搜档网
当前位置:搜档网 › Android开机启动最详细注解

Android开机启动最详细注解

Android开机启动最详细注解
Android开机启动最详细注解

Android的开机流程

1. 系统引导bootloader

1) 源码:bootable/bootloader/*

2) 说明:加电后,CPU将先执行bootloader程序,此处有三种选择

a) 开机按Camera+Power启动到fastboot,即命令或SD卡烧写模式,不加载内核及文件系统,此处可以进行工厂模式的烧写

b) 开机按Home+Power启动到recovery模式,加载recovery.img,recovery.img包含内核,基本的文件系统,用于工程模式的烧写

c) 开机按Power,正常启动系统,加载boot.img,boot.img包含内核,基本文件系统,用于正常启动手机(以下只分析正常启动的情况)

2. 内核kernel

1) 源码:kernel/*

2) 说明:kernel由bootloader加载

3. 文件系统及应用init

1) 源码:system/core/init/*

2) 配置文件:system/rootdir/init.rc,

3) 说明:init是一个由内核启动的用户级进程,它按照init.rc中的设置执行:启动服务(这里的服务指linux底层服务,如adbd提供adb支持,vold提供SD卡挂载等),执行命令和按其中的配置语句执行相应功能

4. 重要的后台程序zygote

1) 源码:frameworks/base/cmds/app_main.cpp等

2) 说明:zygote是一个在init.rc中被指定启动的服务,该服务对应的命令是/system/bin/app_process

a) 建立Java Runtime,建立虚拟机

b) 建立Socket接收ActivityManangerService的请求,用于Fork应用程序

c) 启动System Server

5. 系统服务system server

1) 源码:frameworks/base/services/java/com/android/server/SystemServer.java

2) 说明:被zygote启动,通过System Manager管理android的服务(这里的服务指frameworks/base/services下的服务,如卫星定位服务,剪切板服务等)

6. 桌面launcher

1) 源码:ActivityManagerService.java为入口,packages/apps/launcher*实现

2) 说明:系统启动成功后SystemServer使用xxx.systemReady()通知各个服务,系统已经就绪,桌面程序Home就是在ActivityManagerService.systemReady()通知的过程中建立的,最终调用()启launcher

7. 解锁

1) 源码:

frameworks/policies/base/phone/com/android/internal/policy/impl/*lock*

2) 说明:系统启动成功后SystemServer调用wm.systemReady()通知WindowManagerService,进而调用PhoneWindowManager,最终通过LockPatternKeyguardView显示解锁界面,跟踪代码可以看到解锁界面并不是一个Activity,这是只是向特定层上绘图,其代码了存放在特殊的位置

8. 开机自启动的第三方应用程序

1) 源码:

frameworks/base/services/java/com/android/server/am/ActivityManagerService.java

2) 说明:系统启动成功后SystemServer调用ActivityManagerNative.getDefault().systemReady()通知ActivityManager启动成功,ActivityManager会通过置变量mBooting,通知它的另一线程,该线程会发送广播android.intent.action.BOOT_COMPLETED以告知已注册的第三方程序在开机时自动启动。

9. 总结

综上所述,系统层次关于启动最核心的部分是zygote(即app_process)和system server,zygote 它负责最基本的虚拟机的建立,以支持各个应用程序的启动,而system server用于管理android后台服务,启动步骤及顺序。

10. 参考

https://www.sodocs.net/doc/823218656.html,/basonjiang_sz/category/648399.aspx

Android 启动过程详解

Android从Linux系统启动有4个步骤;

(1) init进程启动

(2) Native服务启动

(3) System Server,Android服务启动

(4) Home启动

总体启动框架图如:

第一步:initial进程(system/core/init)

init进程,它是一个由内核启动的用户级进程。内核自行启动(已经被载入内存,开始运行,并已初始化所有的设备驱动程序和数据结构等)之后,就通过启动一个用户级程序init

的方式,完成引导进程。init始终是第一个进程.

Init.rc

Init.marvell.rc

Init进程一起来就根据init.rc和init.xxx.rc脚本文件建立了几个基本的服务:

servicemanamger

zygote

。。。

最后Init并不退出,而是担当起property service的功能。

1.1脚本文件

init@System/Core/Init

Init.c:parse_config_file(Init.rc)

@parse_config_file(Init.marvel.rc)

解析脚本文件:Init.rc和Init.xxxx.rc(硬件平台相关)

Init.rc是Android自己规定的初始化脚本(Android Init Language, System/Core/Init/readme.txt) 该脚本包含四个类型的声明:

Actions

Commands

Services

Options.

1.2 服务启动机制

我们来看看Init是这样解析.rc文件开启服务的。

(1)打开.rc文件,解析文件内容@ system/core/init/init.c

将service信息放置到service_list中。@ system/core/init parser.c

(2)restart_service()@ system/core/init/init.c

service_start

execve(…).建立service进程。

第二步Zygote

Servicemanager和zygote进程就奠定了Android的基础。Zygote这个进程起来才会建立起真正的Android运行空间,初始化建立的Service都是Navtive service.在.rc脚本文件中zygote 的描述:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

所以Zygote从main(…)@frameworks/base/cmds/app_main.cpp开始。

(1) main(…)@frameworks/base/cmds/app_main.cpp

建立Java Runtime

runtime.start("com.android.internal.os.ZygoteInit", startSystemServer);

(2) runtime.start@AndroidRuntime.cpp

建立虚拟机

运行:com.android.internal.os.ZygoteInit:main函数。

(3)main()@com.android.internal.os.ZygoteInit//真正的Zygote。

registerZygoteSocket();//登记Listen端口

startSystemServer();

进入Zygote服务框架。

经过这几个步骤,Zygote就建立好了,利用Socket通讯,接收ActivityManangerService的请求,Fork应用程序。

第三步System Server

startSystemServer@com.android.internal.os.ZygoteInit在Zygote上fork了一个进程: com.android.server.SystemServer.于是SystemServer@(SystemServer.java)就建立了。Android的所有服务循环框架都是建立SystemServer@(SystemServer.java)上。在SystemServer.java中看不到循环结构,只是可以看到建立了init2的实现函数,建立了一大堆服务,并AddService到service Manager。

main() @ com/android/server/SystemServer

{

init1();

}

Init1()是在Native空间实现的(com_andoird_server_systemServer.cpp)。我们一看这个函数就知道了,init1->system_init() @System_init.cpp

在system_init()我们看到了循环闭合管理框架。

{

Call "com/android/server/SystemServer", "init2"

…..

ProcessState::self()->startThreadPool();

IPCThreadState::self()->joinThreadPool();

}

init2()@SystemServer.java中建立了Android中所有要用到的服务。

这个init2()建立了一个线程,来New Service和AddService来建立服务

第三步Home启动

在ServerThread@SystemServer.java后半段,我们可以看到系统在启动完所有的Android服务后,做了这样一些动作:

(1)使用xxx.systemReady()通知各个服务,系统已经就绪。

(2) 特别对于ActivityManagerService.systemReady(回调)

Widget.wallpaper,imm(输入法)等ready通知。

Home就是在ActivityManagerService.systemReady()通知的过程中建立的。下面是ActivityManagerService.systemReady()的伪代码:

systemReady()@ActivityManagerService.java

resumeTopActivityLocked()

startHomeActivityLocked();//如果是第一个则启动HomeActivity。

startActivityLocked(。。。)CATEGORY_HOME

Android Booting:

init is the first process after kernel started. The corresponding source code lies in: device/system/init. It does the following tasks step by step:

(init是内核启动后的启动的第一个进程,这个进程干啥事?)

1.Initialize log system. (初始化log 系统)

2.Parse /init.rc and /init.%hardware%.rc. (解析init.rc 和init.%hardware%.rc 两个配置文件)

3. Execute early-init action in the two files parsed in step 2. (初期初始化)

4. Device specific initialize. For example, make all device node in /dev and download firmwares. (与设备相关的初始化,比如在/dev下创建所有设备的节点以及装载固件)

5. Initialize property system. Actually the property system is working as a share memory. Logically it looks like a registry under Windows system.

6. Execute init action in the two files parsed in step 2. (继续初始化)

7. Start property service. (启动属性服务)

8. Execute early-boot and boot actions in the two files parsed in step 2.

9. Execute property action in the two files parsed in step 2.

10. Enter into an indefinite loop to wait for device/property set/child process exit events. For example, if an SD card is plugined, init will receive a device add event, so it can make node for the device. Most of the important process is forked in init, so if any of them crashed, init will receive a SIGCHLD then translate it into a child process exit event, so in the loop init can handle the process exit event and execute the commands defined in *.rc(it will run command onrestart).

The .rc file is a script file defined by Android. The default is device/system/rootdir/init.rc. We can take a loot at the file format(device/system/init/readme.txt is a good overall introduction of the script). Basically the script file contains actions and services.

Actions

Actions are named sequences of commands(action是一系列有顺序的commands(命令)的组合). Actions have a trigger which is used to determine when the action should occur(每个action 都有它的trigger(触发条件)). When an event occurs which matches an action's trigger, that action is added to the tail of a to-be-executed queue (unless it is already on the queue). (当触发条件满足时,action将被放入等待执行队列)

Each action in the queue is dequeued in sequence and each command in that action is executed in sequence. (每个action依次按顺序出列执行,而每个action里面的command也是按顺序被执行)Init handles other activities (device creation/destruction, property setting, process restarting) "between" the execution of the commands in activities. (init进程在执行action 的commands的过程中同样会继续执行其它的任务(由CPU调度),比如设备节点的创建/销毁,设置属性和重启进程等)

Actions take the form of:

on

...

Services

(服务是一系列由init进程启动的程序)

Services are programs which init launches and (optionally) restarts when they exit. Services take the form of:

service [ ]*

...

Options

Options are modifiers to services. They affect how and when init runs the service.

(Options用来修饰services的,它们将决定init进程如何和何时执行service)

Triggers

Triggers are strings which can be used to match certain kinds of events and used to cause an action to occur.

(Triggers 是可以被用来匹配某些特定事件的字符串,然后导致action的执行)

The builtin supported commands are defined in device/system/init/keywords.h. Commands are implementd in device/system/init/bultins.c.

The init program only executes five kinds of triggers: ―early-init‖, ―init‖, ―early-boot‖, ―boot‖, ―property:*‖. Take a look at the following line in default init.rc.

class_start default

(这条命令将依顺序启动所有类名为“default“的services,注:没有option修饰的service 默认类名为“default”)

This line is a command for the action corresponding to ―boot‖ trigger.It will start all services whose class name equals to ―default‖. By default, if no class option is defined for a service, the service’s class name is ―default‖. So this line will start all the services in the order of position in the file by default. (BTW, you can start any service using start commands, if you like.) Any service is run as a forked process of init, take a look at the source code of service_start in device/system/init.c.(任何service都作为init进程的子进程来执行,可参考device/system/init.c C文件里面的service_start函数)

So according to the default init.rc, the following services will be executed step by step:

(依以上描述,参考init..rc,下面的service将会被依次执行)

console: star a shell. The source is in device/system/bin/sh. (启动一个shell)

adbd: start adb daemon. The source is in device/tools/adbd. By default is disabled. (启动adb守护进程,adb(android debug bridge)用来管理PC和手机或模拟器之间的调试和连接)servicemanager: start binder system. The source is in device/commands/binder. (启动binder IPC 系统(一种独立于Linux传统的进程间通信方式))

mountd: mount all fs defined in /system/etc/mountd.conf if started, receive commands through local socket to mount any fs. The source is in device/system/bin/mountd.

debuggerd: start debug system. The source is in device/system/bin/debuggerd.

rild: start radio interface layer daemon. The source is in device/commands/rild.

zygote:start Android Java Runtime and start system server. It’s the most important service. The source is in device/servers/app.(创建android Java执行环境和启动系统服务器,最终将启动Java虚拟机Dalvik和system server,是最重要的服务!)

media: start AudioFlinger, MediaPlayerService and CameraService. The source is in device/commands/mediaserver. (启动和媒体、视频相关的服务)

bootsound: play the default boot sound /system/media/audio/ui/boot.mp3. The source is in device/commands/playmp3. (播放启动音频boot.mp3)

dbus: start dbus daemon, it’s only used by BlueZ. The source is in device/system/Bluetooth/dbus-daemon. (一种基于蓝牙的IPC通信方式)

hcid: redirect hcid’s stdout and stderr to the Android logging system. The source is in device/system/bin/logwrapper. By default is disabled.

hfag: start Bluetooth handsfree audio gateway, it’s only used by BlueZ. The source is in device/system/Bluetooth/bluez-utils. By default is disabled.

hsag: start Bluetooth headset audio gateway, it’s only used by BlueZ. The source is in device/system/Bluetooth/bluez-utils. By default is disabled.

installd: start install package daemon. The source is in device/servers/installd.

flash_recovery: load /system/recovery.img. The source is in device/commands/recovery/mtdutils.

Zygote service does the following tasks step by step: (Zygote service将执行以下任务)

1. Create JA V A VM. (创建JA V A虚拟机)

2. Register android native function for JA V A VM..

3. Call the main function in the JA V A class named com.android.internal.os.ZygoteInit whose source is device/java/android/com/android/internal/os/ZygoteInit.java.

(下面函数已经在JA V A VM下面跑了!)

(调用com.android.internal.os.ZygoteInit这个类的main函数完成以下任务)

a) Load ZygoteInit class (装载ZygoteInit类)

b) Register zygote socket (注册ZygoteInit套接字)

c) Load preload classes(the default file is device/java/android/preloaded-classes) (装载其它类)

d) Load preload resources (装载类资源)

(调用Zygote::forkSystemServer()函数fork一个新的进程(systemserver),在该新的进程里调用com.android.server.SystemServer JA V A类进一步初始化)

e) Call Zygote::forkSystemServer (implemented in device/dalvik/vm/InternalNative.c) to fork a new process. In the new process, call the main function in the JA V A class named com.android.server.SystemServer, whose source is in device/java/services/com/android/server.

i. Load libandroid_servers.so (装载libandroid_servers.so动态链接库)

ii. Call JNI native init1 function implemented in device/libs/android_servers/com_android_server_SystemServers. It only calls system_init implemented in device/servers/system/library/system_init.cpp. (call JA V A 本地调用init1(),该函数仅仅只是调用另外一个C++程序system_init)

If running on simulator, instantiate AudioFlinger, MediaPlayerService and CameraService

here.

Call init2 function in JA V A class named com.android.server.SystemServer, whose source

is in device/java/services/com/android/server. This function is very critical for Android because it start all of Android JA V A services. (调用关键函数init2()启动其它android service!)If not running on simulator, call IPCThreadState::self()->joinThreadPool() to enter into

service dispatcher.

SystemServer::init2 will start a new thread to start all JA V A services as follows:

(init2()将启动一个(是每个服务一个线程吧?)新线程,以启动其它所有JA V A service)Core Services: (核心服务)

1. Starting Power Manager //(启动电源管理)

2. Creating Activity Manager (创建组件管理器)

3. Starting Telephony Registry //(电话管理)

4. Starting Package Manager //(包管理)

5. Set Activity Manager Service as System Process (设置组件管理服务为系统进程)

6. Starting Context Manager (上下文管理)

7. Starting System Context Providers

8. Starting Battery Service //(电池服务)

9. Starting Alarm Manager //(闹钟管理)

10. Starting Sensor Service (传感器服务)

11. Starting Window Manager (窗口管理)

12. Starting Bluetooth Service //(蓝牙服务)

13. Starting Mount Service //(mount服务)

Other services //(其它服务)

1. Starting Status Bar Service (状态栏服务)

2. Starting Hardware Service (硬件服务)

3. Starting NetStat Service (网络状态服务)

4. Starting Connectivity Service (连接服务)

5. Starting Notification Manager (通知管理)

6. Starting DeviceStorageMonitor Service (设备存储监控服务)

7. Starting Location Manager (定位管理)

8. Starting Search Service (搜索服务)

9. Starting Clipboard Service (剪切板服务)

10. Starting Checkin Service (。。。)

11. Starting Wallpaper Service (壁纸服务)

12. Starting Audio Service (音频服务)

13. Starting HeadsetObserver

14. Starting AdbSettingsObserver

Finally SystemServer::init2 will call ActivityManagerService.systemReady to launch the first activity by senting Intent.CA TEGORY_HOME intent.

(最后,init2()将调用ActivityManagerService.systemReady启动第一个组件)

There is another way to start system server, which is through a program named system_server whose source is device/servers/system/system_main.cpp. It also calls system_init to start system services. So there is a question: why does Android have two methods to start system services? My guess is that directly start system_server may have synchronous problem with zygote because system_server will call JNI to start SystemServer::init2, while at that time zygote may not start JA V A VM yet. So Android uses another method. After zynote is initialized, fork a new process to start system services.

Android 启动过程

1. Boot系统初始化,具体过程参见(system\core\init\Init.c)中的main函数,这时候,手机或者模拟器出现的画面是一个console,显示―ANDROID‖msg。

2. 初始化成功后,就开始mounting系统,具体参见(system\core\mountd\Mountd.c) 中的main 函数。

3.接下来运行ndroidRuntime,并开始启动java虚拟机dalvikvm。

4. Java虚拟机启动成功后,开始系统初始化。系统初始的第一步是用JNI方式实现的,对应java代码为(frameworks\base\services\java\com\android\server\SystemServer.java) init1(Native)函数,对应的JNI C++代码为(frameworks\base\core\jni\server\com_android_server_SystemServer.cpp),而实现的C++代码为(frameworks\base\cmds\system_server\library\ System_init.cpp) 中的system_init()函数。

5. system_init调用SurfaceFlinger,SurfaceFlinger的readyToRun()函数用BootAnimation来实现开机动画,这时候手机或者模拟器显示是一副背景图加一个动态的小机器人。

6. 系统初始化的第二步,将启动ServerThread进程,参见SystemServer.init2()。ServerThread 将启动各种系统服务,如Power Manager、Activity Manager等等,具体参见ServerThread的run函数,ServerThread同在SystemServer.java中。

7.这之后的事,应该就是进入系统了。(这部分没有调查过)。

对Android启动过程的进一步研究

对于关注Android底层的朋友来说,其具体的启动过程应该是比较吸引我们的。但是很多启动文件什么的,都得adb push到host上来看,挺不方便的,都怪Android自带的Toolbox太简略了。所以在深入了解Android的启动流程之前,我们来把Busybox安装到Android上去,这样,就有很多工具供我们使用了。

首先去busybox主页下载最新版本的源代码,然后用arm的交叉编译器编译出busybox 的可执行程序,编译的时候需要注意一些设置选项,例如

Build Options —>

Build BusyBox as a static binary (no shared libs) 这个要选上,因上这样子编译出来的busyBox才是可以独立运行的。

│Do you want to build BusyBox with a Cross Compiler? ││

││(/HOME/toolchains/gcc-4.0.2-glibc-2.3.5/arm-9tdmi-linux-gnu/bin/arm-9tdmi-linux-gnu│这是交叉编译器的路径,要根据具体的情况来设置。

Installation Options —>

Don’t use /usr

这样子编译出来的busybox才不会安装到你主机的/usr目录下。一定要选上。

busybox的功能选项根据需要自选,但是不要太贪心.

OK,这里就不纠缠于编译busybox的东西了,网上资料无数。接下来,我们把busybox 安装到模拟器上去。先在模拟器上随便建一个busybox的文件夹,然后进入busybox可执行文件目录,使用命令

adb push busybox.asc /data/busybox/busybox

然后进入adb shell,chmod 777 ./busybox,就可以直接使用了。但现在还是不方便,总不能每用一个命令就输一次busybox吧?所以,我们可以先用./busybox --install将程序都安装到当前目录下,然后把当前目录添加到PATH变量中即可。暂时使用export来添加吧,如果想永久添加,往下看。

好了,准备工作完成,开始研究的工作了。既然是研究启动过程,那当然是先看看init.rc 文件。去etc目录打开它,分析一下内容,首先是对env的定义,也就是全局环境变量的定义,接下来的建立和初始化里面的内容目前还不清楚什么意思,紧接着就是系统启动时运行的初始进程信息,这个比较有意思,包括了usbd-config和qemu,qemu自不用说,而usbd-config作为初始启动的进程,应该就是和上一篇文章猜的一样,用来调试或者usb通信的。往下看,是在初始启动进程完成之后开始启动的服务进程,这些进程如果因故退出,会自动重启。这里面包括了console控制台,adbd监护进程,usbd监护进程,debuggerd监护进程等.除去这些守护进程,能引起我们注意的,是runtime和zygote。这两个进程似乎掌管着其他进程以及应用程序的启动。

现在,来让我们做一个实验吧,将自动调用的启动过程变成手动,看看启动流程具体是什么样的。想达到这个目的,首先就是要修改init.rc文件,当然不是在模拟器的console中改,一是不能改,二是你改了也没用,下次加载就会给你覆盖了。所以,我们要从原始镜像ramdisk.img入手了。从2.6标准Linux内核开始,initrd.img都采用cpio压缩,猜测ramdisk.img 也一样,需要使用gunzip解压缩,然后再使用cpio解包。好,进入tools/lib/images目录下,先用file命令看看ramdisk.img的类型,没错,系统提示

ramdisk.img: gzip compressed data, from Unix

很好,然后将ramdisk.img复制一份到任何其他目录下,将其名称改为ramdisk.img.gz,并使用命令

gunzip ramdisk.img.gz

然后新建一个文件夹,叫ramdisk吧,进入,输入命令

cpio -i -F ../ramdisk.img

这下,你就能看见并操作ramdisk里面的内容了。当然你也可以直接在外面进行操作,但是还是建议把cpio解压缩出来的内容全部集中在一个文件夹里面,因为一会我们还要将其压缩成新的ramdisk.img。

OK,现在开始修改步骤吧。用任何一款编辑器打开init.rc,首先在PATH那里加上你的Busybox安装路径,然后注释内容,我们要手工启动他们。

# zygote {

# exec /system/bin/app_process

# args {

# 0 -Xzygote

# 1 /system/bin

# 2 –zygote

# }

# autostart 1

# }# runtime {

# exec /system/bin/runtime

# autostart 1

# }

在这里需要注意,不要同时把两者都注释了,注释某一个,再试验手工启动它,如果两者同时注释我这里有问题,无法启动。

好,接下来,使用下列命令重新打包成镜像

cpio -i -t -F ../ramdisk.img > list

cpio -o -H newc -O lk.img < list

当前目录下生成的lk.img就是我们的新镜像了。使用自己的镜像启动emulator;

emulator -console -ramdisk lk.img

如果我们注释的是zygote,那么在#后输入

app_process -Xzygote /system/bin –zygote

手工启动,命令行中输出的信息是

Prepping: /system/app/AlarmProvider.apk:/system/app/Browser.apk:/system/app/ Calendar.apk:/system/app/Camera.apk:/system/app/Contacts.apk:

/system/app/Development.apk:/system/app/GDataFeedsProvider.apk:/system/app/

Gmail.apk:/system/app/GmailProvider.apk:/system/app/GoogleApps.apk:

/system/app/GoogleAppsProvider.apk:/system/app/Home.apk:/system/app/ImProvider.apk: /system/app/Maps.apk:/system/app/MediaPickerActivity.apk:

/system/app/MediaProvider.apk:/system/app/Phone.apk:/system/app/PimProvider.apk:/system/ app/ApiDemos.apk:/system/app/SettingsProvider.apk:

/system/app/Sms.apk:/system/app/SyncProvider.apk:/system/app/TelephonyProvider.apk:

/system/app/XmppService.apk:/system/app/YouTube.apk

File not found: /system/app/AlarmProvider.apk

File not found: /system/app/Calendar.apk

File not found: /system/app/Camera.apk

File not found: /system/app/GDataFeedsProvider.apk

File not found: /system/app/Gmail.apk

File not found: /system/app/GmailProvider.apk

File not found: /system/app/MediaPickerActivity.apk

File not found: /system/app/PimProvider.apk

File not found: /system/app/ApiDemos.apk

File not found: /system/app/Sms.apk

File not found: /system/app/SyncProvider.apk

File not found: /system/app/YouTube.apk

Prep complete

嘿嘿,从File not found的信息中可以看到一些Google可能会即将推出的应用,比如

Gmail什么的。当然,这些都是Java框架的启动信息,我们以后还要借助其他工具来进行进一步探索。

如果我们注释的是runtime,那么输出信息是:

+++ post-zygote

老实说,没有明白这是啥意思,呵呵,吃饭时间到了,懒得看了。

好了,今天就说到这,基本的方法就是这样,有兴趣的朋友可以进一步深入研究。

android系统开机启动流程分析

一,系统引导bootloader 加电,cpu执行bootloader程序,正常启动系统,加载boot.img【其中包含内核。还有ramdisk】 二,内核kernel bootloader加载kernel,kernel自解压,初始化,载入built-in驱动程序,完成启动。 内核启动后会创建若干内核线程,在后装入并执行程序/sbin/init/,载入init process,切换至用户空间(user-space) 内核zImage解压缩 head.S【这是ARM-Linux运行的第一个文件,这些代码是一个比较独立的代码包裹器。其作用就是解压Linux内核,并将PC指针跳到内核(vmlinux)的第一条指令】首先初始化自解压相关环境(内存等),调用decompress_kernel进行解压,解压后调用start_kernel启动内核【start_kernel是任何版本linux内核的通用初始化函数,它会初始化很多东西,输出linux版本信息,设置体系结构相关的环境,页表结构初始化,设置系 统自陷入口,初始化系统IRQ,初始化核心调度器等等】,最后调用rest_init【rest_init 会调用kernel_init启动init进程(缺省是/init)。然后执行schedule开始任务调度。这个init是由android的./system/core/init下的代码编译出来的,由此进入了android的代码】。 三,Init进程启动 【init是kernel启动的第一个进程,init启动以后,整个android系统就起来了】 init进程启动后,根据init.rc 和init. .rc脚本文件建立几个基本 服务(servicemanager zygote),然后担当property service 的功能 打开.rc文件,解析文件内容。【system/core/init/init.c】将service信息放置到service.list中【system/core/init/init_parser.c】。 建立service进程。【service_start(…) execve(…)】 在init.c中,完成以下工作 1、初始化log系统【解析/init.rc和init.%hardware%.rc文件,在两个 文件解析步骤2时执行“early-init”行动】 2、初始化设备【在/dev下创建所有设备节点,下载firmwares】 3、初始化属性服务器【在两个文件解析步骤2时执行“init”行动】

Android 开机启动流程

Android的开机流程 1. 系统引导bootloader 1) 源码:bootable/bootloader/* 2) 说明:加电后,CPU将先执行bootloader程序,此处有三种选择 a) 开机按Camera+Power启动到fastboot,即命令或SD卡烧写模式,不加载内核及文件系统,此处可以进行工厂模式的烧写 b) 开机按Home+Power启动到recovery模式,加载recovery.img,recovery.i mg包含内核,基本的文件系统,用于工程模式的烧写 c) 开机按Power,正常启动系统,加载boot.img,boot.img包含内核,基本文件系统,用于正常启动手机(以下只分析正常启动的情况) 2. 内核kernel 1) 源码:kernel/* 2) 说明:kernel由bootloader加载 3. 文件系统及应用init 1) 源码:system/core/init/* 2) 配置文件:system/rootdir/init.rc, 3) 说明:init是一个由内核启动的用户级进程,它按照init.rc中的设置执行:启动服务(这里的服务指linux底层服务,如adbd提供adb支持,vold提供SD卡挂载等),执行命令和按其中的配置语句执行相应功能 4. 重要的后台程序zygote 1)源码:frameworks/base/cmds/app_main.cpp等 2) 说明:zygote是一个在init.rc中被指定启动的服务,该服务对应的命令是/system/bin/app_process a)建立Java Runtime,建立虚拟机 b) 建立Socket接收ActivityManangerService的请求,用于Fork应用程序 c) 启动System Server 5. 系统服务system server 1)源码:frameworks/base/services/java/com/android/server/SystemServer.jav a 2) 说明:被zygote启动,通过SystemManager管理android的服务(这里的服务指frameworks/base/services下的服务,如卫星定位服务,剪切板服务等) 6. 桌面launcher 1)源码:ActivityManagerService.java为入口,packages/apps/launcher*实现 2) 说明:系统启动成功后SystemServer使用xxx.systemReady()通知各个服务,系统已经就绪,桌面程序Home就是在ActivityManagerService.systemReady()通知的过程中建立的,最终调用()启launcher 7. 解锁 1) 源码: frameworks/policies/base/phone/com/android/internal/policy/impl/*lock* 2) 说明:系统启动成功后SystemServer调用wm.systemReady()通知WindowManagerService,进而调用PhoneWindowManager,最终通过LockPatternKeyguardView显示解锁界面,跟踪代码可以看到解锁界面并不是一个Activity,这是只是向特定层上绘图,其代码了存放在特殊的位置

分析Android 开机启动慢的原因

开机启动花了40多秒,正常开机只需要28秒就能开机起来。 内核的启动我没有去分析,另一个同事分析的。我主要是分析从SystemServer启来到开机动画结束显示解锁界面的这段时间,也就是开机动画的第三个动画开始到结束这段时间,这是个比较耗时阶段,一般都在17秒左右(见过牛B的手机,只需5秒)。 SystemServer分两步执行:init1和init2。init1主要是初始化native的服务,代码在sy stem_init.cpp的system_init,初始化了SurfaceFlinger和SensorService这两个native的服务。init2启动的是java的服务,比如ActivityManagerService、WindowManagerService、PackageManagerService等,在这个过程中PackageManagerService用的时间最长,因为PackageManagerService会去扫描特定目录下的jar包和apk文件。 在开机时间需要40多秒的时,从Log上可以看到,从SurfaceFlinger初始化到动画结束,要27秒左右的时间,即从SurfaceFlinger::init的LOGI("SurfaceFlinger is starting")这句Log到void SurfaceFlinger::bootFinished()的LOGI("Boot is finished (%ld ms)", long(ns 2ms(duration)) ),需要27秒左右的时间,这显然是太长了,但到底是慢在哪了呢?应该在个中间的点,二分一下,于是想到了以启动服务前后作为分隔:是服务启动慢了,还是在服务启动后的这段时间慢?以ActivityManagerService的Slog.i(TAG, "System now ready")的这句Log为分割点,对比了一下,在从SurfaceFlinger is starting到System now read y多了7秒左右的时间,这说明SystemServer在init1和init2过程中启动慢了,通过排查,发现在init1启动的时候,花了7秒多的时间,也就是system_init的LOGI("Entered system _init()")到LOGI("System server: starting Android runtime.\n")这段时间用了7秒多,而正常情况是400毫秒便可以初始化完,通过添加Log看到,在SensorService启动时,用了比较长的时间。 不断的添加Log发现,在启动SensorService时候,关闭设备文件变慢了,每次关闭一个/dev/input/下的设备文件需要100ms左右,而SensorService有60~70次的关闭文件,大概有7s左右的时间。 调用流程是: frameworks/base/cmds/system_server/library/system_init.cpp: system_init->SensorServi ce::instantiate frameworks/native/services/sensorservice/SensorService.cpp: void SensorService::onFi rstRef()->SensorDevice& dev(SensorDevice::getInstance()) hardware/libsensors/SensorDevice.cpp: SensorDevice::SensorDevice()->sensors_open hardware/libsensors/sensors.cpp: open_sensors->sensors_poll_context_t sensors_poll_context_t执行打开每个传感器设备时,遍历/dev/input/目录下的设备文件,以匹配当前需要打开的设备,遍历文件是在 hardware/libsensors/SensorBase.cpp的openInput下实现,如果打开的设备文件不是正在打开的设备文件,会执行下面语句的else部分: if (!strcmp(name, inputName)) { strcpy(input_name, filename); break;

基于MT6752的 android 系统启动流程分析报告

基于MT6752的Android系统启动流程分析报告 1、Bootloader引导 (2) 2、Linux内核启动 (23) 3、Android系统启动 (23) 报告人: 日期:2016.09.03

对于Android整个启动过程来说,基本可以划分成三个阶段:Bootloader引导、Linux kernel启动、Android启动。但根据芯片架构和平台的不同,在启动的Bootloader阶段会有所差异。 本文以MTK的MT6752平台为例,分析一下基于该平台的Android系统启动流程。 1、Bootloader引导 1.1、Bootloader基本介绍 BootLoader是在操作系统运行之前运行的一段程序,它可以将系统的软硬件环境带到一个合适状态,为运行操作系统做好准备,目的就是引导linux操作系统及Android框架(framework)。 它的主要功能包括设置处理器和内存的频率、调试信息端口、可引导的存储设备等等。在可执行环境创建好之后,接下来把software装载到内存并执行。除了装载software,一个外部工具也能和bootloader握手(handshake),可指示设备进入不同的操作模式,比如USB下载模式和META模式。就算没有外部工具的握手,通过外部任何组合或是客户自定义按键,bootloader也能够进入这些模式。 由于不同处理器芯片厂商对arm core的封装差异比较大,所以不同的arm处理器,对于上电引导都是由特定处理器芯片厂商自己开发的程序,这个上电引导程序通常比较简单,会初始化硬件,提供下载模式等,然后才会加载通常的bootloader。 下面是几个arm平台的bootloader方案: marvell(pxa935) : bootROM + OBM + BLOB informax(im9815) : bootROM + barbox + U-boot mediatek(mt6517) : bootROM + pre-loader + U-boot broadcom(bcm2157) : bootROM + boot1/boot2 + U-boot 而对MT6752平台,MTK对bootloader引导方案又进行了调整,它将bootloader分为以下两个部分: (1) 第1部分bootloader,是MTK内部(in-house)的pre-loader,这部分依赖平台。 (2) 第2部分bootloader,是LK(little kernel的缩写,作用同常见的u-boot差不多),这部分依赖操作系统,负责引导linux操作系统和Android框架。 1.2、bootloader的工作流程 1.2.1 bootloader正常的启动流程 先来看启动流程图:

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

安卓开机动画以及制作(课程设计)

洛阳理工学院 课程设计报告 课程名称嵌入式系统课程设计 设计题目 Android开机动画及声音制作专业 班级 学号 姓名 完成日期 2017年月日

课程设计任务书 设计题目:Android开机动画与声音制作 设计内容与要求: 修改Android开机动画和声音的是建立自定义Android系统的入门课程和基本功。Android系统的开机动画需要修改和设定bootanimation.zip文件,修改开机声音需要自定义OGG文件并导入系统指定位置。 题目的基本要求如下: 1. 寻找并下载合适的开机视频; 2. 将视频转换成连续的PNG图像文件; 3. 修改desc.txt文件并打包bootanimation.zip文件; 4. 获取合适的开机声音并利用格式工厂工具转换为OGG格式; 5. 通过adb shell指令,进入控制板系统内并修改android系统文件只读属性; 6. 点击开发板的“复位”进行复位,重启开发板查看修改结果。 指导教师: 年6月日 课程设计评语 成绩: 指导教师:_______________ 年月日

目录 第1章概述 (2) 1.1 Android应用平台简介 (2) 1.2 RK2928开发板介绍 (2) 第2章 Android开机动画及声音制作 (5) 2.1 基本操作流程 (5) 2.2 开机动画的制作与添加 (6) 2.3 开机声音的制作与添加 (11) 2.4 开机动画及声音结果 (12) 第3章心得体会 (13)

第1章概述 1.1 Android应用平台简介 Android一词的本义指“机器人”,同时也是Google于2007年11月5日宣布的基于Linux平台的开源手机操作系统的名称,该平台由操作系统、中间件、用户界面和应用软件组成。Android是一种基于Linux的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发。尚未有统一中文名称,中国大陆地区较多人使用“安卓”或“安致”。Android操作系统最初由Andy Rubin开发,主要支持手机。2005年8月由Google收购注资。2007年11月,Google与84家硬件制造商、软件开发商及电信营运商组建开放手机联盟共同研发改良Android系统。随后Google以Apache开源许可证的授权方式,发布了Android的源代码。第一部Android智能手机发布于2008年10月。Android逐渐扩展到平板电脑及其他领域上,如电视、数码相机、游戏机等。2011年第一季度,Android在全球的市场份额首次超过塞班系统,跃居全球第一。2013年的第四季度,Android平台手机的全球市场份额已经达到78.1%。 1.2 RK2928开发板介绍 图1-1 实验板外观 作为RK292系列里较为高级的芯片之一,RK2928提供了比较不错的性能。较RK2926,RK2928集成了HDMI 1.4a控制器及GPS基带的支持,为300元价

Android开机启动流程样本

Android的开机流程 1. 系统引导bootloader 1) 源码: bootable/bootloader/* 2) 说明: 加电后, CPU将先执行bootloader程序, 此处有三种选择 a) 开机按Camera+Power启动到fastboot, 即命令或SD卡烧写模式, 不加载内核及文件系统, 此处能够进行工厂模式的烧写 b) 开机按Home+Power启动到recovery模式, 加载recovery.img, recovery.img包含内核, 基本的文件系统, 用于工程模式的烧写 c) 开机按Power, 正常启动系统, 加载boot.img, boot.img包含内核, 基本文件系统, 用于正常启动手机( 以下只分析正常启动的情况) 2. 内核kernel 1) 源码: kernel/* 2) 说明: kernel由bootloader加载 3. 文件系统及应用init 1) 源码: system/core/init/* 2) 配置文件: system/rootdir/init.rc, 3) 说明: init是一个由内核启动的用户级进程, 它按照init.rc中的设置执行: 启动服务( 这里的服务指linux底层服务, 如adbd提供adb支持, vold提供SD卡挂载等) , 执行命令和按其中的配置语句执行相应功能 4. 重要的后台程序zygote 1) 源码: frameworks/base/cmds/app_main.cpp等 2) 说明: zygote是一个在init.rc中被指定启动的服务, 该服务对应的命令是/system/bin/app_process

Android系统启动过程详解

Android系统启动过程详解 Android系统启动过程 首先Android框架架构图:(来自网上,我觉得这张图看起来很清晰) Linux内核启动之后就到Android Init进程,进而启动Android相关的服务和应用。 启动的过程如下图所示:(图片来自网上,后面有地址)

下面将从Android4.0源码中,和网络达人对此的总结中,对此过程加以学习了解和总结, 以下学习过程中代码片段中均有省略不完整,请参照源码。

一Init进程的启动 init进程,它是一个由内核启动的用户级进程。内核自行启动(已经被载入内存,开始运行, 并已初始化所有的设备驱动程序和数据结构等)之后,就通过启动一个用户级程序init的方式,完成引导进程。init始终是第一个进程。 启动过程就是代码init.c中main函数执行过程:system\core\init\init. c 在函数中执行了:文件夹建立,挂载,rc文件解析,属性设置,启动服务,执行动作,socket监听…… 下面看两个重要的过程:rc文件解析和服务启动。 1 rc文件解析 .rc文件是Android使用的初始化脚本文件(System/Core/Init/readm e.txt中有描述: four broad classes of statements which are Actions, Commands, Services, and Options.) 其中Command 就是系统支持的一系列命令,如:export,hostname,mkdir,mount,等等,其中一部分是linux 命令, 还有一些是android 添加的,如:class_start :启动服务,class_stop :关闭服务,等等。 其中Options是针对Service 的选项的。 系统初始化要触发的动作和要启动的服务及其各自属性都在rc脚本文件中定义。具体看一下启动脚本:\system\core\rootdir\init.rc 在解析rc脚本文件时,将相应的类型放入各自的List中: \system\core\init\Init_parser.c :init_parse_config_file( )存入到 action_queue、action_list、service_list中,解析过程可以看一下parse_config函数,类似状态机形式挺有意思。 这其中包含了服务:adbd、servicemanager、vold、ril-daemon、deb uggerd、surfaceflinger、zygote、media…… 2 服务启动 文件解析完成之后将service放入到service_list中。 文件解析完成之后将service放入到service_list中。 \system\core\init\builtins.c

Android SystemBar启动流程分析

Android SystemBar启动流程分析 SystemBars的服务被start时,最终会调用该类的onNoService()方法。 @Override public void start() { if (DEBUG) Log.d(TAG, "start"); ServiceMonitor mServiceMonitor = new ServiceMonitor(TAG, DEBUG, mContext, Settings.Secure.BAR_SERVICE_COMPONENT, this); mServiceMonitor.start(); // will call onNoService if no remote service is found } @Override public void onNoService() { if (DEBUG) Log.d(TAG, "onNoService"); createStatusBarFromConfig(); // fallback to using an in-process implementation } private void createStatusBarFromConfig() { … mStatusBar = (BaseStatusBar) cls.newInstance(); … mStatusBar.start(); } BaseStatusBar是一个抽象类,故调用其子类的PhoneStatusBar的start 函数。 @Override public void start() { … super.start(); … } 子类的start又调用了父类的start public void start() { … createAndAddWindows(); … }

AndroidL系统启动及加载流程分析

Android L系统启动及加载流程分析 1、概述 Android L的启动可以分为几个步骤:Linux内核启动、init进程启动、native系统服务及java系统服务启动、Home启动,主要过程如下图: 图1 整个启动流程跟4.4及之前的版本相差不多,只是有个别不同之处,本文我们主要分析Linux内核启动之后的过程。

2、启动过程分析 2.1 init进程启动 当系统内核加载完成之后,会启动init守护进程,它是内核启动的第一个用户级进程,是Android的一个进程,进程号为1,init进程启动后执行入口函数main(),主要操作为: 图2 AndroidL上将selinux的安全等级提高了,设为了enforcing模式,4.4上是permissive模式。 解析rc脚本文件,即init.rc脚本,该文件是Android初始化脚本,定义了一系列的动作和执行这些动作的时间阶段e aryl-init、init、early-boot、boot、post-fs等阶段。init进程main 函数中会根据这些阶段进行解析执行。AndroidL上为了流程更清晰,增加了charger(充电开机)、ffbm(工厂模式)、以及late-init阶段,实际上这些阶段是对其他阶段的组合执行,比如late-init:

2.2 ServiceManager的启动 servicemanager的启动就是init进程通过init.rc脚本启动的: 源码在frameworks/native/cmds/servicemanager/service_manager.c中,servicemanager是服务管理器,它本身也是一个服务(handle=0),通过binder调用,为native和Java系统服务提供注册和查询服务的,即某个服务启动后,需要将自己注册到servicemanager中,供其他服务或者应用查询使用。AndroidL上servicemanger中在处理注册和查询动作之前添加了selinux安全检测相关的处理。 2.3 SurfaceFinger、MediaServer进程启动 Android4.4以前,surfacefinger的启动根据属性system_init.startsurfaceflinger,决定是通过init.rc启动还是systemserver进程启动,之后的版本包括AndoridL都是通过init.rc启动的: 启动后会向servicemanager进程注册服务中,该服务启动时主要功能是初始化整个显

android开机启动流程简单分析

android开机启动流程简单分析 android启动 当引导程序启动Linux内核后,会加载各种驱动和数据结构,当有了驱动以后,开始启动Android系统同时会加载用户级别的第一个进程init(system\core\init\init.cpp)代码如下: int main(int argc, char** argv) { ..... //创建文件夹,挂载 // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. if (is_first_stage) { mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); #define MAKE_STR(x) __STRING(x) mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); mount("sysfs", "/sys", "sysfs", 0, NULL); } ..... //打印日志,设置log的级别 klog_init(); klog_set_level(KLOG_NOTICE_LEVEL); ..... Parser& parser = Parser::GetInstance(); parser.AddSectionParser("service",std::make_unique()); parser.AddSectionParser("on", std::make_unique()); parser.AddSectionParser("import", std::make_unique()); // 加载init.rc配置文件 parser.ParseConfig("/init.rc"); } 加载init.rc文件,会启动一个Zygote进程,此进程是Android系统的一个母进程,用来启动Android的其他服务进程,代码: 从Android L开始,在/system/core/rootdir 目录中有4 个zygote 相关的启动脚本如下图:

Android ninja 编译启动过程分析

Android ninja编译启动过程分析 ---make是如何转换到到ninja编译的 1.首先你的得对make的工作机制有个大概的了解: 运行的命令在要编译的目录下运行make,或者make target_name a.分析处理保存阶段(没有实际编译动作):它首先对当前目录下的Makefile文件的做一次扫描,语法分析,还有处理,主要是变量的保存,目标依赖列表生成,目标下的action列表的生成,然后记住 b.然后按记住的目标执行action列表动作(有实际编译动作). 编译启动的入口方式还是运行make: 2开始make-jxxx方式进入.....(xxx是本机cpu的数量) make开始做进行第一次扫描.... 目前USE_NINJA还是没有定义,估计以后很久很久才能启用的了! BUILDING_WITH_NINJA开始也是没定义的 看make扫描入口文件: Makefile: include build/core/main.mk 在build/core/main.mk: 在ninia之前都有include help.mk和config.mk 97include$(BUILD_SYSTEM)/help.mk 98 99#Set up various standard variables based on configuration 100#and host information. 101include$(BUILD_SYSTEM)/config.mk 说明make help//显示make帮助make config//当前显示配置 103relaunch_with_ninja:= 104ifneq($(USE_NINJA),false) 105ifndef BUILDING_WITH_NINJA<==第二次扫描不会到这里了 106relaunch_with_ninja:=true 107endif 108endif 116ifeq($(relaunch_with_ninja),true)<===第一次扫描入这里了 117#Mark this is a ninja build. 118$(shell mkdir-p$(OUT_DIR)&&touch$(OUT_DIR)/ninja_build) 119include build/core/ninja.mk//---进入ninja.mk 第一次扫描到此为止就结束掉了,因为在当前ifeq else endif后面没有代码了 120else#///!relaunch_with_ninja<===第二次扫描入这里了

android开机过程

一、Android开机启动流程简介 1、OS-level: 由bootloader载入linux kernel后kernel开始初始化, 并载入built-in 的驱动程序。Kernel完成开机后,载入init process,切换至user-space。 Init进程是第一个在user-space启动的进程。 2、Android-level: 由init process读取init.rc,Native 服务启动,并启动重要的外部程序,例如:servicemanager、Zygote以及System Server等。 由 init process 根据硬件类型读取init.xxx.rc。由init.xxx.rc加载init.xxx.sh。 由 init.xxx.sh 加载特定的硬件驱动。如hi_tuner.ko、hi_demux.ko等。 3、Zygote-Mode: Zygote 启动完SystemServer 后,进入Zygote Mode,在Socket 等候命令。 随后,使用者将看到一个桌面环境(Home Screen)。桌面环境由一个名为[Launcher]的应用程序负责提供。 本文档重点研究Android-level中的启动流程。 启动流程如下图所示:

二、init process流程分析 init进程简介 init进程是第一个在user-space启动的进程。由内核启动参数[init]传递给内核,如果该项没有设置,内核会按 /etc/init,/bin/init,/sbin/init,/bin/sh的顺序进行尝试,如果都有的都没找到,内核会抛出 kernel panic:的错误。

Android系统启动升级流程

A n d r o i d系统启动升级 流程 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

摘要 本文首先介绍了Android系统更新要用到的一些概念:硬件、三种模式及相互之间的通信。然后介绍了Android系统的启动和升级流程。 概述 通常,Android系统的升级包名称为update.zip。Android系统内部自带了烧写升级包的工具,我们可以手动烧写,也可以通过某些机制自动更新系统。同时,我们可以手动修改和制作升级包。本文主要阐述在Android系统升级中用到的一些概念,本文只是作为索引,并不涉及到具体的烧写工作。本文基于Android系统的版本:4.0.4。 硬件 Android系统的烧写,是非常贴近硬件的。一是,烧写是在实实在在的硬件上操作的。二则,有时在翻阅源码的时候,需要知道硬件的类型,以便找到和硬件相对应的源码。 烧写相关的硬件主要有三部分:CPU、内存和nand flash。当然,只是相对本文而言。CPU用来执行程序中的指令。内存只是在运行中,将需要运行的程序加载其中并运行,关机后即消失。nandflash用来存储程序的数据,它会一直存在。系统启动时,会将nand flash上的操作系统加载到内存,然后运行在CPU 中,对于非系统程序,按需加载到内存中运行。了解这些,有助于了解整个烧写的过程。 在板子上,可以通过下面的命令,查看CPU的信息: [plain] cat /proc/cpuinfo 通过如下命令查看内存的信息: [plain] cat /proc/meminfo nand flash是需要分区的,每个分区中对应了Android系统烧写包中不同的image,比如:boot、system分区等。可以通过如下命令来查看nand flash 的分区情况: [plain] cat /proc/mtd # 查看分区状况 通常,nand flash包含了以下分区: 开机动画:用于在开机或者升级过程中显示在屏幕上的内容。 boot:用于Android系统的正常启动 recovery:用于Android系统进入recovery模式下,参见本文后续介绍。 misc:用于保存BCB的内容,参见本文后续介绍。

Android系统的开机画面显示过程分析

Android系统的开机画面显示过程分析 分类:Android2012-07-0900:561252人阅读评论(39)收藏举报 好几个月都没有更新过博客了,从今天开始,老罗将尝试对Android系统的UI实现作一个系统的分析,也算是落实之前所作出的承诺。提到Android系统的UI,我们最先接触到的便是系统在启动过程中所出现的画面了。Android系统在启动的过程中,最多可以出现三个画面,每一个画面都用来描述一个不同的启动阶段。本文将详细分析这三个开机画面的显示过程,以便可以开启我们对Android系统UI实现的分析之路。 第一个开机画面是在内核启动的过程中出现的,它是一个静态的画面。第二个开机画面是在init进程启动的过程中出现的,它也是一个静态的画面。第三个开机画面是在系统服务启动的过程中出现的,它是一个动态的画面。无论是哪一个画面,它们都是在一个称为帧缓冲区(frame buffer,简称fb)的硬件设备上进行渲染的。接下来,我们就分别分析这三个画面是如何在fb上显示的。 1.第一个开机画面的显示过程 Android系统的第一个开机画面其实是Linux内核的启动画面。在默认情况下,这个画面是不会出现的,除非我们在编译内核的时候,启用以下两个编译选项: CONFIG_FRAMEBUFFER_CONSOLE CONFIG_LOGO 第一个编译选项表示内核支持帧缓冲区控制台,它对应的配置菜单项为:Device Drivers--->Graphics support--->Console display driver support--->Framebuffer Console support。第二个编译选项表示内核在启动的过程中,需要显示LOGO,它对应的配置菜单项为:Device Drivers--->Graphics support--->Bootup logo。配置Android 内核编译选项可以参考在Ubuntu上下载、编译和安装Android最新内核源代码(Linux Kernel)一文。 帧缓冲区硬件设备在内核中有一个对应的驱动程序模块fbmem,它实现在文件kernel/goldfish/drivers/video/fbmem.c中,它的初始化函数如下所示: 1/**

Android应用程序内部启动Activity过程(startActivity)的源代码分析

上文介绍了Android应用程序的启动过程,即应用程序默认Activity的启动过程,一般来说,这种默认Activity是在新的进程和任务中启动的;本文将继续分析在应用程序内部启动非默认Activity的过程的源代码,这种非默认Activity一般是在原来的进程和任务中启动的。 这里,我们像上一篇文章Android应用程序启动过程源代码分析一样,采用再上一篇文章Android 应用程序的Activity启动过程简要介绍和学习计划所举的例子来分析在应用程序内部启动非默认Activity的过程。 在应用程序内部启动非默认Activity的过程与在应用程序启动器Launcher中启动另外一个应用程序的默认Activity的过程大体上一致的,因此,这里不会像上文Android应用程序启动过程源代码分析一样详细分析每一个步骤,我们着重关注有差别的地方。 回忆一下Android应用程序的Activity启动过程简要介绍和学习计划一文所用的应用程序Activity,它包含两个Activity,分别是MainActivity和SubActivity,前者是应用程序的默认Activity,后者是非默认Activity。MainActivity启动起来,通过点击它界面上的按钮,便可以在应用程序内部启动SubActivity。 我们先来看一下应用程序的配置文件AndroidManifest.xml,看看这两个Activity是如何配置的:view plain 1. 2. 6. 7. 9. 10. 11. 12. 13. 14. 16. 17. 18. 19. 20. 21. 22.

Android系统完整的启动过程

Android系统完整的启动过程,从系统层次角度可分为Linux系统层、Android系统服务层、Zygote进程模型三个阶段;从开机到启动Home Launcher完成具体的任务细节可分为七个步骤,下面就从具体的细节来解读Android系统完整的初始化过程。 一、启动BootLoader Android 系统是基于Linux操作系统的,所以它最初的启动过程和Linux一样。当设备通电后首先执行BootLoader引导装载器,BootLoader是在操作系统内核运行之前运行的一段小程序。通过这段小程序初始化硬件设备、建立内存空间映射图,从而将系统的软硬件环境引导进入合适的状态,以便为最终调用操作系统内核准备好正确的运行环境。 而Linux系统启动时: 1)首先要加载BIOS的硬件信息,并获取第一个启动设备的代号 2)读取第一个启动设备的MBR的引导加载程序(lilo、grub等)的启动信息。 3)加载核心操作系统的核心信息,核心开始解压缩,并且尝试驱动所有的硬件设备。 ………… 在嵌入式系统中,通常不会有像BIOS那样的固件程序,因此整个系统的加载任务都是通过BootLoader完成的。 二、加载系统内核 Linux内核映像通常包括两部分代码,分别为实模式代码和保护模式代码。当BootLoader装载内核映像到代码段内存时,分别放置实模式代码和保护模式代码到不同的位置,然后进入实模式代码执行,实模式代码执行完成后转入保护模式代码。 实模式和保护模式的概念再次不做过多解释,读者可以自行查阅资料。 三、启动Init进程 当系统内核加载完成之后,会首先启动Init守护进程,它是内核启动的第一个用户级进程,它的进程号总是1。Init进程启动完成之后,还负责启动其他的一些重要守护进程,包括: Usbd进程(USB Daemon):USB连接后台进程,负责管理USB连接。 adbd 进程(Android Debug Bridge Daemon):ADB连接后台进程,负责管理ADB连接。 debuggerd 进程(Debugger Daemon) :调试器后台进程,负责管理调试请求及调试过程。 rild进程(Radio Interface Layer Daemon):无线接口层后台进程,负责管理无线通信服务。 四、启动Zygote进程 Init进程和一些重要的守护进程启动完成之后,系统启动Zygote 进程。Zygote 进程启动后,首先初始化一个Dalvik VM实例,然后为它加载资源与系统共享库,并开启Socket监听服务,当收到创建Dalvik VM实例请求时,会通过COW(copy on write)技术最大程度地复用自己,生成一个新的Dalvik VM实例。Dalvik VM实例的创建方法基于linux系统的fork原理。

相关主题