搜档网
当前位置:搜档网 › 深入理解Java虚拟机(JVM)

深入理解Java虚拟机(JVM)

深入理解Java虚拟机(JVM)
深入理解Java虚拟机(JVM)

深入理解Java虚拟机(JVM)

一、什么是Java虚拟机

当你谈到Java虚拟机时,你可能是指:

1、抽象的Java虚拟机规范

2、一个具体的Java虚拟机实现

3、一个运行的Java虚拟机实例

二、Java虚拟机的生命周期

一个运行中的Java虚拟机有着一个清晰的任务:执行Java程序。程序开始执行时他才运行,程序结束时他就停止。你在同一台机器上运行三个程序,就会有三个运行中的Java 虚拟机。

Java虚拟机总是开始于一个main()方法,这个方法必须是公有、返回void、直接受一个字符串数组。在程序执行时,你必须给Java虚拟机指明这个包换main()方法的类名。

Main()方法是程序的起点,他被执行的线程初始化为程序的初始线程。程序中其他的线程都由他来启动。Java中的线程分为两种:守护线程(daemon)和普通线程(non-daemon)。守护线程是Java虚拟机自己使用的线程,比如负责垃圾收集的线程就是一个守护线程。当然,你也可以把自己的程序设置为守护线程。包含Main()方法的初始线程不是守护线程。

只要Java虚拟机中还有普通的线程在执行,Java虚拟机就不会停止。如果有足够的权限,你可以调用exit()方法终止程序。

三、Java虚拟机的体系结构

在Java虚拟机的规范中定义了一系列的子系统、内存区域、数据类型和使用指南。这些组件构成了Java虚拟机的内部结构,他们不仅仅为Java虚拟机的实现提供了清晰的内部结构,更是严格规定了Java虚拟机实现的外部行为。

每一个Java虚拟机都由一个类加载器子系统(class loader subsystem),负责加载程序中的类型(类和接口),并赋予唯一的名字。每一个Java虚拟机都有一个执行引擎(execution engine)负责执行被加载类中包含的指令。

程序的执行需要一定的内存空间,如字节码、被加载类的其他额外信息、程序中的对象、方法的参数、返回值、本地变量、处理的中间变量等等。Java虚拟机将这些信息统统保存在数据区(data areas)中。虽然每个Java虚拟机的实现中都包含数据区,但是Java虚拟机规范对数据区的规定却非常的抽象。许多结构上的细节部分都留给了Java虚拟机实现者自己发挥。不同Java虚拟机实现上的内存结构千差万别。一部分实现可能占用很多内存,而其他以下可能只占用很少的内存;一些实现可能会使用虚拟内存,而其他的则不使用。这种比较精炼的Java虚拟机内存规约,可以使得Java虚拟机可以在广泛的平台上被实现。

数据区中的一部分是整个程序共有,其他部分被单独的线程控制。每一个Java虚拟机

都包含方法区(method area)和堆(heap),他们都被整个程序共享。Java虚拟机加载并解析一个类以后,将从类文件中解析出来的信息保存与方法区中。程序执行时创建的对象都保存在堆中。

当一个线程被创建时,会被分配只属于他自己的PC寄存器“pc register”(程序计数器)和Java堆栈(Java stack)。当线程不掉用本地方法时,PC寄存器中保存线程执行的下一条指令。Java堆栈保存了一个线程调用方法时的状态,包括本地变量、调用方法的参数、返回值、处理的中间变量。调用本地方法时的状态保存在本地方法堆栈中(native method stacks),可能再寄存器或者其他非平台独立的内存中。

Java堆栈有堆栈块(stack frames (or frames))组成。堆栈块包含Java方法调用的状态。当一个线程调用一个方法时,Java虚拟机会将一个新的块压到Java堆栈中,当这个方法运行结束时,Java虚拟机会将对应的块弹出并抛弃。

Java虚拟机不使用寄存器保存计算的中间结果,而是用Java堆栈在存放中间结果。这是的Java虚拟机的指令更紧凑,也更容易在一个没有寄存器的设备上实现Java虚拟机。

图中的Java堆栈中向下增长的,PC寄存器中线程三为灰色,是因为它正在执行本地方法,他的下一条执行指令不保存在PC寄存器中。

四、数据类型(Data Types)

所有Java虚拟机中使用的数据都有确定的数据类型,数据类型和操作都在Java虚拟机规范中严格定义。Java中的数据类型分为原始数据类型(primitive types)和引用数据类型(reference type)。引用类型依赖于实际的对象,但不是对象本身。原始数据类型不依赖于任何东西,他们就是本身表示的数据。

所有Java程序语言中的原始数据类型,都是Java虚拟机的原始数据类型,除了布尔型(boolean)。当编译器将Java源代码编译为自己码时,使用整型(int)或者字节型(byte)去表示布尔型。在Java虚拟机中使用整数0表示布尔型的false,使用非零整数表示布尔型的true,布尔数组被表示为字节数组,虽然他们可能会以字节数组或者字节块(bit fields)保存在堆中。

除了布尔型,其他Java语言中的原始类型都是Java虚拟机中的数据类型。在Java中数据类型被分为:整形的byte,short,int,long;char和浮点型的float,double。Java语言中的数据类型在任何主机上都有同样的范围。

在Java虚拟机中还存在一个Java语言中不能使用的原始数据类型返回值类型(returnValue)。这种类型被用来实现Java程序中的“finally clauses”,具体的参见18章的“Finally Clauses”。

引用类型可能被创建为:类类型(class type),接口类型(interface type),数组类型(array type)。他们都引用被动态创建的对象。当引用类型引用null时,说明没有引用任何对象。

Java虚拟机规范只定义了每一种数据类型表示的范围,没有定义在存储时每种类型占用的空间。他们如何存储由Java虚拟机的实现者自己决定。关于浮点型更多信息参见14章“Floating Point Arithmetic”。

TypeRange

byte8-bit signed two's complement integer (-27 to 27 - 1, inclusive)

short16-bit signed two's complement integer (-215 to 215 - 1, inclusive)

int32-bit signed two's complement integer (-231 to 231 - 1, inclusive)

long64-bit signed two's complement integer (-263 to 263 - 1, inclusive)

char16-bit unsigned Unicode character (0 to 216 - 1, inclusive)

float32-bit IEEE 754 single-precision float

double64-bit IEEE 754 double-precision float

returnValueaddress of an opcode within the same method

referencereference to an object on the heap, or null

五、字节长度

Java虚拟机中最小的数据单元式字(word),其大小由Java虚拟机的实现者定义。但是一个字的大小必须足够容纳byte,short,int,char,float,returnValue,reference;两个字必须足够容纳long,double。所以虚拟机的实现者至少提供的字不能小于31bits的字,但是最好选择特定平台上最有效率的字长。

在运行时,Java程序不能决定所运行机器的字长。字长也不会影响程序的行为,他只是在Java虚拟机中的一种表现方式。

六、类加载器子系统

Java虚拟机中的类加载器分为两种:原始类加载器(primordial class loader)和类加载器对象(class loader objects)。原始类加载器是Java虚拟机实现的一部分,类加载器对象是运行中的程序的一部分。不同类加载器加载的类被不同的命名空间所分割。

类加载器调用了许多Java虚拟机中其他的部分和https://www.sodocs.net/doc/825602621.html,ng包中的很多类。比如,类加载对象就是https://www.sodocs.net/doc/825602621.html,ng.ClassLoader子类的实例,ClassLoader类中的方法可以访问虚拟机中的类加载机制;每一个被Java虚拟机加载的类都会被表示为一个https://www.sodocs.net/doc/825602621.html,ng.Class类的实例。像其他对象一样,类加载器对象和Class对象都保存在堆中,被加载的信息被保存在方法区中。

1、加载、连接、初始化(Loading, Linking and Initialization)

类加载子系统不仅仅负责定位并加载类文件,他按照以下严格的步骤作了很多其他的事情:(具体的信息参见第七章的“类的生命周期”)

1)、加载:寻找并导入指定类型(类和接口)的二进制信息

2)、连接:进行验证、准备和解析

①验证:确保导入类型的正确性

②准备:为类型分配内存并初始化为默认值

③解析:将字符引用解析为直接饮用

3)、初始化:调用Java代码,初始化类变量为合适的值

2、原始类加载器(The Primordial Class Loader)

每个Java虚拟机都必须实现一个原始类加载器,他能够加载那些遵守类文件格式并且被信任的类。但是,Java虚拟机的规范并没有定义如何加载类,这由Java虚拟机实现者自己决定。对于给定类型名的类型,原始莱加载器必须找到那个类型名加“.class”的文件并加载入虚拟机中。

3、类加载器对象

虽然类加载器对象是Java程序的一部分,但是ClassLoader类中的三个方法可以访问Java虚拟机中的类加载子系统。

1)、protected final Class defineClass(…):使用这个方法可以出入一个字节数组,定义一个新的类型。

2)、protected Class findSystemClass(String name):加载指定的类,如果已经加载,就直接返回。

3)、protected final void resolveClass(Class c):defineClass()方法只是加载一个类,这个方法负责后续的动态连接和初始化。

具体的信息,参见第八章“连接模型”(The Linking Model)。

4、命名空间

当多个类加载器加载了同一个类时,为了保证他们名字的唯一性,需要在类名前加上加载该类的类加载器的标识。具体的信息,参见第八章“连接模型”(The Linking Model)。

七、方法区(The Method Area)

在Java虚拟机中,被加载类型的信息都保存在方法区中。这写信息在内存中的组织形式由虚拟机的实现者定义,比如,虚拟机工作在一个“little- endian”的处理器上,他就可以将信息保存为“little-endian”格式的,虽然在Java类文件中他们是以“big-endian”格式保存的。设计者可以用最适合并地机器的表示格式来存储数据,以保证程序能够以最快的速度执行。但是,在一个只有很小内存的设备上,虚拟机的实现者就不会占用很大的内存。

程序中的所有线程共享一个方法区,所以访问方法区信息的方法必须是线程安全的。如果你有两个线程都去加载一个叫Lava的类,那只能由一个线程被容许去加载这个类,另一个必须等待。

在程序运行时,方法区的大小是可变的,程序在运行时可以扩展。有些Java虚拟机的实现也可以通过参数也订制方法区的初始大小,最小值和最大值。

方法区也可以被垃圾收集。因为程序中的内由类加载器动态加载,所有类可能变成没有被引用(unreferenced)的状态。当类变成这种状态时,他就可能被垃圾收集掉。没有加载的类包括两种状态,一种是真正的没有加载,另一个种是“unreferenced”的状态。详细信息参见第七章的类的生命周期(The Lifetime of a Class)。

1、类型信息(Type Information)

每一个被加载的类型,在Java虚拟机中都会在方法区中保存如下信息:

1)、类型的全名(The fully qualified name of the type)

2)、类型的父类型的全名(除非没有父类型,或者弗雷形式https://www.sodocs.net/doc/825602621.html,ng.Object)(The fully qualified name of the typeís direct superclass)

3)、给类型是一个类还是接口(class or an interface)(Whether or not the type is a class )

4)、类型的修饰符(public,private,protected,static,final,volatile,transient 等)(The typeís modifiers)

5)、所有父接口全名的列表(An ordered list of the fully qualified names of any direct superinterfaces)

类型全名保存的数据结构由虚拟机实现者定义。除此之外,Java虚拟机还要为每个类型保存如下信息:

1)、类型的常量池(The constant pool for the type)

2)、类型字段的信息(Field information)

3)、类型方法的信息(Method information)

4)、所有的静态类变量(非常量)信息(All class (static) variables declared in the type,

except constants)

5)、一个指向类加载器的引用(A reference to class ClassLoader)

6)、一个指向Class类的引用(A reference to class Class)

1)、类型的常量池(The constant pool for the type)

常量池中保存中所有类型是用的有序的常量集合,包含直接常量(literals)如字符串、整数、浮点数的常量,和对类型、字段、方法的符号引用。常量池中每一个保存的常量都有一个索引,就像数组中的字段一样。因为常量池中保存中所有类型使用到的类型、字段、方法的字符引用,所以它也是动态连接的主要对象。详细信息参见第六章“The Java Class File”。

2)、类型字段的信息(Field information)

字段名、字段类型、字段的修饰符(public,private,protected,static,final,volatile,transient等)、字段在类中定义的顺序。

3)、类型方法的信息(Method information)

方法名、方法的返回值类型(或者是void)、方法参数的个数、类型和他们的顺序、字段的修饰符(public,private,protected,static,final,volatile,transient等)、方法在类中定义的顺序

如果不是抽象和本地本法还需要保存

方法的字节码、方法的操作数堆栈的大小和本地变量区的大小(稍候有详细信息)、异常列表(详细信息参见第十七章“Exceptions”。)

4)、类(静态)变量(Class Variables)

类变量被所有类的实例共享,即使不通过类的实例也可以访问。这些变量绑定在类上(而不是类的实例上),所以他们是类的逻辑数据的一部分。在Java虚拟机使用这个类之前就需要为类变量(non-final)分配内存

常量(final)的处理方式于这种类变量(non-final)不一样。每一个类型在用到一个常量的时候,都会复制一份到自己的常量池中。常量也像类变量一样保存在方法区中,只不过他保存在常量池中。(可能是,类变量被所有实例共享,而常量池是每个实例独有的)。Non-final类变量保存为定义他的类型数据(data for the type that declares them)的一部分,而final常量保存为使用他的类型数据(data for any type that uses them)的一部分。详情参见第六章“The Java Class FileThe Java Class File”

5)、指向类加载器的引用(A reference to class ClassLoader)

每一个被Java虚拟机加载的类型,虚拟机必须保存这个类型是否由原始类加载器或者类加载器加载。那些被类加载器加载的类型必须保存一个指向类加载器的引用。当类加载器动态连接时,会使用这条信息。当一个类引用另一个类时,虚拟机必须保存那个被引用的类型是被同一个类加载器加载的,这也是虚拟机维护不同命名空间的过程。详情参见第八章“The Linking Model”

6)、指向Class类的引用(A reference to class Class)

Java虚拟机为每一个加载的类型创建一个https://www.sodocs.net/doc/825602621.html,ng.Class类的实例。你也可以通过Class类的方法:

public static Class forName(String className)来查找或者加载一个类,并取得相应的Class类的实例。通过这个Class类的实例,我们可以访问Java虚拟机方法区中的信息。具体参照Class 类的JavaDoc。

2、方法列表(Method Tables)

为了更有效的访问所有保存在方法区中的数据,这些数据的存储结构必须经过仔细的

设计。所有方法区中,除了保存了上边的那些原始信息外,还有一个为了加快存取速度而设计的数据结构,比如方法列表。每一个被加载的非抽象类,Java虚拟机都会为他们产生一个方法列表,这个列表中保存了这个类可能调用的所有实例方法的引用,报错那些父类中调用的方法。详情参见第八章“The Linking Model”

八、堆

当Java程序创建一个类的实例或者数组时,都在堆中为新的对象分配内存。虚拟机中只有一个堆,所有的线程都共享他。

1、垃圾收集(Garbage Collection)

垃圾收集是释放没有被引用的对象的主要方法。它也可能会为了减少堆的碎片,而移动对象。在Java虚拟机的规范中没有严格定义垃圾收集,只是定义一个Java虚拟机的实现必须通过某种方式管理自己的堆。详情参见第九章“Garbage Collection”。

2、对象存储结构(Object Representation)

Java虚拟机的规范中没有定义对象怎样在堆中存储。每一个对象主要存储的是他的类和父类中定义的对象变量。对于给定的对象的引用,虚拟机必须嫩耨很快的定位到这个对象的数据。另为,必须提供一种通过对象的引用方法对象数据的方法,比如方法区中的对象的引用,所以一个对象保存的数据中往往含有一个某种形式指向方法区的指针。

一个可能的堆的设计是将堆分为两个部分:引用池和对象池。一个对象的引用就是指向引用池的本地指针。每一个引用池中的条目都包含两个部分:指向对象池中对象数据的指针和方法区中对象类数据的指针。这种设计能够方便Java虚拟机堆碎片的整理。当虚拟机在对象池中移动一个对象的时候,只需要修改对应引用池中的指针地址。但是每次访问对象的数据都需要处理两次指针。下图演示了这种堆的设计。在第九章的“垃圾收集”中的HeapOfFish Applet演示了这种设计。

另一种堆的设计是:一个对象的引用就是一个指向一堆数据和指向相应对象的偏移指针。这种设计方便了对象的访问,可是对象的移动要变的异常复杂。下图演示了这种设计当程序试图将一个对象转换为另一种类型时,虚拟机需要判断这种转换是否是这个对象的类型,或者是他的父类型。当程序适用instanceof语句的时候也会做类似的事情。当程序调用一个对象的方法时,虚拟机需要进行动态绑定,他必须判断调用哪一个类型的方法。这也需要做上面的判断。

无论虚拟机实现者使用哪一种设计,他都可能为每一个对象保存一个类似方法列表的信息。因为他可以提升对象方法调用的速度,对提升虚拟机的性能非常重要,但是虚拟机的规范中比没有要求必须实现类似的数据结构。下图描述了这种结构。图中显示了一个对象引用相关联的所有的数据结构,包括:

1)、一个指向类型数据的指针

2)、一个对象的方法列表。方法列表是一个指向所有可能被调用对象方法的指针数组。方法数据包括三个部分:操作码堆栈的大小和方法堆栈的本地变量区;方法的字节码;异常列表。

每一个Java虚拟机中的对象必须关联一个用于同步多线程的lock(mutex)。同一时刻,只能有一个对象拥有这个对象的锁。当一个拥有这个这个对象的锁,他就可以多次申请这个锁,但是也必须释放相应次数的锁才能真正释放这个对象锁。很多对象在整个生命周期中都不会被锁,所以这个信息只有在需要时才需要添加。很多Java虚拟机的实现都没有在对象的数据中包含“锁定数据”,只是在需要时才生成相应的数据。除了实现对象的锁定,每一个对象还逻辑关联到一个“wait set”的实现。锁定帮组线程独立处理共享的数据,不需要妨碍其他的线程。“wait set”帮组线程协作完成同一个目标。“wait set”往往通过Object

类的wait()和notify()方法来实现。

垃圾收集也需要堆中的对象是否被关联的信息。Java虚拟机规范中指出垃圾收集一个运行一个对象的finalizer方法一次,但是容许finalizer方法重新引用这个对象,当这个对象再次不被引用时,就不需要再次调用finalize方法。所以虚拟机也需要保存finalize方法是否运行过的信息。更多信息参见第九章的“垃圾收集”

3、数组的保存(Array Representation)

在Java 中,数组是一种完全意义上的对象,他和对象一样保存在堆中、有一个指向Class 类实例的引用。所有同一维度和类型的数组拥有同样的Class,数组的长度不做考虑。对应Class的名字表示为维度和类型。比如一个整型数据的Class为“[I”,字节型三维数组Class 名为“[[[B”,两维对象数据Class名为“[[https://www.sodocs.net/doc/825602621.html,ng.Object”。

多维数组被表示为数组的数组,如下图:

数组必须在堆中保存数组的长度,数组的数据和一些对象数组类型数据的引用。通过一个数组引用的,虚拟机应该能够取得一个数组的长度,通过索引能够访问特定的数据,能够调用Object定义的方法。Object是所有数据类的直接父类。更多信息参见第六章“类文件”。

九、PC寄存器(程序计数器)(The Program Counter)

每一个线程开始执行时都会被创建一个程序计数器。程序计数器只有一个字长(word),所以它能够保存一个本地指针和returnValue。当线程执行时,程序计数器中存放了正在执行指令的地址,这个地址可以使一个本地指针,也可以使一个从方法字节码开始的偏移指针。如果执行本地方法,程序计数器的值没有被定义。

十、Java堆栈(The Java Stack)

当一个线程启动时,Java虚拟机会为他创建一个Java堆栈。Java堆栈用一些离散的frame类纪录线程的状态。Java虚拟机堆Java堆栈的操作只有两种:压入和弹出frames。

线程中正在执行的方法被称为当前方法(current method),当前方法所对应的frame 被称为当前帧(current frame)。定义当前方法的类被称为当前类(current class),当前类的常量池被称为当前常量池(current constant pool.)。当线程执行时,Java虚拟机会跟踪当前类和当前常量池。但线程操作保存在帧中的数据时,他只操作当前帧的数据。

当线程调用一个方法时,虚拟机会生成一个新的帧,并压入线程的Java堆栈。这个新的帧变成当前帧。当方法执行时,他使用当前帧保存方法的参数、本地变量、中间结构和其他数据。方法有两种退出方式:正常退出和异常推出。无论方法以哪一种方式推出,Java 虚拟机都会弹出并丢弃方法的帧,上一个方法的帧变为当前帧。

所有保存在帧中的数据都只能被拥有它的线程访问,线程不能访问其他线程的堆栈中的数据。所以,访问方法的本地变量时,不需要考虑多线程同步。

和方法区、堆一样,Java堆栈不需要连续的内存空间,它可以被保存在一个分散的内存空间或者堆上。堆栈具体的数据和长度都有Java虚拟机的实现者自己定义。一些实现可能提供了执行堆栈最大值和最小值的方法。

十一、堆栈帧(The Stack Frame)

堆栈帧包含三部分:本地变量、操作数堆栈和帧数据。本地变量和操作数堆栈的大小都是一字(word)为单位的,他们在编译就已经确定。帧数据的大小取决于不同的实现。当程序调用一个方法时,虚拟机从类数据中取得本地变量和操作数堆栈的大小,创建一个合适大小和帧,然后压入Java堆栈中。

1、本地变量(Local Variables)

本地变量在Java堆栈帧中被组织为一个从0计数的数组,指令通过提供他们的索引从本地变量区中取得相应的值。Int,float,reference, returnValue占一个字,byte,short,char被转换成int然后存储,long和doubel占两个字。

指令通过提供两个字索引中的前一个来取得long,doubel的值。比如一个long的值存储在索引3,4上,指令就可以通过3来取得这个long类型的值。

本地变量区中包含了方法的参数和本地变量。编译器将方法的参数以他们申明的顺序放在数组的前面。但是编译器却可以将本地变量任意排列在本地变量数组中,甚至两个本地变量可以公用一个地址,比如,当两个本地变量在两个不交叠的区域内,就像循环变量i,j。

虚拟机的实现者可以使用任何结构来描述本地变量区中的数据,虚拟机规范中没有定义如何存储long和doubel。

2、操作数堆栈(Operand Stack)

向本地变量一样,操作数堆栈也被组织为一个以字为单位的数组。但是不像本地变量那样通过索引访问,而是通过push和pop值来实现访问的。如果一个指令push一个值到堆栈中,那么下一个指令就可以pop并且使用这个值。

操作数堆栈不像程序计数器那样不可以被指令直接访问,指令可以直接访问操作数堆栈。Java虚拟机是一个以堆栈为基础,而不是以寄存器为基础的,因为它的指令从堆栈中取得操作数,而不是同寄存器中。当然,指令也可以从其他地方去的操作数,比如指令后面的操作码,或者常量池。但是Java虚拟机指令主要是从操作数堆栈中取得他们需要的操作数。

Java虚拟机将操作数堆栈视为工作区,很多指令通过先从操作数堆栈中pop值,在处理完以后再将结果push回操作数堆栈。一个add的指令执行过程如下图所示:先执行iload_0和iload_1两条指令将需要相加的两个数,从本地方法区中取出,并push到操作数堆栈中;然后执行iadd指令,现pop出两个值,相加,并将结果pusp进操作数堆栈中;最后执行istore_2指令,pop出结果,赋值到本地方法区中。

3、帧数据(Frame Data)

处理本地变量和操作数堆栈以外,java堆栈帧还包括了为了支持常量池,方法返回值和异常分发需要的数据,他们被保存在帧数据中。

当虚拟机遇到使用指向常量池引用的指令时,就会通过帧数据中指向常量区的指针来访问所需要的信息。前面提到过,常量区中的引用在最开始时都是符号引用。即使当虚拟机检查这些引用时,他们也是字符引用。所以虚拟机需要在这时转换这个引用。

当一个方法正常返回时,虚拟机需要重建那个调用这个方法的方法的堆栈帧。如果执行完的方法有返回值,虚拟机就需要将这个值push进调用方法的哪个操作数堆栈中。

帧数据中也包含虚拟机用来处理异常的异常表的引用。异常表定义了一个被catch语句保护的一段字节码。每一个异常表中的个体又包含了需要保护的字节玛的范围,和异常

被捕捉到时需要执行的字节码的位置。当一个方法抛出一个异常时,Java虚拟机就是用异常表去判断如何处理这个异常。如果虚拟机找到了一个匹配的catch,他就会将控制权交给catch语句。如果没有找到匹配的catch,方法就会异常返回,然后再调用的方法中继续这个过程。

除了以上的三个用途外,帧数据还可能包含一些依赖于实现的数据,比如调试的信息。十二、本地方法堆栈

本地方法区依赖于虚拟机的不同实现。虚拟机的实现者可以自己决定使用哪一种机制去执行本地方法。

任何本地方法接口(Native Method Interface)都使用某种形式的本地方法堆栈。

十三、执行引擎

一个java虚拟机实现的核心就是执行引擎。在Java虚拟机规范,执行引擎被描述为一系列的指令。对于每一个指令,规范都描述了他们应该做什么,但是没有说要如何去做。

1、指令集

在Java虚拟机中一个方法的字节码流就是一个指令的序列。每一个指令由一个字节的操作码(Opcode)和可能存在的操作数(Operands)。操作码指示去做什么,操作数提供一些执行这个操作码可能需要的额外的信息。一个抽象的执行引擎每次执行一个指令。这个过程发生在每一个执行的线程中。

有时,执行引擎可能会遇到一个需要调用本地方法的指令,在这种情况下,执行引擎会去试图调用本地方法,但本地方法返回时,执行引擎会继续执行字节码流中的下一个指令。本地方法也可以看成对Java虚拟机中的指令集的一种扩充。

决定下一步执行那一条指令也是执行引擎工作的一部分。执行引擎有三种方法去取得下一条指令。多数指令会执行跟在他会面的指令;一些像goto,return的指令,会在他们执行的时候决定他们的下一条指令;当一个指令抛出异常时,执行引擎通过匹配catch语句来决定下一条应该执行的指令。

平台独立性、网络移动性、安全性左右了Java虚拟机指令集的设计。平台独立性是指令集设计的主要影响因素之一。基于堆栈的结构使得Java虚拟机可以在更多的平台上实现。更小的操作码,紧凑的结构使得字节码可以更有效的利用网络带宽。一次性的字节码验证,使得字节码更安全,而不影响太多的性能。

2、执行技术

许多种执行技术可以用在Java虚拟机的实现中:解释执行,及时编译(just-in-time compiling),hot-spot compiling,native execution in silicon。

3、线程

Java虚拟机规范定义了一种为了在更多平台上实现的线程模型。Java线程模型的一个目标时可以利用本地线程。利用本地线程可以让Java程序中的线程能过在多处理器机器上真正的同时执行。

Java线程模型的一个代价就是线程优先级,一个Java线程可以在1-10的优先级上运行。

1最低,10最高。如果设计者使用了本地线程,他们可能将这10个优先级映射到本地优先级上。Java虚拟机规范只定义了,高一点优先级的线程可以却一些cpu时间,低优先级的线程在所有高优先级线程都堵塞时,也可以获取一些cpu时间,但是这没有保证:低优先级的线程在高优先级线程没有堵塞时不可以获得一定的cpu时间。因此,如果需要在不同的线程间协作,你必须使用的“同步(synchronizatoin)”。

同步意味着两个部分:对象锁(object locking)和线程等待、激活(thread wait and notify)。对象锁帮助线程可以不受其他线程的干扰。线程等待、激活可以让不同的线程进行协作。

在Java虚拟机的规范中,Java线程被描述为变量、主内存、工作内存。每一个Java虚拟机的实例都有一个主内存,他包含了所有程序的变量:对象、数组合类变量。每一个线程都有自己的工作内存,他保存了哪些他可能用到的变量的拷贝。规则:

1)、从主内存拷贝变量的值到工作内存中

2)、将工作内存中的值写会主内存中

如果一个变量没有被同步化,线程可能以任何顺序更新主内存中的变量。为了保证多线程程序的正确的执行,必须使用同步机制。

十四、本地方法接口(Native Method Interface)

Java虚拟机的实现并不是必须实现本地方法接口。一些实现可能根本不支持本地方法接口。Sun的本地方法接口是JNI(Java Native Interface)。

十五、现实中的机器(The Real Machine)

十六、数学方法:仿真(Eternal Math : A Simulation)

JVM原理以及JVM内存管理机制

一、 JVM简介 JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.exe来完成, 首先来说一下JVM工作原理中的jdk这个东西, .JVM 在整个jdk中处于最底层,负责于操作系统的交互,用来屏蔽操作系统环境,提供一个完整的Java运行环境,因此也就虚拟计算机. 操作系统装入JVM是通过jdk中Java.exe来完成。 通过下面4步来完成JVM环境. 1.创建JVM装载环境和配置 2.装载JVM.dll 3.初始化JVM.dll并挂界到JNIENV(JNI调用接口)实例 4.调用JNIEnv实例装载并处理class类。 对于JVM自身的物理结构,我们可以从下图了解:

JVM的一个重要的特征就是它的自动内存管理机制,在执行一段Java代码的时候,会把它所管理的内存划分 成几个不同的数据区域,其中包括: 1. 程序计数器,众所周知,JVM的多线程是通过线程轮流切换并 分配CPU执行时间的方式来实现的,那么每一个线程在切换 后都必须记住它所执行的字节码的行号,以便线程在得到CPU 时间时进行恢复,这个计数器用于记录正在执行的字节码指令的地址,这里要强调的是“字节码”,如果执行的是Native方法,那么这个计数器应该为null; 2.

3. Java计算栈,可以说整个Java程序的执行就是一个出栈入栈 的过程,JVM会为每一个线程创建一个计算栈,用于记录线程中方法的调用和变量的创建,由于在计算栈里分配的内存出栈后立即被抛弃,因此在计算栈里不存在垃圾回收,如果线程请求的栈深度大于JVM允许的深度,会抛出StackOverflowError 异常,在内存耗尽时会抛出OutOfMemoryError异常; 4. Native方法栈,JVM在调用操作系统本地方法的时候会使用到 这个栈; 5. Java堆,由于每个线程分配到的计算栈容量有限,对于可能会 占据大量内存的对象,则会被分配到Java堆中,在栈中包含了指向该对象内存的地址;对于一个Java程序来说,只有一个Java堆,也就是说,所有线程共享一个堆中的对象;由于Java堆不受线程的控制,如果在一个方法结束之后立即回收这个方法使用到的对象,并不能保证其他线程是否正在使用该对象;因此堆中对象的回收由JVM的垃圾收集器统一管理,和某一个线程无关;在HotSpot虚拟机中Java堆被划分为三代:o新生代,正常情况下新创建的对象会被分配到新生代,但如果对象占据的内存足够大以致超过了新生代的容量限 制,也可能被分配到老年代;新生代对象的一个特点是最 新、且生命周期不长,被回收的可能性高;

Java虚拟机(JVM)参数配置说明

Java虚拟机(JVM)参数配置说明 在Java、J2EE大型应用中,JVM非标准参数的配置直接关系到整个系统的性能。 JVM非标准参数指的是JVM底层的一些配置参数,这些参数在一般开发中默认即可,不需要任何配置。但是在生产环境中,为了提高性能,往往需要调整这些参数,以求系统达到最佳新能。另外这些参数的配置也是影响系统稳定性的一个重要因素,相信大多数Java开发人员都见过“O utOfMem ory”类型的错误。呵呵,这其中很可能就是JVM参数配置不当或者就没有配置没意识到配置引起的。 为了说明这些参数,还需要说说JDK中的命令行工具一些知识做铺垫。 首先看如何获取这些命令配置信息说明: 假设你是windows平台,你安装了J2SDK,那么现在你从cmd控制台窗口进入J2SDK安装目录下的bin目录,然后运行java命令,出现如下结果,这些就是包括java.exe工具的和J VM的所有命令都在里面。 ----------------------------------------------------------------------- D:\j2sdk15\bin>java Usage: java [-options] class [args...] (to execute a class) or java [-options] -jar jarfile [args...] (to execute a jar file) where options include: -client to select the "client" VM -server to select the "server" VM -hotspot is a synonym for the "client" VM [deprecated] The default VM is client.

java虚拟机详解 免费

深入理解JVM 1 Java技术与Java虚拟机 说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成: Java编程语言、Java类文件格式、Java虚拟机和Java应用程序接口(Java API)。它们的关系如下图所示: 图1 Java四个方面的关系 运行期环境代表着Java平台,开发人员编写Java代码(.java文件),然后将之编译成字节码(.class文件)。最后字节码被装入内存,一旦字节码进入虚拟机,它就会被解释器解释执行,或者是被即时代码发生器有选择的转换成机器码执行。从上图也可以看出Java平台由Java虚拟机和Java应用程序接口搭建,Java 语言则是进入这个平台的通道,用Java语言编写并编译的程序可以运行在这个平台上。这个平台的结构如下图所示:

在Java平台的结构中, 可以看出,Java虚拟机(JVM) 处在核心的位置,是程序与底层操作系统和硬件无关的关键。它的下方是移植接口,移植接口由两部分组成:适配器和Java操作系统, 其中依赖于平台的部分称为适配器;JVM 通过移植接口在具体的平台和操作系统上实现;在JVM 的上方是Java的基本类库和扩展类库以及它们的API,利用Java API编写的应用程序(application) 和小程序(Java applet) 可以在任何Java平台上运行而无需考虑底层平台, 就是因为有Java虚拟机(JVM)实现了程序与操作系统的分离,从而实现了Java 的平台无关性。 那么到底什么是Java虚拟机(JVM)呢?通常我们谈论JVM时,我们的意思可能是: 1. 对JVM规范的的比较抽象的说明; 2. 对JVM的具体实现; 3. 在程序运行期间所生成的一个JVM实例。 对JVM规范的的抽象说明是一些概念的集合,它们已经在书《The Java Virtual Machine Specification》(《Java虚拟机规范》)中被详细地描述了;对JVM的具体实现要么是软件,要么是软件和硬件的组合,它已经被许多生产厂商所实现,并存在于多种平台之上;运行Java程序的任务由JVM的运行期实例单个承担。在本文中我们所讨论的Java虚拟机(JVM)主要针对第三种情况而言。它可以被看成一个想象中的机器,在实际的计算机上通过软件模拟来实现,有自己想象中的硬件,如处理器、堆栈、寄存器等,还有自己相应的指令系统。 JVM在它的生存周期中有一个明确的任务,那就是运行Java程序,因此当Java程序启动的时候,就产生JVM的一个实例;当程序运行结束的时候,该实例也跟着消失了。下面我们从JVM的体系结构和它的运行过程这两个方面来对它进行比较深入的研究。 2 Java虚拟机的体系结构 刚才已经提到,JVM可以由不同的厂商来实现。由于厂商的不同必然导致JVM在实现上的一些不同,然而JVM还是可以实现跨平台的特性,这就要归功于设计JVM时的体系结构了。 我们知道,一个JVM实例的行为不光是它自己的事,还涉及到它的子系统、存储区域、数据类型和指令这些部分,它们描述了JVM的一个抽象的内部体系结构,其目的不光规定实现JVM时它内部的体系结构,更重要的是提供了一种方式,用于严格定义实现时的外部行为。每个JVM都有两种机制,一个是装载具有合适名称的类(类或是接口),叫做类装载子系统;另外的一个负责执行包含在已装载的类或接口中的指令,叫做运行引擎。每个JVM又包括方法区、堆、Java栈、程序计数器和本地方法栈这五个部分,这几个部分和类装载机制与运行引擎机制一起组成的体系结构图为:

Java虚拟机工作原理(JVM)

As the Java V irtual Machine is a stack-based machine, almost all of its instructions involve the operand stack in some way. Most instructions push values, pop values, or both as they perform their functions. Java虚拟机是基于栈的(stack-based machine)。几乎所有的java虚拟机的指令,都与操作数栈(operand stack)有关.绝大多数指令都会在执行自己功能的时候进行入栈、出栈操作。 1Java体系结构介绍 Javaís architecture arises out of four distinct but interrelated technologies, each of which is defined by a separate specification from Sun Microsystems: 1.1 Java体系结构包括哪几部分? Java体系结构包括4个独立但相关的技术 the Java programming language →程序设计语言 the Java class file format →字节码文件格式 the Java Application Programming Interface→应用编程接口 the Java V irtual Machine →虚拟机 1.2 什么是JVM java虚拟机和java API组成了java运行时。 1.3 JVM的主要任务。 Java虚拟机的主要任务是装载class文件并执行其中的字节码。 Java虚拟机包含了一个类装载器。 类装载器的体系结构 二种类装载器 启动类装载器 用户定义的类装载器 启动类装载器是JVM实现的一部分 当被装载的类引用另外一个类时,JVM就是使用装载第一个类的类装载器装载被引用的类。 1.4 为什么java容易被反编译? ●因为java程序是动态连接的。从一个类到另一个类的引用是符号化的。在静态连接的 可执行程序中。类之间的引用只是直接的指针或者偏移量。相反在java的class文件中,指向另一个类的引用通过字符串清楚的标明了所指向的这个类的名字。

Elasticsearch Java虚拟机配置详解

JVM参数Elasticsearch默认值Environment变量 -Xms 256m ES_MIN_MEM -Xmx 1g ES_MAX_MEM -Xms and -Xmx ES_HEAP_SIZE -Xmn ES_HEAP_NEWSIZE -XX:MaxDirectMemorySize ES_DIRECT_SIZE -Xss 256k -XX:UseParNewGC + -XX:UseConcMarkSweepGC + -XX:CMSInitiatingOccupancyFraction 75 -XX:UseCMSInitiatingOccupancyOnly + -XX:UseCondCardMark (commented out) 首先你注意到的是,Elasticsearch预留了256M到1GB的堆内存。 这个设置适用于开发和演示环境。开发人员只需要简单的解压发行包,再执 行./bin/elasticsearch -f就完成了Elasticsearch的安装。当然这点对于开发来说非常棒,并且在很多场景下都能工作,但是当你需要更多内存来降低Elasticsearch负载的时候就不行了,你需要比2GB RAM更多的可用内存。

ES_MIN_MEM/ES_MAX_MEM是控制堆大小的配置。新的ES_HEAP_SIZE变量是一个更为便利的选择,因为将堆的初始大小和最大值设为相同。也推荐在分配堆内存时尽可能不要用内存的碎片。内存碎片对于性能优化来说非常不利。 ES_HEAP_NEWSIZE是可选参数,它控制堆的子集大小,也就是新生代的大小。 ES_DIRECT_SIZE控制本机直接内存大小,即JVM管理NIO框架中使用的数据区域大小。本机直接内存可以被映射到虚拟地址空间上,这样在64位的机器上更高效,因为可以规避文件系统缓冲。Elasticsearch对本机直接内存没有限制(可能导致OOM)。 由于历史原因Java虚拟机有多个垃圾收集器。可以通过以下的JVM参数组合启用: JVM parameter Garbage collector -XX:+UseSerialGC serial collector -XX:+UseParallelGC parallel collector -XX:+UseParallelOldGC Parallel compacting collector -XX:+UseConcMarkSweepGC Concurrent-Mark-Sweep (CMS) collector -XX:+UseG1GC Garbage-First collector (G1) UseParNewGC和UseConcMarkSweepGC组合启用垃圾收集器的并发多线程模式。UseConcMarkSweepGC自动选择UseParNewGC模式并禁用串行收集器(Serial collector)。在Java6中这是默认行为。 CMSInitiatingOccupancyFraction提炼了一种CMS(Concurrent-Mark-Sweep)垃圾收集设置;它将旧生代触发垃圾收集的阀值设为75.旧生代的大小是堆大小减去新生代大小。这告诉JVM当堆内容达到75%时启用垃圾收集。这是个估计的值,因为越小的堆可能需要越早启动GC。 UseCondCardMark将在垃圾收集器的card table使用时,在marking之前进行额外的判断,避免冗余的store操作。UseCondCardMark不影响Garbage-First收集器。强烈推荐在高并发场景下配置这个参数(规避card table marking技术在高并发场景下的降低吞吐量的负面作用)。在ElasticSearch中,这个参数是被注释掉的。 有些配置可以参考诸如Apache Cassandra项目,他们在JVM上有类似的需求。 总而言之,ElastciSearch配置上推荐: 1. 不采用自动的堆内存配置,将堆大小默认最大值设为1GB 2.调整触发垃圾收集的阀值,比如将gc设为75%堆大小的时候触发,这样不会影响性能。 3.禁用Java7默认的G1收集器,前提是你的ElasticSearch跑在Java7u4以上的版本上。JVM进程的内存结果 JVM内存由几部分组成: Java代码本身:包括内部代码、数据、接口,调试和监控代理或者字节码指令 非堆内存:用于加载类 栈内存:用于为每个线程存储本地变量和操作数

深入理解Java虚拟机笔记(带目录)

目录 1.虚拟机内存结构 (1) 2.对象在内存中的布局 (3) 3.判断对象是否死亡 (4) 4.引用的4中情况 (4) 5.垃圾收集算法 (5) 6.HotSpot虚拟机算法实现 (6) 7.如何在GC发生时让所有线程都要附近的安全点停下 (6) 8.垃圾收集器 (7) 9.GC日志 (9) 10.内存分配 (10) 11.Class类文件的结构 (10) 12.类的生命周期 (13) 13.类加载器 (15) 14.运行时栈帧的结构 (16) 15. 方法调用 (18) 16. 分派 (19) 17.虚方法表 (19) 18.Java内存模型(JMM) (19) 19.内存间的交互 (20) 20.volatile变量 (20) 21.原子性 (21) 22.可见性 (22) 23.有序性 (22) 24.先行发生原则 (22) 25.Java线程调度 (23) 26.线程的状态 (24) 27.线程安全 (25) 28.线程安全的实现方法 (26) 29.锁优化 (27) 30.编译优化技术 (29) 1.虚拟机内存结构 线程私有:虚拟机栈,本地方法栈,程序计数器 线程共享:堆,方法区(包括运行时常量池)

1.1程序计数器 当前程序锁执行的字节码行号指示器,记录下一条需要执行的 指令。 1.2虚拟机栈 生命周期与线程相同,每个方法在执行时都会创建一个栈帧。 方法执行的过程,就是栈帧入栈到出栈的过程。 栈帧用于存放局部变量表,操作数栈,动态链接,方法出口等 信息。 局部变量表存放了编译期可知的基本数据类型和对象引用。1.3 本地方法栈 为虚拟机使用到的Native方法服务。 目前HotSpot虚拟机将本地方法栈和虚拟机栈合二为一。 1.4堆 存放对象实例,所有线程共享。 1.5 方法区(永久代) 存放被虚拟机加载的类信息,常量,静态变量,即时编译器编 译后的代码等。

深入理解java虚拟机

深入理解java虚拟机 (一)虚拟机内存划分 Java虚拟机在执行Java程序时,会把它管理的内存划分为若干个不同的数据区。这些区域有不同的特性,起不同的作用。它们有各自的创建时间,销毁时间。有的区域随着进程的启动而创建,随着进程结束而销毁,有的则始终贯穿虚拟机整个生命周期。 Java虚拟机运行时内存区域主要分为七部分,分别是:程序计数器,Java虚拟机栈,本地方法栈,方法区,Java堆,运行时常量池,直接内存。 如上图所示(图片来源于网络): 蓝色区域包裹的部分为运行时几个数据区域: 白色的部分为线程私有的,既随着线程的启动而创建。每个线程都拥有各自的一份内存区域。它们是:JAVA栈(JAVA STACK),本地方法栈(NATIVE METHOD STACK),和程序计数器(PROGRAM COUNTER REGISTER)。 黄色部分是线程共享的,所有的线程共享该区域的内容。他们是: 方法区(METHOD AREA),堆(HEAP)。 我们分别来介绍这些区域。 (1)程序计数器(program counter register)

学过计算机组成原理的都知道计算机处理器中的程序计数器。当处理器执行一条指令时,首先需要根据PC中存放的指令地址,将指令由内存取到指令寄存器中,此过程称为“取指令”。与此同时,PC中的地址或自动加1或由转移指针给出下一条指令的地址。此后经过分析指令,执行指令。完成第一条指令的执行,而后根据PC取出第二条指令的地址,如此循环,执行每一条指令。 处理器的程序计数器是指寄存器,而java程序计数器是指一小块内存空间。java代码编译字节码之后,虚拟机会一行一行的解释字节码,并翻印成本地代码。这个程序计数器盛放的就是当前线程所执行字节码的行号的指示器。在虚拟机概念模型中,字节码解释器工作室就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支,循环,跳转,异常处理等都依赖于它。 Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式实现的,因此为了线程切换后还能恢复执行位置,每条线程都需要一个独立的程序计数器。 如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果执行的是Java Native方法,这个计数器值为空。 而且程序计数器是Java虚拟机中没有规定任何OutOfMemoryError的区域。 (2)虚拟机栈 Java虚拟机栈(VM Stack)也是线程私有的,因此它的生命周期也和线程相同。它存放的是Java方法执行时的数据,既描述的是Java方法执行的内存模型:每个方法开始执行的时候,都会创建一个栈帧(Stack Frame)用于储存局部变量表、栈操作数、动态链接、方法出口等信息。每个方法从调用到执行完成就对应一个栈帧在虚拟机栈中入栈到出栈的过程。经常有人把Java内存分为堆内存和栈内存,这种是比较粗糙的分法,很大原因是大多数程序‘猿’最关注的,与对象内存分配最密切的区域就是堆和栈。局部变量表存放的是编译器可知的各种基本数据类型(boolean 、byte、int、long、char、short、float、double)、对象引用(reference类型)和returnAddress类型(它指向了一条字节码指令的地址)。其中64bit长度的long和double会占用两个局部变量空间(Slot),其余的数据类型只占用一个。局部变量表所需的内存空间是在编译时期确定的,在方法运行期间不会改变局部变量表的大小。在Java虚拟机规范中,对这部分区域规定了两种异常:1、当一个线程的栈深度大于虚拟机所允许的深度的时候,将会抛出StackOverflowError异常; 2、如果当创建一个新的线程时无法申请到足够的内存,则会抛出OutOfMemeryError异常。 (3)本地方法栈 本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是十分相似的,他们之间的区别不过是虚拟机栈为Java方法字节码服务,而本地方法栈则为Native方法服务。在虚拟机规范中对本地方法使用的语言和使用方法与数据结构没有强制规定,因此具体的虚拟机可

Java虚拟机的内存结构

我们都知道虚拟机的内存划分了多个区域,并不是一张大饼。那么为什么要划分为多块区域呢,直接搞一块区域,所有用到内存的地方都往这块区域里扔不就行了,岂不痛快。是的,如果不进行区域划分,扔的时候确实痛快,可用的时候再去找怎么办呢,这就引入了第一个问题,分类管理,类似于衣柜,系统磁盘等等,为了方便查找,我们会进行分区分类。另外如果不进行分区,内存用尽了怎么办呢?这里就引入了内存划分的第二个原因,就是为了方便内存的回收。如果不分,回收内存需要全部内存扫描,那就慢死了,内存根据不同的使用功能分成不同的区域,那么内存回收也就可以根据每个区域的特定进行回收,比如像栈内存中的栈帧,随着方法的执行栈帧进栈,方法执行完毕就出栈了,而对于像堆内存的回收就需要使用经典的回收算法来进行回收了,所以看起来分类这么麻烦,其实是大有好处的。 提到虚拟机的内存结构,可能首先想起来的就是堆栈。对象分配到堆上,栈上用来分配对象的引用以及一些基本数据类型相关的值。但是·虚拟机的内存结构远比此要复杂的多。除了我们所认识的(还没有认识完全)的堆栈以外,还有程序计数器,本地方法栈和方法区。我们平时所说的栈内存,一般是指的栈内存中的局部变量表。下面是官方所给的虚拟机的内存结构图

从图中可以看到有5大内存区域,按照是否被线程所共享可分为两部分,一部分是线程独占区域,包括Java栈,本地方法栈和程序计数器。还有一部分是被线程所共享的,包括方法区和堆。什么是线程共享和线程独占呢,非常好理解,我们知道每一个Java进行都会有多个线程同时运行,那么线程共享区的这片区域就是被所有线程一起使用的,不管有多少个线程,这片空间始终就这一个。而线程的独占区,是每个线程都有这么一份内存空间,每个线程的这片空间都是独有的,有多少个线程就有多少个这么个空间。上图的区域的大小并不代表实际内存区域的大小,实际运行过程中,内存区域的大小也是可以动态调整的。下面来具体说说每一个区域的主要功能。

JVM详解

JVM详解 本文详细讲解了JVM(Java Virtual Machine)的方方面面,首先由java的特性来描绘JVM 的大致应用,再细细阐述了JVM的原理及内存管理机制和调优.最后讲述了与JVM密切相关的Java GC机制. 本文内容大多来自网络,但内容十分丰富,是学习JVM的好资料. 后面会再针对JVM的两大职责class loader和execution engine进行讲解 若有疑问 目录 Java相关 (2) 1.1Java定义 (2) 1.2Java的开发流程 (2) 1.3Java运行的原理 (3) 1.4半编译半解释 (4) 1.5平台无关性 (5) JVM内存模型 (5) 2.1JVM规范 (6) 2.2 Sun JVM (9) 2.3 SUN JVM内存管理(优化) (10) 2.4 SUN JVM调优 (13) 2.5.JVM简单理解 (16) 2.5.1Java栈 (16) 2.5.2堆 (16) 2.5.3堆栈分离的好处 (19) 2.5.4 堆(heap)和栈(stack) (19) JAVA垃圾收集器 (20) 3.1垃圾收集简史 (20) 3.2常见的垃圾收集策略 (20) 3.2.1Reference Counting(引用计数) (20) 3.2.2跟踪收集器 (21) 3.3JVM的垃圾收集策略 (25) 3.3.1Serial Collector (25) 3.3.2 Parallel Collector (25) 3.3.3 Concurrent Collector (26) Java虚拟机(JVM)参数配置说明 (26)

JAVA虚拟机性能参数调优指导书

Java虚拟机性能参数调优指导书 (仅供内部使用)

目录 1概述 (5) 2JAVA虚拟机运行机制概览 (5) 2.1运行时分析 (5) 2.2垃圾收集和线程同步 (7) 3JAVA虚拟机参数分类说明 (8) 3.1Java虚拟机标准参数 (8) 3.2Java虚拟机扩展参数 (10) 4JAVA应用性能测试调优经验总结 (13) 4.1GC调优参数的使用 (13) 4.2JIT调优参数的使用 (14) 4.3Java线程调优参数的使用 (14) 5结束语 (15) 6参考文献 (15)

表目录 表1 JVM 标准参数集 (10) 表2 JVM 扩展参数集 (10) 表3 JVM GC/Hotspot相关参数集 (12) 表4 JVM 性能统计参数集 (13)

错误!未找到引用源。 关键词:Java、垃圾收集、虚拟机、即时编译 摘要:随着JAVA在应用系统级的项目开发中的使用越来越广泛,虚拟机、垃圾收集、热点编译、J2EE等新技术层出不穷,JAVA作为系统级开发的一个选择的优势也越来越明显,在此同时 其不能完全编译、垃圾收集等与生俱有的特征也使得JAVA备受争议的“慢”得到更多的关 注。本文通过对JAVA虚拟机的运行机理的分析,以及JAVA虚拟机参数使用说明等描述,试 图使读者能够更好的运行他的基于JAVA的应用系统,以最小的代价换取最大的收益。 缩略语清单: 缩略语英文全名中文解释 JAVA SUN公司发明的一种语言 JVM Java Virtual Machine JAVA虚拟机 GC Garbage Collection 垃圾收集 HotSpot Java虚拟机内部的一种热点编译技术 JIT Just-In-Time 即时编译技术

java实验报告实验1答案

实验一熟悉NetBeans IDE 平台,开发环境及Java编程 实验目的: 1、我们使用的开发平台是NetBeans IDE,希望通过本次实验同学们能对NetBeans IDE 的开发环境有一个清楚的了解并能熟练运用,对Java语法进行初步运用,对面向对象的编程有一个直观的认识和深入理解,对于Java的基础知识进行理解运用和巩固。为以后的实验中能够进行开发程序打下基础。 2、通过编程和上机实验理解Java语言是如何体现面向对象编程基本思想,了解类的封装方法,以及如何创建类和对象,了解成员变量和成员方法的特性,掌握OOP方式进行程序设计的方法,了解类的继承性和多态性的作用。 实验内容: ● 1. 编写一个体现面向对象思想的程序。 ● 2. 编写一个创建对象和使用对象的方法的程序。 ● 3. 编写一个显示当前日期和时间的程序。 ● 4. 编写不同成员变量修饰方法的程序。 ● 5. 编写不同成员方法修饰方法的程序。 ● 6. 编写体现类的继承性(成员变量、成员方法、成员变量隐藏)的程序。 ●7. 编写体现类的多态性(成员方法重载、构造方法重载)的程序。 实验步骤: ●双击桌面上的NetBeans IDE 6.5.1快捷方式或在文件菜单中打开它。 图1-1 点击文件,创建新项目,创建一个项目名:experiment1。

点击按钮下一步: 在项目名称处输入:experiment1 然后点击完成:

在experiment1 下实现 程序 项目experiment1

样例1:编写应用程序输出如下三角形。 * *** ***** ******* 【参考程序】 public class Star { public static void main(String a[]) { System.out.println(" *"); System.out.println(" ***"); System.out.println(" *****"); System.out.println("*******"); } } 程序运行结果如图1-2所示。 【编程技巧】 (1) main方法是应用程序执行入口; (2) 如何在命令控制台输出字符串。 (3) 输出杨辉三角的前10行;进一步用参数传递的方式输出,例如,shuchu(n)表示 输出杨辉三角的前n行。 样例2:编写Applet程序绘制一个红色三角形,三角形中央绘制兰色文字“三角形”。 【参考程序】

深入理解Java反射机制汇总

深入理解Java反射机制 本文较为详细的分析了Java反射机制。分享给大家供大家参考,具体如下: 一、预先需要掌握的知识(java虚拟机) java虚拟机的方法区: java虚拟机有一个运行时数据区,这个数据区又被分为方法区,堆区和栈区,我们这里需要了解的主要是方法区。方法区的主要作用是存储被装载的类的类型信息,当java虚拟机装载某个类型的时候,需要类装载器定位相应的class文件,然后将其读入到java虚拟机中,紧接着虚拟机提取class 中的类型信息,将这些信息存储到方法区中。这些信息主要包括: 1、这个类型的全限定名 2、这个类型的直接超类的全限定名 3、这个类型是类类型还是接口类型 4、这个类型的访问修饰符 5、任何直接超接口的全限定名的有序列表 6、该类型的常量池 7、字段信息 8、方法信息 9、除了常量以外的所有类变量 10、一个到class类的引用 等等(读者可以参考《深入java虚拟机》这本书的叙述) Class类: Class类是一个非常重要的java基础类,每当装载一个新的类型的时候,java虚拟机都会在java堆中创建一个对应于新类型的Class实例,该实例就代表此类型,通过该Class实例我们就可以访问该类型的基本信息。上面说到在方法区中会存储某个被装载类的类型信息,我们就可以通过Class实例来访问这些信息。比如,对于上面说到的信息Class中都有对应的方法,如下:

1、getName();这个类型的全限定名 2、getSuperClass();这个类型的直接超类的全限定名 3、isInterface();这个类型是类类型还是接口类型 4、getTypeParamters();这个类型的访问修饰符 5、getInterfaces();任何直接超接口的全限定名的有序列表 6、getFields();字段信息 7、getMethods();方法信息 等等(读者可以自己参看jdk帮助文档,得到更多的信息) 二、java反射详解 反射的概念:所谓的反射就是java语言在运行时拥有一项自观的能力,反射使您的程序代码能够得到装载到JVM中的类的内部信息,允许您执行程序时才得到需要类的内部信息,而不是在编写代码的时候就必须要知道所需类的内部信息,这使反射成为构建灵活的应用的主要工具。 反射的常用类和函数:Java反射机制的实现要借助于4个类:Class,Constructor,Field,Method;其中class代表的是类对象,Constructor-类的构造器对象,Field-类的属性对象,Method -类的方法对象,通过这四个对象我们可以粗略的看到一个类的各个组成部分。其中最核心的就是Class类,它是实现反射的基础,它包含的方法我们在第一部分已经进行了基本的阐述。应用反射时我们最关心的一般是一个类的构造器、属性和方法,下面我们主要介绍Class 类中针对这三个元素的方法: 1、得到构造器的方法 Constructor getConstructor(Class[] params) -- 获得使用特殊的参数类型的公共构造函数,Constructor[] getConstructors() -- 获得类的所有公共构造函数 Constructor getDeclaredConstructor(Class[] params) -- 获得使用特定参数类型的构造函数(与接入级别无关) Constructor[] getDeclaredConstructors() -- 获得类的所有构造函数(与接入级别无关) 2、获得字段信息的方法

java虚拟机环境配置

文章分类:Java编程 第一步:下载jdk和tomcat:JDK下载Tomcat下载 最新的jdk为1.6.10,tomcat为6.0,建议jdk1.4以上,tomcat4.0以上 第二步:安装和配置你的jdk和tomcat:执行jdk和tomcat的安装程序,然后设置按照路径进行安装即可。 1.安装jdk以后,需要配置一下环境变量,在我的电脑->属性->高级->环境变量->系统变量中添加以下环境变量(假定你的jdk安装在C:\Program Files\Java):JAVA_HOME=C:\Program Files\Java\jdk1.6.0_10 classpath=.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar;(.;一定不能少,因为它代表当前路径) path=%JAVA_HOME%\bin 接着可以写一个简单的java程序来测试JDK是否已安装成功: Java代码 1.public class Test{ 2. 3. public static void main(String args[]){ 4. 5. System.out.println("This is a test program."); 6. 7. } 8. 9.} 将上面的这段程序保存为文件名为 Test.java的文件。 然后打开命令提示符窗口,cd到你的Test.java所在目录,然后键入下面的命令javac Test.java java Test 此时如果看到打印出来This is a test program.的话说明安装成功了,如果没有打印出这句话,你需要仔细检查一下你的配置情况。 2.安装Tomcat后,在我的电脑->属性->高级->环境变量->系统变量中添加以下环境变量(假定你的tomcat安装在c:\tomcat): CATALINA_HOME:C:\Program Files\Apache Software Foundation\Tomcat 6.0 CATALINA_BASE:C:\Program Files\Apache Software Foundation\Tomcat 6.0

Java的类一些常识

Java的类一些常识 “1、请解释Java语言的跨平台特性。 解析:虽然不知道什么是跨平台也可以使用Java语言进行编程,但是对于一个Java编程员来说,理解跨平台特性能够更深入掌握Java语言,所以企业中往往要求应聘者至少理解这个特性。 参考答案:Java的跨平台特性也被称为可移植性、平台无关性,或者一次编写处处运行。他的意思就是如果用Java语言编写一个应用,那么就可以在不同平台上运行,而不需要为不同平台单独运行开发。之所以能实现跨平台的特性。主要得益于Java虚拟机(JVM),JVM解释器在运行Java应用时根据当前平台进行解释,解释成符合当前平台规范的机器码,所以可以实现同样的应用在不同平台上都能运行。 “2、请列举JAVA语言的主要特点 解析:了解一门语言,往往从熟悉该语言的主要特点开始入手,所以企业也常常通过应聘者对JAVA语言特点的掌握程度而判断其语言基础是否扎实。 参考答案:JAVA语言有很多特点,主要包括:①跨平台性:一个应用可以不经过修改直接运行到不同的平台上。②面向对象:JAVA语言是一门面向对面的语言,可以使用对象的属性和行为,可以使用面向对象的思想进行分析设计,并实现整个应用。③解释执行JAVA应用时,JVM中的解释器将解释类文件,生成符合当前平台的字节码。④自动回收:JAVA 应用中的垃圾回收是自动进行的,JVM中的后台线程将监视内存中数据的使用,当内存中的数据不再被引用时,将被作为垃圾回收,而不需要程序员动手回收。 “3、请说明一个JAVA类中主要包含哪几个元素?并说明每种元素的作用。 解析:无论简单还是复杂的JAVA应用,都是由若干个类组成,所以类是JAVA应用的组成单位。了解一个类中包含的主要元素能够对类有一个清晰的认识。一个类中往往会有五种元素,即属性、方法、构造方法、块以及内部类、其实块和内部类比较少见。 参考答案:JAVA类中主要包含属性、方法、构造方法、块以及内部类。

win7下Java虚拟机的配置(图文教程)

win7(windows7)下java环境变量配置方法 2009-10-28 08:30:25 来源:[url=]编程伊甸园[/url] 作者:编程伊甸园 windows7下java环境变量配置方法: 1.用鼠标右击“我的电脑”->属性 600)makesmallpic(this,600,1800);" height=418> 选择左边导航的“高级系统设置”选项,然后这回熟悉了吧?

600)makesmallpic(this,600,1800);" height=441> 继续选择右下角的“环境变量”选项 2.进行win7下Java环境变量配置 600)makesmallpic(this,600,1800);" height=407> 在"系统变量"下进行如下配置: (1)新建->变量名:JAVA_HOME 变量值:D:\Java\jdk1.6.0_12(这只是我的JDK安装路径) (2)编辑->变量名:Path 在变量值的最前面加上:%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin (3)新建->变量名:CLASSPATH 变量值:.;%JAVA_HOME%\lib;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar (4)编辑->变量名:JAVA_HOME,变量值:D:\Java\jdk1.6.0_10

注意:当设置的变量在末尾时,不要加上“;”。 3.测试下环境变量是否设置成功 在左下角的搜索框中键入 cmd 或者按下“WIN+R”键,“WIN”键就是"CTRL"和“ALT””中间那个微软图标那个键;分别输入java,javac,java -version 命令 如果出现如下信息: 600)makesmallpic(this,600,1800);" height=391>

java虚拟机的原理和作用

Java虚拟机 一、什么是Java虚拟机 Java虚拟机是一个想象中的机器,在实际的计算机上通过软件模拟来实现。Java虚拟机有自己想象中的硬件,如处理器、堆栈、寄存器等,还具有相应的指令系统。 1.为什么要使用Java虚拟机 Java语言的一个非常重要的特点就是与平台的无关性。而使用Java虚拟机是实现这一特点的关键。一般的高级语言如果要在不同的平台上运行,至少需要编译成不同的目标代码。而引入Java语言虚拟机后,Java语言在不同平台上运行时不需要重新编译。Java语言使用模式Java虚拟机屏蔽了与具体平台相关的信息,使得Java语言编译程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。Java虚拟机在执行字节码时,把字节码解释成具体平台上的机器指令执行。 2.谁需要了解Java虚拟机 Java虚拟机是Java语言底层实现的基础,对Java语言感兴趣的人都应对Java虚拟机有个大概的了解。这有助于理解Java语言的一些性质,也有助于使用Java语言。对于要在特定平台上实现Java虚拟机的软件人员,Java语言的编译器作者以及要用硬件芯片实现Java虚拟机的人来说,则必须深刻理解Java 虚拟机的规范。另外,如果你想扩展Java语言,或是把其它语言编译成Java语言的字节码,你也需要深入地了解Java虚拟机。 3.Java虚拟机支持的数据类型 Java虚拟机支持Java语言的基本数据类型如下: byte://1字节有符号整数的补码 short://2字节有符号整数的补码 int://4字节有符号整数的补码 long://8字节有符号整数的补码 float://4字节IEEE754单精度浮点数 double://8字节IEEE754双精度浮点数 char://2字节无符号Unicode字符 几乎所有的Java类型检查都是在编译时完成的。上面列出的原始数据类型的数据在Java执行时不需要用硬件标记。*作这些原始数据类型数据的字节码(指令)本身就已经指出了*作数的数据类型,例如iadd、ladd、fadd和dadd指令都是把两个数相加,其*作数类型别是int、long、 float和double。虚拟机没有给boolean(布尔)类型设置单独的指令。boolean型的数据是由integer指令,包括integer 返回来处理的。boolean型的数组则是用byte数组来处理的。虚拟机使用IEEE754格式的浮点数。不支持IEEE格式的较旧的计算机,在运行 Java数值计算程序时,可能会非常慢。 虚拟机支持的其它数据类型包括: object//对一个Javaobject(对象)的4字节引用 returnAddress//4字节,用于jsr/ret/jsr-w/ret-w指令 注:Java数组被当作object处理。 虚拟机的规范对于object内部的结构没有任何特殊的要求。在Sun公司的实现中,对object的引用是一个句柄,其中包含一对指针:一个指针指向该object的方法表,另一个指向该object的数据。用Java

java中的四个核心概念

Java已经成为一个庞大而复杂的技术平台,对于开发人员而言,要想更好的掌握Java技术,深入理解底层的技术处理细节必不可少。现在介绍下java的四个核心概念: 1.Java虚拟机 Java虚拟机的主要任务是装在class文件并且执行其中的字节码。Java 虚拟机包含一个类装载器,它可以从程序和 API中装载class文件。Java API中只有程序执行时需要的那些类才会被装载。字节码由执行引擎来执行。不同的Java虚拟机中,执行引擎可能实现得非常不同。在由软件实现的虚拟机中,最简单的执行引擎就是一次性解释字节码。 另一种执行引擎更快,但是也更消耗内存,叫做"即时编译器(just-in-time compiler)"。在这种情况下,第一次被执行的字节码会被编译成本地机器代码。编译出的本地机器代码会被缓存,当方法以后被调用的时候可以重用。 第三种执行引擎是自适应优化器。在这种方法里,虚拟机开始的时候解释字节码,但是会监视运行中程序的活动,并且记录下使用最频繁的代码段。程序运行的时候,虚拟机只把那些活动最频繁的代码编译成本地代码,其他的代码由于使用得不是很频繁,继续保留为字节码-由虚拟机继续解释它们。 一个自适应的优化器可以使得Java虚拟机在80%~90%的时间里执行被优化过的本地代码,而只需要编译10%~20%的对性能有影响的代码。 2.类装载器的体系结构 一个Java应用程序可以使用两种类装载器:"启动(bootstrap)"类装载器和用户定义的类装载器。启动类装载器(这是系统中唯一的)是 Java虚拟机实现的一部分。启动类装载器通常使用某种默认方式从本地磁盘中装载类,包括Java API类(启动类装载器也被称为原始类装载器、系统类装载器或者默认类装载器)。Java培训:https://www.sodocs.net/doc/825602621.html, Java应用程序能够在运行时安装用户定义的类装载器,这种类装载器能够使用自定义的方式来装载类。例如,从网络下载class文件。尽管启动类装载器是虚拟机实现的本质部分,而用户定义的类装载器不是,但用户定义的类装载器能够用Java来编写,能够被编译成class文件,能够被虚拟机装载,还能够像其它对象一样实例化。 3.Java class文件 Java class文件主要在平台无关性和网络移动性方面使Java更适合网络。它在平台无关性方面的任务是:为Java程序提供独立于底层主机平台的二进制形式的服务。这种途径途径打破了C或者C++等语言所遵循的传统,使用这些传统语言写的程序通常首先被编译,然后被连接成单

相关主题