGATGGC AAGGGGCGTCCCGCCTTCCCCTTCTCATGCCCCCGTCAGCTCAAGGTGCCCCCGTACCTG GGCTACCGCTTCCTGGGTGAGCGCGATTGTGGCGCCCCGTGCGAACCGGGCCGTGCCAAC GGCCTGATGTACTTTAAGGAGGAGGAGAGGCGCTTCGCCCGCCTCTGGGTGGGCGTGTGG TCCGTGCTGTGCTGCGCCTCGACGCTCTTTACCGTTCTCACGTACCTGGTGGACATGCGG CGCTTCAGCTACCCAGAGCGGCCCATCATCTTCCTGTCGGGCTGCTACTTCATGGTGGCC GTGGCGCACGTGGCCGGCTTCTTTCTAGAGGACCGCGCCGTGTGCGTGGAGCGCTTCTCG GACGATGGCTACCGCACGGTGGCGCAGGGCACCAAGAAAGAGGGCTGCACCATCCTCTTC ATGGTGCTCTACTTCTTCGGCATGGCCAGCTCCATCTGGTGGGTCATTCTGTCTCTCACT TGGTTCCTGGCGGCCGGCATGAAATGGGGCCACGAAGCCATCGAGGCCAACTCGCAGTAC TTCCACCTGGCCGCGTGGGCCGTGCCCGCCGTCAAGACCATCACTATCCTGGCCATGGGC CAGGTAGACGGGGACCTGCTGAACGGGGTGTGCTACGTTGGCTTCTCCAGTGTGGACGCG CTGCGGGGCTTCGTGCTGGCGCCTCTGTTCGTCTACTTCTTCATAGGCACGTCCTTCTTG CTGGCCGGCTTCGTGTCCTTCTTCCGTATCCGCACCATCATGAAACACGACGGCACCAAG ACCGAGAAGCTGGAGAAGCTCATGGTGCGCATCGGCGTCTTCAGCGTGCTCTACACAGTG CCCGCCACCATCGTCCTGGCCTGCTACTTCTACGAGCAGGCCTTCCGCGAGCACTGGGAG CGCACCTGGCTCCTGCAGACGTGCAAGAGCTATGCCGTGCCCTGCCCGCCCGGCCACTTC CCGCCCATGAGCCCCGACTTCACCGTCTTCATGATCAAGTGCCTGATGACCATGATCGTC GGCATCACCACTGGCTTCTGGATCTGGTCGGGCAAGACCCTGCAGTCGTGGCGCCGCTTC TACCACAGACTTAGCCACAGCAGCAAGGGAGAGACCGCGGTATGA

插入序列

TTAATGGACTACAAAGACGATGACGACAAG

通过引物3端大于或等于18个碱基的匹配使引物与模板质粒搭配,再通过引物5端的序列来补上那三十个碱基,先用PNK酶把引物磷酸化,再用下面这两条引物把整个质粒给扩增出来,上游和下游引物就刚好把那三十个碱基给补上了,再参照引物的设计原则做一些润色,细心的朋友可以具体分析一下这两条引物。扩出来后再用DPNI酶把模板质粒去掉,再用连接酶把PCR产物的两端连接起来(虽然是平端连接,可是由于是同一条PCR产物的两端连接,效率会很高),转化后,测序验证,OK。

设计引物

forward primer:GGACTACAAAGACGATGACGACAAGCAGCCGTACCACGGAGAGAAG

88.5

reserve primer: ATTAACGCCCCGGCGCCCGCGGACAGT

86.9

但是由于引物的合成是由3端向5端合成,而且每合成多一个碱基的效率最多也是百分之九十九点几而不是百分之一百,所以我们拿到手的引物其实是一个混合物,比如说我们合

成一条长二十个碱基的引物,实际上拿到手的是一个混合物,里面即含有二十个碱基的引物,也含有一定比率的十九个、十八个、十七个……碱基的引物。

所以我们用这种方法做PCR时,如果连上的是足额长度的引物,那么实验也就成功了,如果连上的是少一两个碱基的引物,那么实验就失败了,不过引物当中主要的仍是足额长度的引物,所以成功机率还是蛮高的。不过送测序时就要做好准备,可能要测三五个才能拿到一个好的。

如果觉得这样不好的话,我稍后会附上用TYPEII酶或者UDG,NTHIII做的方法,它们是通过互补粘端来连接,就不存在这个问题。

下面附上详细实验过程:

第一步:设计引物;其实只要符合一般引物设计原理就行了,顺便说一下,引物一般的话,越长其质量就…………

第二步:引物PNK处理,一般合成的引物其三端是没有磷酸化的,所以我们要自己进行磷酸化,一般可以让其磷酸化过夜,不磷酸化的话最后一步连接就连不上哦。

第三步:PCR,跟基因定点突变一样,要用好的扩增酶和BUFFER,因为要把整个环高保真的圹增出来嘛;

第四步:DPNI处理,跟基因定点突变一样,要把模板去除干净。

第五步:连接,加上连接BUFFER和连接酶连接,

第六步:转化。

定点诱变(DpnI法)

1、引物设计:每条引物都要携带有所需的突变位点,引物一般长25~45bp,设计的突变位点需位于引物中部。

2、反应:使用高保真的pyrobest DNA聚合酶 ;循环次数少,一般为12个循环。

反应体系:

10x pyrobest Buffer 5 ul

dNTP

Mixture(10mM) 1ul

模板DNA(5~50ng) 1ul

primer 1 (125ng) 1ul primer 2 (125ng) 1ul pyrobest DNA polymerase(TaKaRa)(5U/ul) 0.25ul

加无菌蒸馏水至 50ul

3、产物沉淀纯化:加1/10 体积的醋酸钠,1倍体积的异丙醇,混匀置冰上(或-20゜C冰箱)5min,离心弃上清,70~75%乙醇洗盐两次,烘干后溶于无菌水中。(此步可省略,直接用DpnI酶切)

4、DpnI酶切:Buffer 2ul

BSA(100╳) 0.2ul

DNA x ul

DpnI 0.5ul

加无菌去离子水至 20ul 30゜C酶切 1~4 h ;65゜C 水浴15min 终止反应。

5、将酶切产物转化大肠杆菌DH5a菌株,利用抗生素筛选突变子。

6、测序验证

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

基因突变及其他变异测试题 - 答案

基因突变、染色体变异、基因重组专项训练 一、选择题 1.生物在紫外线、电离辐射等影响下将可能发生突变。这种突变易发生在() A.细胞减数分裂的第一次分裂时 B.细胞减数分裂的第二次分裂时 C.细胞有丝分裂的间期 D.细胞有丝分裂的分裂期 [答案]C [解析]DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变叫基因突变,发生于DNA 复制过程中,在细胞周期的间期完成DNA复制。 2.将普通小麦的子房壁细胞进行离体培养,得到的植株是() A.单倍体B.二倍体C.三倍体D.六倍体 [答案]D [解析]子房壁是体细胞,进行离体培养,得到的植株细胞中的染色体组与普通小麦的子房壁细胞相同,即该植株是六倍体。 3.三体综合征、并指、苯丙酮尿症依次属() ①单基因病中的显性遗传病②单基因病中的隐性遗传病③常染色体病④性染色体病 A.②①③ B.④①②C.③①② D.③②① [答案]C 4.DNA分子经过诱变,某位点上的一个正常碱基(设为P)变成了尿嘧啶。该DNA连续复制两次,得到的4个子代DNA分子相应位点上的碱基对分别为U—A、A—T、G—C、C—G,推测“P”可能是() A.胸腺嘧淀B.腺嘌呤C.胸腺嘧啶或腺嘌呤D.胞嘧啶 [答案]D [解析]据半保留复制的特点,DNA分子经过两次复制后,突变锭形成的两个DNA分子中含有U—A,A—T 碱基对,而另一条正常,正常链形成的两个DNA分子中含有G—C、C—G碱基对,因此被替换的可能是G,也可能是C。 5.已知某小麦的基因型是AaBbCc,三对基因分别位于三对同源染色体上,利用其花药进行离体培养,获得N株小麦,其中基因型为aabbcc的个体约占() A.N/4 B.N/8 C.N/6 D.0 [答案]D [解析]基因型是AaBbCc的小麦,三对基因分别位于三对同源染色体上,通过减数分裂产生23种配子,利用其花药进行离体培养,获得N株单倍体小麦,基因型不可能为aabbcc。 6.当牛的卵原细胞进行DNA复制时,细胞中不可能发生() A.DNA的解旋B.蛋白质的合成C.基因突变D.基因重组 [答案]D [解析]卵原细胞进行DNA复制时属于细胞分裂间期,若DNA复制发生差错,会产生基因突变,细胞中同时要合成有关蛋白质;基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因重新组合,发生在减数分裂期。 7.将一粒花药培育成幼苗,对它的茎尖用秋水仙素处理,长大后该植株能正常开花结果。该植株下列细胞中哪一细胞与其他三种细胞染色体数目不相同() A.根细胞B.种皮细胞C.子房壁细胞D.果实细胞 [答案]A [解析]将一粒花粉培育成单倍体幼苗,对它的茎尖用秋水仙素处理,长大后该植株地上部分细胞中染色体加倍了,但根细胞染色体数未改变。 8.基因型为AaBb(位于非同源染色体上)的小麦,将其花粉培养成幼苗,用秋仙素处理后的成体自交后代的表现型及其比例为() A.1种,全部B.2种,3∶1 C.4种,1∶1∶1∶1 D.4种,9∶3∶3∶1 [答案]C [解析]基因型为AaBb(位于非同源染色体上)的小麦,将其花粉培养成幼苗,用秋水仙素处理后的成体为纯合体,共四种:AABB、AAbb、aaBB、aabb,纯合体自交后代不发生性状分离,仍为纯合体,表现型及其比例为1∶1∶1∶1。 9.下列基因组合中,不可能是由二倍体产生的配子是() A.Dd B.YR C.Ab D.BCd [答案]A 10.在减数分裂过程中,由于偶然因素,果蝇的一对性染色体没有分开,由此产生的不正常的卵细胞中的染

基因突变的检测方法

基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。 PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。 异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。

高中生物 基因突变

基因突变 导入:表现型是基因型与环境条件相互作用的结果,不论是基 因型还是环境条件的改变,都可能引起表现型改变,这就是生物的变异。 问题情境:投影显示资料 资料一:在北京培育出的优质甘蓝品种,叶球最大的有3.5千克,当引种到拉萨后,由于昼夜温差大、日照时间长、光照强,叶球可重达7千克左右。但再引回北京后,叶球又只有3.5千克。 资料二:用抗病易倒的小麦和易病抗倒的小麦杂交,通过基因重组培育出了既抗病又抗倒的高产小麦品种。 提出问题: 1.变异的类型有哪几种? 2.不同变异类型分别由何种原因引起?结果如何? 学生思考得出结论,教师进一步归纳总结。 (-)基因突变 1.基因突变的概念 血红蛋白是由四条多肽链,共含有574个氨基酸中,病者与正常人大部分是相同的。所不同的,只是在第6位的一个谷氨酸被缬氨酸替代,因而引起血红蛋白结构异常。异常的血红蛋白在氧气分压较低的情况下呈棒状或卷绳样晶体结构,会使红细胞由正常圆饼状变成镰刀状。镰刀型红细胞膜易受损伤而被网状内皮细胞破坏,出现溶血性贫血症状。 讨论问题:产生蛋白质结构变异的根本原因是什么? 演示软件:该软件开始可从上→下顺次演示,比较符合学生由表及里、由浅入深的认知规律。当学生已有一定的感性认识后,再次演示可变为从下→上次序播放。而此种安排则有助于学生明确因果关系,进一步加深知识理解。 学生认真观察、思考、得出结论:控制血红蛋白分子合成的DNA 碱基序列中有一对发生了改变(变成)遗传信息改变,mRNA上相应密码子改变,多肽链上相应的氨基酸改变,血红蛋白异常红 细胞异常(镰刀型) 教师点拨:除了碱基替换外,控制合成血红蛋白分子的DNA碱基序列有时也会发生碱基的增添或缺失,导致血红蛋白病的产生,引导学生最终得出基因突变的概念。 2.基因突变 3.基因突变的特点 指导学生阅读:书P49。

(3)理解基因突变的检测方法

第十章基因突变 一、教学目的与要求: (1)了解基因突变的类型和性质、特征 (2)掌握基因突变分子机理和诱变因素的作用方式 (3)理解基因突变的检测方法 (4) 掌握基因突变的修复途径 二、教学重点、难点、疑点: 1.突变的概念、类型和性质 2.诱发突变的分子基础 3.诱发突变与人类癌症 4.生物体基因突变的修复机制 5.果蝇基因突变的检出 6.植物基因突变的检出 7.人类基因突变的检出 [解决方法] (1)通过出示基因结构变化的示意图,加深学生对基因突变内涵的理解。 (2)课堂教学中不断提出问题,让学生通过概念的运用达到巩固概念和知识迁移的目的。 2.教学难点及解决办法 基因突变的原因。 [解决办法] 对人类镰刀型细胞贫血症病因结合图解进行分析,使学生真正明白基因突变的原因——DNA复制过程也可能发生差错,基因中个别碱基的变化,就会造成性状改变。 3.教学疑点及解决办法 为什么说基因突变是变异的主要来源? [解决办法]讲明基因突变与基因重组的区别,联系实际举例。 三、教学方法设计: 四、教具或教学手段:多媒体课件 五、教学过程与板书设计:

第一节基因突变的概念和特征 一、基因突变的概念及类别 1、基因突变:指在染色体上一定位点基因内部的化学变化引起的突变基因突变:指染色体上一定位点基因内部的化学变化引起的突变 2、类别 隐性突变:A a 显性突变:a A 自发突变—外界环境条件的自然作用或生物体内的生理生化变化而产生的突变 诱发突变—在专门诱变因素影响引起的突变,为“诱发突变” 形态突变型—可见突变:指造成外形改变的突变型 至死突变型—能造成个体死亡或生命力明显下降的突变型 条件突变型—在一定条件下有致死效应 3.一般特征 ①突变的频率:指生物体在每一世代中发生突变的机率,或者在一定时 间内突变可能发生的次数。 高等植物 10-5— 10-8 细菌和噬菌体 10-4—10-10范围大、突变频率比动植物高 例如:氨基酸过程中三种疾病是由三种基因突变导致酶发生变化引起的,有一定的突变频率 苯丙氨酸羟化酶缺乏导致苯丙酮尿症;尿黑尿酸氧化酶缺乏会产生尿黑酸尿症;酪氨酸酶缺乏导致白化病 苯丙氨酸羟化酶 苯丙酮酸苯丙氨酸酪氨酸 积累尿黑尿酸氧化酶 酪氨酸酶 苯丙酮尿症尿黑酸黑色素

定点突变技术——从单点突变到多点突变

定点突变技术——从单点突变到多点突变 体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于我们了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。而利用定点突变技术改造基因,相信大家也非常熟悉:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。 对于单点突变,Stratagene公司的QuikChange Site-directed Mutagenesis kit是不错的选择,通过巧妙设计,将质粒定点突变技术变得简单有效。准备突变的质粒必须是从常规E.coli 中经纯化试剂盒(Miniprep)或者氯化铯纯化抽提的质粒。设计一对包含突变位点的引物(正、反向),和模版质粒退火后用PfuTurbo聚合酶“循环延伸”,(所谓的循环延伸是指聚合酶按照模版延伸引物,一圈后回到引物5’端终止,再经过反复加热褪火延伸的循环,这个反应区别于滚环扩增,不会形成多个串联拷贝。)正反向引物的延伸产物退火后配对成为带缺刻的开环质粒。DpnI酶切延伸产物,由于原来的模版质粒来源于常规大肠杆菌,是经dam甲基化修饰的,对DpnI敏感而被切碎(DpnI识别序列为甲基化的GATC,GATC在几乎各种质粒中都会出现,而且不止一次),而体外合成的带突变序列的质粒由于没有甲基化而不被切开,因此在随后的转化中得以成功转化,即可得到突变质粒的克隆。这个试剂盒非常巧妙的利用甲基化的模版质粒对DpnI敏感而合成的突变质粒对DpnI酶切不敏感,利用酶切除去模版质粒,得到突变质粒,使得操作简单有效。另外由于Pfu聚合酶是公认的最好的高保真聚合酶之一,堪称高保真聚合酶的“黄金标准”,是Stratagene的看家之宝,能够有效避免延伸过程中不需要的错配。试剂盒采用的是低次数的循环延伸而非PCR,有助于减少无意错配。只需要一次酶切和转化,实验可以在一天完成。这个试剂盒适用于质粒大小不超过 8Kb的质粒。后来推出的QuikChange XL site-directed mutagenesis kit则是针对大于8Kb的质

基因突变的检测方法(完整资料).doc

此文档下载后即可编辑 基因突变的检测方法 基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且 由PCR衍生出的新方法不断出现,目前已达二十余种,自动化 程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据 检测目的和实验室条件选择时参考。 PCR-SSCP法PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象, 一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp 的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过

定点诱变技术解析

第三章DNA突变技术

?基因突变包括单个碱基或片断的替换,基因片断的插入与删除等。 ?根据其特点可将基因突变技术分两大类: 1.位点特异性突变定点突变 2.随机突变表型筛选

?随机突变 易错PCR法(Error-prone PCR) ?降低一种dNTP的量(降至5%-10%)?加入dITP来代替被减少的dNTP ?缓冲液中另加0.5mmol/L Mn2+ DNA Shuffling ?外显子、单基因和基因家族的重组装?随机引物延伸法 ?交错延伸法 ?定点突变 点突变——碱基删除、增补和替换

易错PCR(epPCR)

How DNA shuffling is done in the tube ?Random fragmentation of a pool of related genes; ?Self-priming polymerase reaction and template switching (causing crossovers); ? PCR amplification with primers of reassembled products How DNA shuffling works

Similar mutants generated by error-prone PCR, random and site-directed mutagenesis . ... .. ... ..Single gene shuffling library of point mutants Family gene shuffling library of chimeras Generating chimeras with crossovers of large blocks of sequences 一、单基因和基因家族的重组装

基因定点突变 (1)

基因定点突变 一、定点突变的目的 把目的基因上面的一个碱基换成另外一个碱基。 二、定点突变的原理 通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就行了。 三、引物设计原则 引物设计的一般原则不再重复。 突变引物设计的特殊原则: (1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。一般都是以要突变的碱基为中心,加上两边的一段序列,两边长度至少为11-12 bp。若两边引物太短了,很可能会造成突变实验失败,因为引物至少要11-12个bp才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个bp,并且合成多一条反向互补的引物。 (2)如果设定的引物长度为30 bp,接下来需要计算引物的Tm值,看是否达到78℃(GC含量应大于40%)。 (3)如果Tm值低于78℃,则适当改变引物的长度以使其Tm值达到78℃(GC含量应大于40%)。 (4)设计上下游引物时确保突变点在引物的中央位置。 (5)最好使用经过纯化的引物。 Tm值计算公式:Tm=0.41×(% of GC)–675/L+81.5 注:L:引物碱基数;% of GC:引物GC含量。 四、引物设计实例 以G CG→A CG为例: 5’-CCTCCTTCAGTATGTAG G CGACTTACTTATTGCGG-3’ (1)首先设计30 bp长的上下游引物,并将A (T)设计在引物的中央位置。 Primer #1: 5’-CCTTCAGTATGTAG A CGACTTACTTATTGC-3’ Primer #2: 5’-GCAATAAGTAAGTCG T CTACATACTGAAGG-3’

基因突变的试题和分析论文:关于基因突变的试题和分析方法

基因突变的试题和分析论文:关于基因突变的试题和分析方 法 新课标下的理综考试中的生物试题,有关基因突变的问题一直是常考的知识点,我们需要深刻理解基因突变的概念,挖掘概念的内涵和外延,贯彻新课标理念,学会学以致用,。 一、概念的理解 基因突变是指dna中碱基对的增添、缺失或改变从而引起基因结构的改变,当基因突变后,由其转录的信使rna上碱基排列顺序发生相应改变,经翻译而形成的多肽中氨基酸的排列顺序有可能发生变化, 二、例题的讲解 例1.自然界中,一种生物某一基因及其三种突变基因决定的蛋白质的部分氨基酸序列如下: 正常基因精氨酸苯丙氨酸亮氨酸苏氨酸脯氨酸 突变基因1精氨酸苯丙氨酸亮氨酸苏氨酸脯氨酸 突变基因2精氨酸亮氨酸亮氨酸苏氨酸脯氨酸 突变基因3精氨酸苯丙氨酸苏氨酸酪氨酸丙氨酸 根据上述氨基酸序列确定这三种突变基因dna分子的改变是()a.突变基因1和2为一个碱基的替换,突变基因3为一个碱基的增添 b.突变基因2和3为一个碱基的替换,突变基因1为

一个碱基的增添 c.突变基因1为一个碱基的替换,突变基因2和3为一个碱基的增添 d.突变基因2为一个碱基的替换,突变基因1和3为一个碱基的增添 【解析】通过对遗传密码的分析可知,突变基因1决定的蛋白质中氨基酸的种类、顺序并没有改变,说明mrna上只是某个密码子最后一个碱基发生了替换,相应突变基因1为一个碱基对被替换;突变基因2决定的蛋白质只有第2位氨基酸苯丙氨酸变成了亮氨酸,即改变一种氨基酸,说明mrna上第2个密码子中某一个碱基发生替换,相应突变基因2为一个碱基对被替换;突变基因3决定的蛋白质中改变了后3位氨基酸,氨基酸种类发生较大变化,说明mrna上碱基的排列发生很大变化,最大可能性是由于突变基因3增添一个碱基对,极大地改变了基因的遗传信息。所以答案选a。 例2.果蝇体内有一种六肽,当用化学方法将其降解后,得到了3种三肽分别是:甲硫氨酸-组氨酸-色氨酸;精氨酸-缬氨酸-甘氨酸;甘氨酸-甲硫氨酸-组氨酸, ⑴该多肽的氨基酸序列为___________________ 。已知相关的密码子如下:精氨酸cgu、cgc、cga、cgg、aga、agg 缬氨酸guu、guc、gua、gug甘氨酸ggu、ggc、gga、ggg组氨酸cau、cac色氨酸ugg甲硫氨酸aug

基因定点突变全攻略

基因定点突变全攻略 一、定点突变的目的 把目的基因上面的一个碱基换成另外一个碱基。 二、定点突变的原理 定点突变是指通过聚合酶链式反应(PCR)等方法向目的DNA片段(可以是基因组,也 可以是质粒)中引入所需变化(通常是表征有利方向的变化),包括碱基的添加、删除、点 突变等。定点突变能迅速、高效的提高DNA所表达的目的蛋白的性状及表征,是基因研究工作中一种非常有用的手段。 体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是实验室中改造/优化基因常用的手段。蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重 点之一。对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸 序列和蛋白质结构,对突变基因的表达产物进行研究有助于人类了解蛋白质结构和功能的关 系,探讨蛋白质的结构/结构域。而利用定点突变技术改造基因:比如野生型的绿色荧光蛋 白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基 酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原 来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。定点突变技术的潜在应用领 域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以 及药物研发、基因治疗等等方面。 通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就 行了。 三、引物设计原则 引物设计的一般原则不再重复。 突变引物设计的特殊原则: (1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。一般都是以要突变的 碱基为中心,加上两边的一段序列,两边长度至少为11-12 bp。若两边引物太短了,很可 能会造成突变实验失败,因为引物至少要11-12个bp才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个bp,并且合成多一条反向互补的引物。 (2)如果设定的引物长度为30 bp,接下来需要计算引物的Tm值,看是否达到78℃(GC 含量应大于40%)。 (3)如果Tm值低于78℃,则适当改变引物的长度以使其Tm值达到78℃(GC含量应大于40%)。 (4)设计上下游引物时确保突变点在引物的中央位置。

基因突变与疾病

第九章基因突变与疾病 基因(gene)是DNA分子上一段具有遗传功能的核苷酸序列,是细胞内遗传物质的主要结构和功能单位。基因具有如下特征:①基因能自我复制。一个基因随DNA的复制而成为两个相同的基因。②基因决定性状。DNA上某一结构基因经转录和翻译,决定某种酶和蛋白质的合成,从而表现出某一性状。③基因能发生突变。在生物进化过程中,由于多种因素的影响,基因可发生突变,基因突变是生物进化、分化的分子基础,也是某些疾病的基础,是生物界普遍存在的现象。 第一节基因突变的概念和原因 基因突变(gene mutation)是指DNA分子上核苷酸序列或数目发生改变。由一个或一对碱基发生改变引起核苷酸序列改变所致的突变,称为点突变(point mutation);把核苷酸数目改变的基因突变称为缺失性或插入性突变(deletional and insertionar mutation)。基因突变后在原有位置上出现的新基因,称为突变基因(mutant gene)。基因突变后变为和原来基因不同的等位基因,从而导致了基因结构和功能的改变,且能自我复制,代代相传。 基因突变可以发生在生殖细胞,也可发生在体细胞。发生在生殖细胞的基因突变可通过受精卵将突变的遗传信息传给下一代,并在子代所有细胞中都存在这种改变。由于子代生殖细胞的遗传性状也发生了相应的改变,故可代代相传。发生于有性生殖生物体细胞的基因突变不会传递给子代,但可传给由突变细胞分裂所形成的各代子细胞群,在局部形成突变细胞群体。通常认为肿瘤就是体细胞突变的结果。 基因突变的原因很多,目前认为与下列因素有关:

一、自发性损伤 大量的突变属于自发突变,可能与DNA复制过程中碱基配对出现误差有关。通常DNA复制时碱基配对总有一定的误配率,但一般均可通过DNA损伤的修复酶快速修正。如果少数误配碱基未被纠正或诸多修复酶某一种发生偏差,则碱基误配率就会增高,导致DNA分子的自发性损伤。 二、诱变剂的作用 诱变剂(mutagen)是外源诱发突变的因素,它们的种类繁多,主要有: (一)物理因素 如紫外线、电离辐射等。大剂量紫外线照射可引起DNA主链上相邻的两个嘧啶碱以共价键相结合。生成嘧啶二聚体,相邻两个T、相邻两个C或C与T 之间均可形成二聚体,但最容易形成的二聚体是胸苷酸二聚体(thyminedimerTT )。由于紫外线对体细胞DNA的损伤,从而可以诱发许多皮肤细胞突变导致皮肤癌。电离辐射对DNA的损伤有直接效应和间接效应。前者系电离辐射穿透生物组织时,其辐射能量向组织传递,引起细胞内大分子物质吸收能量而激发电离,导致DNA理化性质的改变或损伤;后者系电离辐射通过扩散的离子及自由基使能量被生物分子所吸收导致DNA损伤。生物组织中的水 经辐射电离后可产生大量稳定的、高活性的自由基及H 2O 2 等。这些自由基与活 性氧与生物大分子作用不但可引起DNA损伤,而且也能引起脂质和生物膜的损伤及蛋白质和酶结构与功能的异常。电离辐射使DNA损伤的作用机制主要表现在三个方面:①碱基破坏脱落与脱氧戊糖分解。②DNA链断裂。③DNA交联或DNA-蛋白质交联。 (二)化学因素 如某些化工原料和产品、工业排放物、汽车尾气、农药、食品防腐剂和添加剂等均具有致突变作用。目前已检出的致突变化合物已达6万余种。现择下列常见化学诱变剂说明对DNA损伤的机制。

基因突变的教案Word版

课题《基因突变》

《基因突变和基因重组》 第一课时的教案 一、教学目标 知识方面 1.举例说明基因突变的特征和原因(B:理解) 2.说出基因突变的意义(A:了解) 能力方面 1.通过观察正常红细胞与镰刀型红细胞的结构特点,训练学生的观察和比较能力。通过发挥媒体的直观功效,培养学生的观察、探究能力。 2.通过利用学生生活经验的创设,结合新知识培养学生的类比迁移能力。 3.通过对镰刀型细胞贫血症病因的讨论分析,使学生通过“材料—比较—归纳”的方式来获得基因突变的概念并培养学生的合作交流能力。 情感态度与价值观方面 1.通过引导学生对镰刀型细胞贫血症病因的分析,让学生体验基因突变概念的形成过程。2.通过对基因突变原因及特点的逻辑论证过程,不但可以使学生懂得生物界丰富多彩的本质,还可以对学生进行辩证唯物主义的思想教育。 3.通过基因突变与生活的联系,使学生能形成关爱生命,热爱生命的态度。 二、教学重难点分析 1、教学重点: (1)基因突变的概念及特点 (2)基因突变的原因 2、教学难点 基因突变的概念和意义 三、教学设计思路 1.理论依据 (1)奥苏伯尔关于概念形成的学习理论 生物概念是人们对生物及生理现象本质特征的认识。正确的生物概念,既是生物学知识的组成部分,又为获得更系统的生物学知识奠定基础。奥苏伯尔认为学生获得概念主要有两条途径:概念形成和概念同化。概念形成:由学生从大量的同类事物或现象的不同例证中独立发现共同的本质特征,用归纳的方式抽取出一类事物的共同属性,从而获得某些概念。是获得概念的初级形式。概念同化:学生利用认知结构中原有的有关概念学习新概念的方式,是获得概念的主要形式。 生物学概念是生物学科思维的基本单位,是组成生物学学科知识的基本单位,概念教学是中学生物教学的主要内容。《基因突变和基因重组》这节课中的基因突变和基因重组就是遗传学中的两个重要概念,概念的形成是从感性认识上升到理性知识,将外部言语转化成内部言语的思维过程,所以在教学过程中要给学生提供丰富的感性材料,以进行观察、比较以及联系实际唤起学生原有的知识经验和生活体验学习,为进一步对原型的抽象和概括提供条件。由于学生头脑中没有用以同化基因突变这个新概念的相关知识,所以本节课关于基因突变的概念教学采用以概念形成方式进行教学。 (2)建构主义学习理论

高中生物基因突变知识点总结

高中生物基因突变知识点总结 下面由为大家提供关于高中生物基因突变知识点总结,希望对大家有帮助!高中生物基因突变第一节一、生物变异的类型1、不可遗传的变异(仅由环境变化引起)2、可遗传的变异(由遗传物质的变化引起),包括:基因突变;基因重组;染色体变异二、可遗传的变异(一)基因突变1、概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫做基因突变。 2、原因:物理因素:X射线、紫外线、r射线等;化学因素:亚硝酸盐,碱基类似物等;生物因素:病毒、细菌等。 3、特点:(1)普遍性(2)随机性(基因突变可以发生在生物个体发育的任何时期;基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上)(3)低频性(4)多数有害性(5)不定向性【注】体细胞的突变不能直接传给后代,生殖细胞的则可能 4、意义:它是新基因产生的途径;是生物变异的根本来源;是生物进化的原始材料。 (二)基因重组1、概念:是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。 2、类型:(1)非同源染色体上的非等位基因自由组合(2)四分体时期非姐妹染色单体的交叉互换高中生物基因突变第二节一、染色体结构变异:实例:猫叫综合征(5号染色体部分缺失)类型:缺失、重复、倒位、易位(看书并理解)二、染色体数目的变异 (3)染色体组数的判断:① 染色体组数= 细胞中形态相同的染色

体有几条,则含几个染色体组例:以下各图中,各有几个染色体组?② 染色体组数= 基因型中控制同一性状的基因个数例:以下基因型,所代表的生物染色体组数分别是多少?(1)Aa ______(2)AaBb _______(3)AAa _______(4)AaaBbb _______(5)AAAaBBbb _______(6)ABCD ______答案:2 2 3 3 4 13、单倍体、二倍体和多倍体单倍体:由配子发育成的个体。 几倍体:由受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。 体细胞中含三个或三个以上染色体组的个体叫多倍体。 三、染色体变异在育种上的应用1、多倍体育种:方法:用秋水仙素处理萌发的种子或幼苗。 (能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)原理:染色体变异实例:三倍体无子西瓜的培育优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。 现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR ,应该怎么做?优缺点:后代都是纯合子,明显缩短育种年限,但技术较复杂。 【附】育种方法小结诱变育种杂交育种多倍体育种单倍体育种方法用射线、激光、化学药品等处理生物杂交用秋水仙素处理萌发的种子或幼苗花药(粉)离体培养原理基因突变基因重组染色体变异染色体

肿瘤基因突变检测

肿瘤基因突变检测 癌症是一类难以预防的疾病,中晚期癌症治愈的可能性又很小,而早期癌症的治愈率可达65%以上,有些肿瘤可达90%以上,因此,战胜癌症的关键是早期发现癌症。由于癌症早期常无特殊症状,甚至毫无症状,故癌症的早期发现、早期诊断主要是通过定期健康体检和人群筛查完成。目前筛查癌症的方法主要是通过化验血肿瘤指标及B超、CT、MRI、PET-CT 等检查,但这些方法的敏感性和特异性均不高,发现有异常时往往已是中晚期。 17种常见高发肿瘤,包括乳腺癌(breast cancer)、结肠癌(colorectalcancer)、子宫癌(endometrial cancer)、脑胶质瘤(glioma)、白血病(leukemia)、肺癌(lungcancer)、淋巴癌(lymphoma)、成神经管细胞瘤(medulloblastoma)、黑色素癌(melanoma)、间皮瘤(mesothelioma) 、多性骨髓瘤(multiple myeloma) 、卵巢癌(ovarian cancer)、胰腺癌(pancreatic cancer) 、真性红细胞增多(polycythemia vera) 、前列腺癌(prostatecancer) 、肾细胞癌(renal cell cancer)和恶性内瘤(sarcoma),其发病机制涉及与多种肿瘤发生共同相关的肿瘤易感基因群介导的分子改变,参与了肿瘤发生的早期分子事件。系统寻找和探讨它们在肿瘤发生发展过程中的遗传学变异,对阐明肿瘤早期发生机制及寻找肿瘤早期预警、早期诊断和早期治疗的分子靶标都具有重要的现实意义。利用高通量分子测序技术平台,可同时开展多个肿瘤基因突变检测项目,如EGFR、K-RAS 、N-RAS、B-RAF、PI3K 、p53、p16、BRCA1、

基因突变分析技术综述

基因突变分析技术综述 湖南医科大学医学遗传学国家重点实验室 (长沙 410087) 阮庆国 陆春叶综述 夏家辉审校 提要 基因突变分析是确定某一未知基因与某遗传病之间关系的关键步骤,也是临床上对病人进行基因诊断的重要手段,本文对19种基因突变分析技术进行了分类综述,特别对近几年发展起来的几种新技术进行了详细介绍,并讨论了毛细管电泳在基因突变检测中的应用。 于1990年10月正式启动的人类基因组计划到今年已正式实施了八年,该计划的目标可概括为两点,即: 人类3×109bp的全序列分析; 全部基因的识别及功能分析。据估算人类基因组中约包括5~10万个基因,它们分布在24个不同染色体和线粒体上,到1998年1月为止,已克隆的人类功能基因达到5052个,但确定与某一特定遗传病相关的基因只有821个,目前已被认定的孟德尔遗传病有1402种,这些病都至少与一个或几个基因的突变相关。研究人类的全部基因,特别是与疾病相关的基因的结构、功能以及各种基因突变与疾病的关系,是人类认识遗传病的发病机理,并最终达到对遗传病进行基因诊断和基因治疗的重要环节。从20世纪80年代开始,一系列寻找新基因的方法得以应用,如消减杂交,mRNA差异显示,外显子捕获等,基因克隆的策略也从最初的功能克隆法,候选基因法发展到今天的定位克隆法以及定位候选克隆法,并且染色体上已定位和测序的cDN A越来越多,表达图谱的内容越来越丰富,这就给发现新的未知基因,了解各基因的功能及其突变导致的疾病创造了极为有利的条件,从而大大加快了人类遗传病致病基因克隆的步伐。但是在找到了一系列的候选基因之后,要确定哪一个基因是该病的致病基因,还需在相应的病人中进行突变检测。在过去的十几年中,虽然已有19种突变分析的技术得到发展,但总的来说,寻找一种快速、高效而又经济的方法仍然是很多科研工作者的研究目标。本文对突变分析的种种方法进行了分类综述,特别对近期出现的几种新技术进行了详细的讨论。 突变分析技术按其研究对象主要分为两大类,即: 对未知突变进行分析,即确定某一未知基因与某遗传病的关系; 对已知突变进行分析,即在临床上对致病基因已克隆的遗传病进行基因诊断。在实际应用中许多检测未知突变的方法也可用来对已知突变进行检测。 一、对未知突变进行分析的方法 1.RNA酶A切割(Rnase A cleavage) 在一定条件下,异源双链核酸分子RNA: RN A或RNA:DN A中的错配碱基可被RNase A切割,切割产物可通过跑变性胶得到分离。RN A探针可通过将相应的DNA片段克隆至含有SP6或T7启动子的载体中得到,当RNA 探针上错配的碱基为嘌呤时,RNase A在错配处的切割效率很低甚至不切割,而当错配碱基为嘧啶时,则其切割效率较高。所以如果仅分析被检DNA的一条链,其突变检出率只有30%,而如果同时分析被检DNA的正义链和反义链,则有效率可达到70%[1]。尽管RNase A切割法有其局限性,如需使用同位素,需将PCR 产物克隆至表达载体上,从而增加了操作的复杂度,但由于它能对1~2kb的片段进行检测,并能确定突变位置,且无需使用有害化学试剂,故仍被频繁使用。 2.变性梯度凝胶电泳(Denaturing Gradi-ent Gel Electro phoreris,DGGE) 该方法的原理是:双链DNA分子在一定变性剂浓度的凝胶上电泳时,会在一定的时间 ? 225 ?

基因突变的检测方法

基因突变的检测方法

基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。 PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。 异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。 突变体富集PCR法(mutant-enriched PCR)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如K-ras基因第12密码子的BstNI位点,第13密古巴子有BgⅠⅡ位点。用链续二次的巢式PCR来扩增包括K-ras第12、13密码子的DNA片段,在两次扩增反应之间用相应的内切酶消化扩增的DNA片段,野生型因被酶切而不能进入第二次PCR扩增,而突变型则能完整进入第二次PCR扩增并得到产物的富集。 变性梯度凝胶电泳法(denaturing gradinent electrophoresis,DGGE) DGGE法分析PCR 产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适围为100bp-500bp。基本原理基于当双链DNA在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳适移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化的程

基因突变

第五章基因突变 一、基因突变的概念与意义 1、基因突变的概念 基因突变:染色体上某一基因位点内部发生了化学性质的变化,与原来基因形成对性关系 例如,高秆基因D →矮秆基因d 突变体(型):由于基因突变而表现突变性状的细胞或个体 突变频率:突变体出现的频率 突变率:基因发生突变的频率 自发突变:在自然条件下发生的突变,机率非常低,不能满足遗传研究与育种工作的需要诱发突变:人为利用物理、化学因素处理诱发基因突变 2、基因突变的意义 遗传变异的主要来源之一 二、基因突变的一般特征 1、重演性和可逆性 重演性:同一突变可以在同种生物的不同个体间重复发生 基因突变是可逆的: 正突变u A←-------------→a 反突变v 在多数情况下,即u>v 隐性突变:由显性基因产生隐性基因 显性突变:由隐性基因产生显性基因 无效突变:突变可能导致野生型基因功能完全丧失 功能获得性突变:如果一个基因突变后产生了新的功能 2、多方向性 基因突变的方向是不定的,可以多方向发生。例如,基因A可以突变为a1、a2、a3、……

等 AA×a1a1 a1a1 ×a2a2 ↓↓ Aa1 a1a2 ↓↓ 1AA:2Aa1:1a1a1 1a1a1:2a1a2:1a2a2 复等位基因:位于同一基因位点上的各个等位基因 果蝇的部分眼色复等位基因及白眼基因起源 例人的ABO血型就是由I A、I B、I O3个复等位基因决定 例普通烟草为自花授粉植物;在烟草属中有两个野生种(N. forgationa和N. alata)表现为自交不亲和性,在这些烟草中发现15个自交不亲和的复等位基因S1、S2、S3、S4等,控制自花授粉的不结实性。具有某一基因的花粉不能在具有同一基因的柱头上萌发,好象同一基因之间存在一种颉颃作用 3、有害性和有利性 大多数基因的突变,对生物的生长和发育往往是有害的 致死突变:导致个体死亡的突变 伴性致死:致死突变发生在性染色体上 中性突变:有些基因仅控制一些次要性状,即使发生突变,也不会影响生物的正常生理活动 有利突变:少数突变不仅对生物的生命活动无害,反而对它本身有利,例如抗病性,优质,早熟性等 4、平行性 亲缘关系相近的物种因遗传基础比较近似,往往发生相似的基因突变。这种现象称为突变的平行性 根据一个物种或属内具有的变异类型,就能预见到近缘的其他物种或属也同样存在相似的变异类型 三、基因突变与性状表现 1、基因突变的性状变异类型 形态突变:导致生物体外部形态结构(如形态、大小、色泽等)产生肉眼可识别变异的突变,也称可见突变 生化突变:影响生物的代谢过程,导致特定生化功能改变或丧失的突变。如营养缺陷型致死突变:导致特定基因型突变体死亡的突变

相关主题