搜档网
当前位置:搜档网 › 串口通信原理与编程

串口通信原理与编程

串口通信原理与编程
串口通信原理与编程

在Windows应用程序的开发中,我们常常需要面临与外围数据源设备通信的问题。计算机和单片机(如MCS-51)都具有串行通信口,可以设计相应的串口通信程序,完成二者之间的数据通信任务。

实际工作中利用串口完成通信任务的时候非常之多。已有一些文章介绍串口编程的文章在计算机杂志上发表。但总的感觉说来不太全面,特别是介绍32位下编程的更少,且很不详细。笔者在实际工作中积累了较多经验,结合硬件、软件,重点提及比较新的技术,及需要注意的要点作一番探讨。希望对各位需要编写串口通信程序的朋友有一些帮助。

一.串行通信的基本原理

串行端口的本质功能是作为CPU和串行设备间的编码转换器。当数据从CPU经过串行端口发送出去时,字节数据转换为串行的位。在接收数据时,串行的位被转换为字节数据。

在Windows环境(Windows NT、Win98、Windows2000)下,串口是系统资源的一部分。

应用程序要使用串口进行通信,必须在使用之前向操作系统提出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。

串口通信程序的流程如下图:

二.串口信号线的接法

一个完整的RS-232C接口有22根线,采用标准的25芯插头座(或者9芯插头座)。25芯和9芯的主要信号线相同。以下的介绍是以25芯的RS-232C为例。

①主要信号线定义:

2脚:发送数据TXD;3脚:接收数据RXD;4脚:请求发送RTS;5脚:清除发送CTS;

6脚:数据设备就绪DSR;20脚:数据终端就绪DTR;8脚:数据载波检测DCD;

1脚:保护地;7脚:信号地。

②电气特性:

数据传输速率最大可到20K bps,最大距离仅15m.

注:看了微软的MSDN 6.0,其Windows API中关于串行通讯设备(不一定都是串口RS-232C或RS-422或RS-449)速率的设置,最大可支持到RS_256000,即256K bps! 也不知道到底是什么串行通讯设备?但不管怎样,一般主机和单片机的串口通讯大多都在9600 bps,可以满足通讯需求。

③接口的典型应用:

大多数计算机应用系统与智能单元之间只需使用3到5根信号线即可工作。这时,除了TXD、RXD以外,

还需使用RTS、CTS、DCD、DTR、DSR等信号线。(当然,在程序中也需要对相应的信号线进行设置。)

以上接法,在设计程序时,直接进行数据的接收和发送就可以了,不需要对信号线的状态进行判断或设置。(如果应用的场合需要使用握手信号等,需要对相应的信号线的状态进行监测或设置。)

三.16位串口应用程序的简单回顾

16位串口应用程序中,使用的16位的Windows API通信函数:

①OpenComm() 打开串口资源,并指定输入、输出缓冲区的大小(以字节计);

CloseComm() 关闭串口;

例:int idComDev;

idComDev = OpenComm("COM1", 1024, 128);

CloseComm(idComDev);

②BuildCommDCB() 、setCommState()填写设备控制块DCB,然后对已打开的串口进行参数配置;

例:DCB dcb;

BuildCommDCB("COM1:2400,n,8,1", &dcb);

SetCommState(&dcb);

③ReadComm 、WriteComm()对串口进行读写操作,即数据的接收和发送.

例:char *m_pRecieve; int count;

ReadComm(idComDev,m_pRecieve,count);

Char wr[30]; int count2;

WriteComm(idComDev,wr,count2);

16位下的串口通信程序最大的特点就在于:串口等外部设备的操作有自己特有的API函数;而32位程序则把串口操作(以及并口等)和文件操作统一起来了,使用类似的操作。

四.在MFC下的32位串口应用程序

32位下串口通信程序可以用两种方法实现:利用ActiveX控件;使用API 通信函数。

使用ActiveX控件,程序实现非常简单,结构清晰,缺点是欠灵活;使用API 通信函数的优缺点则基本上相反。

以下介绍的都是在单文档(SDI)应用程序中加入串口通信能力的程序。

㈠使用ActiveX控件:

VC++ 6.0提供的MSComm控件通过串行端口发送和接收数据,为应用程序提供串行通信功能。使用非常方便,但可惜的是,很少有介绍MSComm控件的资料。

⑴.在当前的Workspace中插入MSComm控件。

Project菜单------>Add to Project---->Components and Controls----->Registered

ActiveX Controls--->选择Components: Microsoft Communications Control,

version 6.0 插入到当前的Workspace中。

结果添加了类CMSComm(及相应文件:mscomm.h和mscomm.cpp )。

⑵.在MainFrm.h中加入MSComm控件。

protected:

CMSComm m_ComPort;

在Mainfrm.cpp::OnCreare()中:

DWORD style=WS_VISIBLE|WS_CHILD;

if (!m_ComPort.Create(NULL,style,CRect(0,0,0,0),this,ID_COMMCTRL)){

TRACE0("Failed to create OLE Communications Control ");

return -1;// fail to create

}

⑶.初始化串口

m_ComPort.SetCommPort(1);//选择COM?

m_ComPort. SetInBufferSize(1024); //设置输入缓冲区的大小,Bytes

m_ComPort. SetOutBufferSize(512); //设置输入缓冲区的大小,Bytes//

if(!m_ComPort.GetPortOpen()) //打开串口

m_ComPort.SetPortOpen(TRUE);

m_ComPort.SetInputMode(1); //设置输入方式为二进制方式

m_ComPort.SetSettings("9600,n,8,1"); //设置波特率等参数

m_ComPort.SetRThreshold(1); //为1表示有一个字符引发一个事件

m_ComPort.SetInputLen(0);

⑷.捕捉串口事项。MSComm控件可以采用轮询或事件驱动的方法从端口获取数据。我们介绍比较使用的事件驱动方法:有事件(如接收到数据)时通知程序。在程序中需要捕获并处理这些通讯事件。

在MainFrm.h中:

protected:

afx_msg void OnCommMscomm();

DECLARE_EVENTSINK_MAP()

在MainFrm.cpp中:

BEGIN_EVENTSINK_MAP(CMainFrame,CFrameWnd )

ON_EVENT(CMainFrame,ID_COMMCTRL,1,OnCommMscomm,VTS_NONE)

//映射ActiveX控件事件

END_EVENTSINK_MAP()

⑸.串口读写. 完成读写的函数的确很简单,GetInput()和SetOutput()就可。两个函数的原型是:

VARIANT GetInput();及void SetOutput(const VARIANT& newValue);都要使用VARIANT类型(所有Idispatch::Invoke的参数和返回值在内部都是作为VARIANT对象处理的)。

无论是在PC机读取上传数据时还是在PC机发送下行命令时,我们都习惯于使用字符串的形式(也可以说是数组形式)。查阅VARIANT文档知道,可以用BSTR表示字符串,但遗憾的是所有的BSTR都是包含宽字符,即使我们没有定义_UNICODE_UNICODE也是这样!WinNT支持宽字符, 而Win95并不支持。为解决上述问题,我们在实际工作中使用CbyteArray,给出相应的部分程序如下:

void CMainFrame::OnCommMscomm(){

VARIANT vResponse;int k;

if(m_commCtrl.GetCommEvent()==2) {

k=m_commCtrl.GetInBufferCount(); //接收到的字符数目

if(k>0) {

vResponse=m_commCtrl.GetInput(); //read

SaveData(k,(unsigned char*) vResponse.parray->pvData);

} // 接收到字符,MSComm控件发送事件}

。。。。。// 处理其他MSComm控件

}

void CMainFrame::OnCommSend() {

。。。。。。。。// 准备需要发送的命令,放在TxData[]中

CByteArray array;

array.RemoveAll();

array.SetSize(Count);

for(i=0;i

array.SetAt(i, TxData[i]);

m_ComPort.SetOutput(COleVariant(array)); // 发送数据

}

请大家认真关注第⑷、⑸中内容,在实际工作中是重点、难点所在。

㈡使用32位的API 通信函数:

可能很多朋友会觉得奇怪:用32位API函数编写串口通信程序,不就是把16位的API换成32位吗?16位的串口通信程序可是多年之前就有很多人研讨过了……

此文主要想介绍一下在API串口通信中如何结合非阻塞通信、多线程等手段,编写出高质量的通信程序。特别是在CPU处理任务比较繁重、与外围设备中有大量的通信数据时,更有实际意义。

⑴.在中MainFrm.cpp定义全局变量

HANDLE hCom; // 准备打开的串口的句柄

HANDLE hCommWatchThread ;//辅助线程的全局函数

⑵.打开串口,设置串口

hCom =CreateFile( "COM2", GENERIC_READ | GENERIC_WRITE, // 允许读写

0,// 此项必须为0

NULL,// no security attrs

OPEN_EXISTING,//设置产生方式

FILE_FLAG_OVERLAPPED, // 我们准备使用异步通信

NULL );

请大家注意,我们使用了FILE_FLAG_OVERLAPPED结构。这正是使用API实现非阻塞通信的关键所在。ASSERT(hCom!=INVALID_HANDLE_VALUE); //检测打开串口操作是否成功

SetCommMask(hCom, EV_RXCHAR|EV_TXEMPTY );//设置事件驱动的类型

SetupComm( hCom, 1024,512) ; //设置输入、输出缓冲区的大小

PurgeComm( hCom, PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR

| PURGE_RXCLEAR ); //清干净输入、输出缓冲区

COMMTIMEOUTS CommTimeOuts ; //定义超时结构,并填写该结构

…………

SetCommTimeouts( hCom, &CommTimeOuts ) ;//设置读写操作所允许的超时

DCB dcb ; // 定义数据控制块结构

GetCommState(hCom, &dcb ) ; //读串口原来的参数设置

dcb.BaudRate =9600; dcb.ByteSize =8; dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT ;dcb.fBinary = TRUE ;dcb.fParity = FALSE;

SetCommState(hCom, &dcb ) ; //串口参数配置

上述的COMMTIMEOUTS结构和DCB都很重要,实际工作中需要仔细选择参数。

⑶启动一个辅助线程,用于串口事件的处理。

Windows提供了两种线程,辅助线程和用户界面线程。区别在于:辅助线程没有窗口,所以它没有自己的消息循环。但是辅助线程很容易编程,通常也很有用。

在次,我们使用辅助线程。主要用它来监视串口状态,看有无数据到达、通信有无错误;而主线程则可专心进行数据处理、提供友好的用户界面等重要的工作。

hCommWatchThread=

CreateThread( (LPSECURITY_ATTRIBUTES) NULL, //安全属性

0,//初始化线程栈的大小,缺省为与主线程大小相同

(LPTHREAD_START_ROUTINE)CommWatchProc, //线程的全局函数

GetSafeHwnd(), //此处传入了主框架的句柄

0, &dwThreadID );

ASSERT(hCommWatchThread!=NULL);

⑷为辅助线程写一个全局函数,主要完成数据接收的工作。请注意OVERLAPPED结构的使用,以及怎样实现了非阻塞通信。

UINT CommWatchProc(HWND hSendWnd){

DWORD dwEvtMask=0 ;

SetCommMask( hCom, EV_RXCHAR|EV_TXEMPTY );//有哪些串口事件需要监视?

WaitCommEvent( hCom, &dwEvtMask, os );// 等待串口通信事件的发生

检测返回的dwEvtMask,知道发生了什么串口事件:

if ((dwEvtMask & EV_RXCHAR) == EV_RXCHAR){ // 缓冲区中有数据到达

COMSTAT ComStat ; DWORD dwLength;

ClearCommError(hCom, &dwErrorFlags, &ComStat ) ;

dwLength = ComStat.cbInQue ; //输入缓冲区有多少数据?

if (dwLength > 0) {

BOOL fReadStat ;

fReadStat = ReadFile( hCom, lpBuffer,dwLength, &dwBytesRead;

&READ_OS( npTTYInfo ) ); //读数据

注:我们在CreareFile()时使用了FILE_FLAG_OVERLAPPED,现在ReadFile()也必须使用LPOVERLAPPED结构.否则,函数会不正确地报告读操作已完成了.

使用LPOVERLAPPED结构, ReadFile()立即返回,不必等待读操作完成,实现非阻塞

通信.此时, ReadFile()返回FALSE, GetLastError()返回ERROR_IO_PENDING.

if (!fReadStat){

if (GetLastError() == ERROR_IO_PENDING){

while(!GetOverlappedResult(hCom,

&READ_OS( npTTYInfo ), & dwBytesRead, TRUE )){

dwError = GetLastError();

if(dwError == ERROR_IO_INCOMPLETE) continue;

//缓冲区数据没有读完,继续

…… ……

::PostMessage((HWND)hSendWnd,WM_NOTIFYPROCESS,0,0);//通知主线程,串口收到数据}

所谓的非阻塞通信,也即异步通信。是指在进行需要花费大量时间的数据读写操作(不仅仅是指串行通信操作)时,一旦调用ReadFile()、WriteFile(), 就能立即返回,而让实际的读写操作在后台运行;相反,如使用阻塞通信,则必须在读或写操作全部完成后才能返回。由于操作可能需要任意长的时间才能完成,于是问题就出现了。

非常阻塞操作还允许读、写操作能同时进行(即重叠操作?),在实际工作中非常有用。

要使用非阻塞通信,首先在CreateFile()时必须使用FILE_FLAG_OVERLAPPED;然后在ReadFile()时lpOverlapped参数一定不能为NULL,接着检查函数调用的返回值,调用GetLastError(),看是否返回ERROR_IO_PENDING。如是,最后调用GetOverlappedResult()返回重叠操作(overlapped operation)的结果;WriteFile()的使用类似。

⑸.在主线程中发送下行命令。

BOOL fWriteStat ; char szBuffer[count];

…………//准备好发送的数据,放在szBuffer[]中

fWriteStat = WriteFile(hCom, szBuffer, dwBytesToWrite,

&dwBytesWritten, &WRITE_OS( npTTYInfo ) ); //写数据

注:我们在CreareFile()时使用了FILE_FLAG_OVERLAPPED,现在WriteFile()也必须使用LPOVERLAPPED结构.否则,函数会不正确地报告写操作已完成了.

使用LPOVERLAPPED结构,WriteFile()立即返回,不必等待写操作完成,实现非阻塞通信.此时, WriteFile()返回FALSE, GetLastError()返回ERROR_IO_PENDING.

int err=GetLastError();

if (!fWriteStat) {

if(GetLastError() == ERROR_IO_PENDING){

while(!GetOverlappedResult(hCom, &WRITE_OS( npTTYInfo ),

&dwBytesWritten, TRUE )) {

dwError = GetLastError();

if(dwError == ERROR_IO_INCOMPLETE){

// normal result if not finished

dwBytesSent += dwBytesWritten; continue; }

......................

综上,我们使用了多线程技术,在辅助线程中监视串口,有数据到达时依靠事件驱动,读入数据并向主线程报告(发送数据在主线程中,相对说来,下行命令的数据总是少得多);并且,WaitCommEvent()、ReadFile()、WriteFile()都使用了非阻塞通信技术,依靠重叠(overlapped)读写操作,让串口读写操作在后台运行。

依托vc6.0丰富的功能,结合我们提及的技术,写出有强大控制能力的串口通信应用程序。就个人而言,我更偏爱API技术,因为控制手段要灵活的多,功能也要强大得多。

RS232串口通信详解

RS232串口通信详解(引脚定义,电气特性,传输格式,接收过程,单片机晶振,RS485,RS422) 通信原理知识2010-01-03 20:53 阅读1 评论0 字号:大中小RS232串口通信详解(引脚定义,电气特性,传输格式,接收过程,单片机晶振,RS485,RS422) 串口是计算机上一种非常通用的设备通信协议。 --------------------------------- 串口的引脚定义: 信号方向来 9芯 缩写描述 自 1调制解调器CD载波检测 2调制解调器RXD接收数据 3PC TXD发送数据 4PC DTR数据终端准备好 5GND信号地 6调制解调器DSR通讯设备准备好 7PC RTS请求发送 8调制解调器CTS允许发送 9调制解调器RI响铃指示器

两个串口连接时,接收数据针脚与发送数据针脚相连,彼此交叉,信号地对应相接即可。 --------------------------------- 串口的电气特性: 1)RS-232串口通信最远距离是50英尺 2)RS232可做到双向传输,全双工通讯,最高传输速率20kbps 3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3 ~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片: --------------------------------- 串口通信参数: a)波特率:RS-232-C标准规定的数据传输速率为每秒50、75、 100、150、300、600、1200、2400、4800、9600、19200波特。 b)数据位:标准的值是5、7和8位,如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位);扩展的ASCII码是0~255(8位)。 c)停止位:用于表示单个包的最后一位,典型的值为1,1.5和2位。由于数是在传输线上定时的,并且每一

用C#一步步写串口通信分析解析

我们来看具体的实现步骤。 公司要求实现以下几个功能: 1):实现两台计算机之前的串口通信,以16进制形式和字符串两种形式传送和接收。 2):根据需要设置串口通信的必要参数。 3):定时发送数据。 4):保存串口设置。 看着好像挺复杂,其实都是纸老虎,一戳就破,前提是你敢去戳。我尽量讲的详细一些,争取说到每个知识点。 在编写程序前,需要将你要测试的COM口短接,就是收发信息都在本地计算机,短接的方式是将COM口的2、3号针接起来。COM 口各针的具体作用,度娘是这么说的:COM口。记住2、3针连接一定要连接牢固,我就是因为接触不良,导致本身就不通,白白花掉了一大半天时间调试代码。 下面给出主要的操作界面,如下:

顺便,我将所有控件对应的代码名字也附上了,相信对初学者来说,再看下面的代码会轻松很多。控件名字命名的方法是“控件名+作用”的形式,例如“打开串口”的开关按钮,其名字是btnSwitch (btn就是button的简写了)。我认为这种命名控件的方式比较好,建议大家使用,如果你有好的命名方式,希望你能告诉我! 下面我们将各个功能按照从主到次的顺序逐个实现。(我分块给出代码实现,详细代码见链接:《C#串口通信工具》)

一、获取计算机的COM口总个数,将它们列为控件cbSerial的候选项,并将第一个设为cbSerial的默认选项。 这部分是在窗体加载时完成的。请看代码: (很多信息代码的注释里讲的很清楚,我就不赘述了。) [csharp]view plaincopyprint? 1.//检查是否含有串口 2. string[] str = SerialPort.GetPortNames(); 3. if (str == null) 4. { 5. MessageBox.Show("本机没有串口!", "Error"); 6. return; 7. } 8. 9. //添加串口项目 10. foreach (string s in System.IO.Ports.SerialPort.GetPortNames()) 11. {//获取有多少个COM口 12. cbSerial.Items.Add(s); 13. } 14. 15. //串口设置默认选择项

RS-485通信原理

一、RS485串口通信电路图 二、VxWorks中基于RS485总线得串口通信协议及实现 摘要:本文介绍了在嵌入式实时操作系统Vxworks下串行设备得驱动架构及实现,提出了一种基于RS-485总线得新型串口通信协议,重点讨论了基于这种协议得应用程序得设计方法,发送时主要采用了总线仲裁机制,接收时主要采用了字符合法性校验、长度校验、内容得CRC校验,提高了系统得通信效率与稳定性。 关键词:VxWorks;RS-485;通信协议;总线仲裁;CRC校验 1 引言 随着信息技术与互联网得飞速发展,以及计算机、通讯、数码产品等领域得高速增长,数字化时代已经来临。嵌入式设备就是数字化时代得主流产品,嵌入式软件就是数字化产品得核心,作为嵌入式软件得基础与关键,嵌入式操作系统在产业发展过程中扮演着越来越重要得角色,应用遍及工业自动化、网络通信、航空航天、医疗仪器等领域。 2 RS-485总线 RS-485总线接口就是一种常用得串口,具有网络连接方便、抗干扰性能好、传输距离远等优点。RS-485收发器采用平衡发送与差分接收,因此具有抑制共模干扰得能力,加上收发器具有高得灵敏度,能检测到低达200mv得电压,可靠通信得传输距离可达数千米。使用RS-485总线组网,只需一对双绞线就可实现多系统联网构成分布式系统、设备简单、价格低廉、通信距离长。 3 VxWorks中串口驱动得实现

VxWorks 操作系统就是美国Wind River公司设计开发得嵌入式实时操作系统(RTOS),就是嵌入式开发环境得关键组成部分。Vxworks 操作系统得I/O 系统可以提供简单、统一、与任何设备无关得接口。这些设备包括:面向字符设备、随机块存储设备、虚拟设备、控制与监视设备以及网络设备。Vxworks 得I/O 系统包括基本I/O 系统与缓冲I/O 系统,具有比其她I/O 系统更快速,兼容性更好得特性。这对于实时系统就是很重要得。 3、1 串口驱动架构 基于vxWorks得串口设备驱动程序架构,对vxWorks得 虚拟设备ttyDrv进行封装,向上将TTY设备安装到标准 得I/O系统中,上层应用通过标准得I/O 接口完成对硬 件设备得操作,向下提供对实际硬件设备得底层设备驱 动程序。其软件架构如图1所示。 由图1可知,串口设备驱动由两部分组成,一部分为对 ttyDrv进行封装,将串行设备安装到标准得I/O系统中, 提供对外得接口;另一部分为串行设备驱动程序,提供 对硬件设备得基本操作。 虚拟设备ttyDrv管理着I/O系统与真实驱动程序之间 得通信。在I/O系统方面,虚拟设备ttyDrv作为一个字 符型设备存在,它将自身得入口点函数挂在I/O系统上, 创建设备描述符并将其加入到设备列表中。当用户有I/O请求包到达I/O系统中时,I/O系统会调用ttyDrv相应得函数响应请求。同时,ttyDrv管理了缓冲区得互斥与任务得同步操作。另一方面,ttyDrv负责与实际得设备驱动程序交换信息。通过设备驱动程序提供得回调函数及必要得数据结构,ttyDrv将系统得I/O 请求作相应得处理后,传递给设备驱动程序,由设备驱动程序完成实际得I/O操作。 3、2 驱动初始化 串口设备得初始化xxDevInit流程如图2。 设备驱动得初始化过程首先调用系统函数ttyDrv(),该 函数通过调用iosDrvInstall()将ttyOpen()、 ttyIoctl()、tyRead()、tyRead、tyWrite安装到系统 驱动函数表中,供I/O系统调用。 接着根据用户入参对串口芯片寄存器进行初始化,安装 驱动函数指针。 最后调用系统函数ttyDevCreate()创建ttyDrv设备。 该函数初始化设备描述符,调用tyDevInit()函数初始

双机间的串口双向通信(DOC)

单片机原理与应用课程设计任务书

单片机原理与应用学年设计说明书 学院名称:计算机与信息工程学院 班级名称: 学生姓名: 学号:2012211369 题目:双机间的串口双向通信 指导教师 姓名: 起止日期:2014.12.29至2015.1.4

一、绪论 随着电子技术的飞速发展,单片机也步如一个新的时代,越来越多的功能各异的单片机为我们的设计提供了许多新的方法与思路。 对于一些场合,比如:复杂的后台运算及通信与高实时性前台控制系统、软件资源消耗大的系统、功能强大的低消耗系统、加密系统等等。如果合理使用多种不同类型的单片机组合设计,可以得到极高灵活性与性能价格比,因此,多种异型单片机系统设计渐渐成为一种新的思路,单片机技术作为计算机技术的一个重要分支,由于单片机体积小,系统运行可靠,数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。 但在一些相对复杂的单片机应用系统中,仅仅一个单片机资源是不够的,往往需要两个或多个单片机系统协同工作。这就对单片机通信提出了更高要求。 单片机之间的通信可以分为两大类:并行通信和串行通信。串行通信传输线少,长距离传输时成本低,且可以利用数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。所以本系统采用串行通信来实现单片机之间可靠的,有效的数据交换。 二、相关知识 2.1 双机通信介绍 两台机器的通信方式可分为单工通信、半双工通信、双工通信,他们的通信原理及通信方式为: 单工通信:是指消息只能单方向传输的工作方式。单工通信信道是单向信道,发送端和接收端的身份是固定的,发送端只能发送信息,不能接收信息;接收端只能接收信息,不能发送信息,数据信号仅从一端传送到另一端,即信息流是单方向的。通信双方采用单工通信属于点到点的通信。根据收发频率的异同,单工通信可分为同频通信和异频通信。 半双工通信:这种通信方式可以实现双向的通信,但不能在两个方向上同时进行,必须轮流交替地进行。也就是说,通信信道的每一段都可以是发送端,也可以是接端。但同一时刻里,信息只能有一个传输方向。如

RS232串口通讯详解

串口通讯—RS-232-C详解 蓝鸟发表于 2005-9-22 16:19:34 串行通信接口标准经过使用和发展,目前已经有几种。但都是在RS-232标准的基础上经过改进而形成的。所以,以RS-232C为主来讨论。RS-323C标准是美国EIA(电子工业联合会)与BELL等公司一起开发的1969年公布的通信协议。它适合于数据传输速率在0~20000b/s范围内的通信。这个标准对串行通信接口的有关问题,如信号线功能、电器特性都作了明确规定。由于通行设备厂商都生产与RS-232C制式兼容的通信设备,因此,它作为一种标准,目前已在微机通信接口中广泛采用。 在讨论RS-232C接口标准的内容之前,先说明两点: 首先,RS-232-C标准最初是远程通信连接数据终端设备DTE(Data Terminal Equipment)与数据通信设备DCE(Data Communication Equipment)而制定的。因此这个标准的制定,并未考虑计算机系统的应用要求。但目前它又广泛地被借来用于计算机(更准确的说,是计算机接口)与终端或外设之间的近端连接标准。显然,这个标准的有些规定及和计算机系统是不一致的,甚至是相矛盾的。有了对这种背景的了解,我们对RS-232C标准与计算机不兼容的地方就不难理解了。 其次,RS-232C标准中所提到的“发送”和“接收”,都是站在DTE立场上,而不是站在DCE的立场来定义的。由于在计算机系统中,往往是CPU和I/O设备之间传送信息,两者都是DTE,因此双方都能发送和接收。 一、RS-232-C RS-232C标准(协议)的全称是EIA-RS-232C标准,其中EIA(Electronic Industry Association)代表美国电子工业协会,RS(ecommeded standard)代表推荐标准,232是标识号,C代表RS232的最新一次修改(1969),在这之前,有RS232B、RS232A。。它规定连接电缆和机械、电气特性、信号功能及传送过程。常用物理标准还有有EIA�RS-232-C、EIA�RS-422-A、 EIA�RS-423A、EIA�RS-485。这里只介绍EIA�RS-232-C(简称232,RS232)。例如,目前在IBM PC机上的COM1、COM2接口,就是RS-232C接口。 1.电气特性 EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定。 在TxD和RxD上:逻辑1(MARK)=-3V~-15V 逻辑0(SPACE)=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V

RS232串口通信详解

串口就是计算机上一种非常通用的设备通信协议。 --------------------------------- 串口的引脚定义: 9芯信号方向来自缩写描述 1调制解调器CD载波检测 2调制解调器RXD接收数据 3PC TXD发送数据 4PC DTR数据终端准备好 5GND信号地 6调制解调器DSR通讯设备准备好 7PC RTS请求发送 8调制解调器CTS允许发送 9调制解调器RI响铃指示器 两个串口连接时,接收数据针脚与发送数据针脚相连,彼此交叉,信号地对应相接即可。--------------------------------- 串口的电气特性: 1)RS-232串口通信最远距离就是50英尺 2)RS232可做到双向传输,全双工通讯,最高传输速率20kbps 3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3 ~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片:

--------------------------------- 串口通信参数: a)波特率:RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、 4800、9600、19200波特。b)数据位:标准的值就是5、7与8位,如何设置取决于您想传送的信息。比如,标准的ASCII码就是0~127(7位);扩展的ASCII码就是0~255(8位)。 c)停止位:用于表示单个包的最后一位,典型的值为1,1、5与2位。由于数就是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅就是表示传输的结束,并且提供计算机校正时钟同步的机会。d)奇偶校验位:在串口通信中一种简单的检错方式。对于偶与奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据就是011,那么对于偶校验,校验位为 0,保证逻辑高的位数就是偶数个。如果就是奇校验,校验位位1,这样就有3个逻辑高位。 --------------------------------- 串口通信的传输格式: 串行通信中,线路空闲时,线路的TTL电平总就是高,经反向 RS232的电平总就是低。一个数据的开始RS232线路为高电平,结束时Rs232为低电平。数据总就是从低位向高位一位一位的传输。示波器读数时,左边就是数据的高位。 例如,对于16进制数据55aaH,当采用8位数据位、1位停止位传输时,它在信号线上的波形如图1(TTL电平)与图 2(RS-232电平)所示。 55H=01010101B,取反后10101010B,加入一个起始位1,一个停止位0,55H的数据格式为1010101010B; aaH=10101010B,取反后01010101B,加入一个起始位1,一个停止位0,55H的数据格式为1101010100B;

51单片机串口通信的原理与应用流程解析

51单片机串口通信的原理与应用流程解析 一、原理简介 51 单片机内部有一个全双工串行接口。什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。其缺点是传输速度较低。 与之前一样,首先我们来了解单片机串口相关的寄存器。 SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。 串行口控制寄存器SCON(见表1)。 表1 SCON寄存器 表中各位(从左至右为从高位到低位)含义如下。 SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。 表2 串行口工作方式控制位 其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。 SM2 :多机通信控制位。该仅用于方式2 和方式3 的多机通信。其中发送机SM2 = 1(需要程序控制设置)。接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。工作于方式0 时,SM2 必须为0。

WIN_API串口通信详细讲解带范例程序说明

WIN32 API串口通讯实例教程 第一节实现串口通讯的函数及串口编程简介 API函数不仅提供了打开和读写通讯端口的操作方法,还提供了名目繁多的函数以支持对串行通讯的各种操作。常用函数及作用下: 函数名作用 CreateFile 打开串口 GetCommState 检测串口设置 SetCommState 设置串口 BuilderCommDCB 用字符串中的值来填充设备控制块 GetCommTimeouts 检测通信超时设置 SetCommTimeouts 设置通信超时参数 SetCommMask 设定被监控事件 WaitCommEvent 等待被监控事件发生 WaitForMultipleObjects 等待多个被监测对象的结果 WriteFile 发送数据 ReadFile 接收数据 GetOverlappedResult 返回最后重叠(异步)操作结果 PurgeComm 清空串口缓冲区,退出所有相关操作 ClearCommError 更新串口状态结构体,并清除所有串口硬件错误 CloseHandle 关闭串行口 用Windows API 编写串口程序本身是有巨大优点的,因为控制能力会更强,效率也会更高。 API编写串口,过程一般是这样的: 1、创建串口句柄,用CreateFile; 2、对串口的参数进行设置,其中比较重要的是波特率(BaudRate),数据宽度(BytesBits),奇偶校验(Parity),停止位(StopBits),当然,重要的还有端口号(Port); 3、然后对串口进行相应的读写操作,这时候用到ReadFile和WriteFile函数; 4、读写结束后,要关闭串口句柄,用CloseFile。 下面依次讲述各个步骤的过程。

PC机串口通信的工作原理

PC机串口通信的工作原理 MCU资料2008-08-27 09:03:59 阅读22 评论0 字号:大中小订阅 串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus或者USB 混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。 典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配: a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。 b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。 c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位位1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步 ------------------------- 一、RS485串口通信电路图

串行通讯原理说明--RS232_UART

串行通讯原理说明--RS232,UART电平等介绍 串行通讯:一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。 串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢。串行通讯的距离可以从几米到几千米。 根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。 能够完成上述“串<- ->并”转换功能的电路,通常称为“通用异步收发器” (UART:Universal Asynchronous Receiver and Transmitter), 典型的芯片有:Intel 8250/8251,16550。 EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定。 在TxD和RxD上:逻辑1(MARK) =-3V~-15V 逻辑0(SPACE)=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压) = -3V~-15V 数据传输时,低位在前,高位在后 数据位:1位、2位 停止位:1位、1.5位、2位 .流控制在串行通讯中的作用 解决丢失数据的问题 .硬件流控制 硬件流控制常用的有RTS/CTS(请求发送/清除发送)流控制和DTR/DSR(数据终端就绪/ 数据设置就绪)流控制 .软件流控制 一般通过XON/XOFF来实现软件流控制。 奇校验:所有传送的数位(含字符的各数位和校验位)中,“1”的个数为奇数,如: 1 0110,0101 0 0110,0001 偶校验:所有传送的数位(含字符的各数位和校验位)中,“1”的个数为偶数,如: 1 0100,0101

串口通信原理

一、串口通信原理 串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。串口通信的工作原理请同学们参看教科书。 以下对串口通信中一些需要同学们注意的地方作一点说明: 1、波特率选择 波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。MSC- 51串行端口在四种工作模式下有不同的波特率计算方法。其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。 在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。在此模式下波特率计算公式为: 波特率=(1+SMOD)*晶振频率/(384*(256-TH1)) 其中,SMOD——寄存器PCON的第7位,称为波特率倍增位; TH1——定时器的重载值。 在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。这要根据系统的运作特点,确定通信的频率范围。然后考虑通信时钟误差。使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。 下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。则 TH1=256-62500/波特率 根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。列计数器重载值,通信误差如下表: 因此,在通信中,最好选用波特率为1200,2400,4800中的一个。 2、通信协议的使用 通信协议是通信设备在通信前的约定。单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定: 0xA1:单片机读取P0端口数据,并将读取数据返回PC机; 0xA2:单片机从PC机接收一段控制数据; 0xA3:单片机操作成功信息。 在系统工作过程中,单片机接收到PC机数据信息后,便查找协议,完成相应的操作。当单片机接收到0xA1时,读取P0端口数据,并将读取数据返回PC机;当单片机接收到0xA2时,单片机等待从PC机接收一段控制数据;当PC机接收到0xA3时,就表明单片机操作已经成功。 3、硬件连接 51单片机有一个全双工的串行通讯口,所以单片机和计算机之间可以方便地进行串口

C#串口通信:MSComm控件使用详解

C#串口通信:MSComm控件使用详解 目次 MSComm 控件两种处理通讯的方式 CommPort 属性 RThreshold 属性 CTSHolding 属性 SThreshold 属性 CDHolding 属性 DSRHolding 属性 Settings 属性 InputLen 属性 EOFEnable 属性 Handshake 常数 OnComm 常数 InputMode 常数 错误消息 MSComm 控件通过串行端口传输和接收数据,为应用程序提供串行通讯功能。MSComm控件在串口编程时非常方便,程序员不必去花时间去了解较为复杂的API函数,而且在VC、VB、Delphi 等语言中均可使用。Microsoft Communications Control(以下简称MSComm)是Microsoft公司提供的简化Windows下串行通信编程的ActiveX控件,它为应用程序提供了通过串行接口收发数据的简便方法。具体的来说,它提供了两种处理通信问题的方法:一是事件驱动(Event-driven)方法,一是查询法。 1.MSComm控件两种处理通讯的方式 MSComm控件提供下列两种处理通讯的方式:事件驱动方式和查询方式。 1.1 事件驱动方式 事件驱动通讯是处理串行端口交互作用的一种非常有效的方法。在许多情况下,在事件发生时需要得到通知,例如,在串口接收缓冲区中有字符,或者Carrier Detect (CD) 或Request To Send (RTS) 线上一个字符到达或一个变化发生时。在这些情况下,可以利用MSComm 控件的OnComm 事件捕获并处理这些通讯事件。OnComm 事件还可以检查和处理通讯错误。所有通讯事件和通讯错误的列表,参阅CommEvent 属性。在编程过程中,就可以在OnComm事件处理函数中加入自己的处理代码。这种方法的优点是程序响应及时,可靠性高。每个MSComm 控件对应着一个串行端口。如果应用程序需要访问多个串行端口,必须使用多个MSComm 控件。 1.2 查询方式 查询方式实质上还是事件驱动,但在有些情况下,这种方式显得更为便捷。在程序的每个关键功能之后,可以通过检查CommEvent 属性的值来查询事件和错误。如果应用程序较小,并且是自保持的,这种方法可能是更可取的。例如,如果写一个简单的电话拨号程序,则没有必要对每接收一个字符都产生事件,因为唯一等待接收的字符是调制解调器的“确定”响应。 2.MSComm 控件的常用属性 MSComm 控件有很多重要的属性,但首先必须熟悉几个属性。 CommPort 设置并返回通讯端口号。 Settings 以字符串的形式设置并返回波特率、奇偶校验、数据位、停止位。 PortOpen 设置并返回通讯端口的状态。也可以打开和关闭端口。 Input 从接收缓冲区返回和删除字符。 Output 向传输缓冲区写一个字符串。 下面分别描述:

微机原理串口通信.课程设计概要

1基础理论知识 1.1通信的方式 通信的基本方式可以分为并行通信和串行通信两种。 串行通信时数据用一根传输线逐为顺序传送。并行通信和串行通信是CPU与外部设备之间进行信息交换的基本方法。采用并行通信时,构成一个字符或数据的各位同时传送,每一位都占用一条通信线,另外还需要联络以保证和外围设备协调地工作,它具有较高的传输速度。但由于在长线上驱动和接收信号较困难,驱动和接收电路较复杂,因此并行通信的传输距离受到限制,这种通信方式多用于计算机内部,或者作为计算机与近距离外围设备传输信息用。 1.2串行通信 串行通信分为两种类型:串行异步通信和串行同步通信。 串行异步通信是指通信中两个字符之间的时间间隔是不固定的,而在一个字符内各位的时间间隔是固定的。 同步通信时指在约定的数据通信数率下,发送方和接收方的时钟信号频率和相位始终保持一致,通信双方发送数据和接收数据具有完全一致的定时关系。 串行通信的数据传输方式分为单工传送,半双工传送,全双工传送。 单工传送:单工传送时指在通信时只能由一方发送数据,另一方接收数据的通信方式。 半双工传送:指在通信时双方都能够接收或者发送,但是不能够同时接收和发送的通信方式。 全双工传送:通信双方之间有两条通路,发送信息和接收信息可以同时进行。

2 串口通信芯片8250 2.1 8250的内部结构 INS 8250是通用异步收发器UART ,用作异步通信接口电路。INS 8250的引脚信号基 本上可 以分为两大类:与 CPU 系统总线相连的信号线和与通信设备 MODEM 连接的信号 线 CTS 2. 8251A 的 数据总线缓冲器 状态字 寄存器 发送数据 寄存器 接收数据 寄存器 发送 缓冲器 并一串 TxD RESET ---- CLK —— C/D --- RD ---- WR —y CS —— DTR ~KC DSR RTS - 读/写 控制逻辑 调制解调 控制逻辑 * TxRDY ■ TxE -TxC --- RxRDY RxC SYDNETZBRKDET 6 ? D ()

RS232串口通信详解

串口是计算机上一种非常通用的设备通信协议。 --------------------------------- 串口的引脚定义: 两个串口连接时,接收数据针脚与发送数据针脚相连,彼此交叉,信号地对应相接即可。--------------------------------- 串口的电气特性: 1)RS-232串口通信最远距离是50英尺 2)RS232可做到双向传输,全双工通讯,最高传输速率20kbps 3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3 ~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片:

--------------------------------- 串口通信参数: a)波特率:RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、 4800、9600、19200波特。b)数据位:标准的值是5、7和8位,如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位);扩展的ASCII码是0~255(8位)。 c)停止位:用于表示单个包的最后一位,典型的值为1,1.5和2位。由于数是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。d)奇偶校验位:在串口通信中一种简单的检错方式。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为 0,保证逻辑高的位数是偶数个。如果是奇校验,校验位位1,这样就有3个逻辑高位。 --------------------------------- 串口通信的传输格式:串行通信中,线路空闲时,线路的TTL电平总是高,经反向RS232的电平总是低。一个数据的开始RS232线路为高电平,结束时Rs232为低电平。数据总是从低位向高位一 位一位的传输。示波器读数时,左边是数据的高位。 例如,对于16进制数据55aaH,当采用8位数据位、1位停止位传输时,它在信号线上的波形如图1(TTL电平)和图 2(RS-232电平)所示。 55H=01010101B,取反后10101010B,加入一个起始位1,一个停止位0,55H的数据格式为1010101010B; aaH=10101010B,取反后01010101B,加入一个起始位1,一个停止位0,55H的数据格式为1101010100B;

串口通信原理

串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。 典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配: a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波

特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB 设备的通信。 b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。 c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时 也越慢。 d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶

串行口通信原理及操作流程

串行口通信原理及操作流程 51单片机得串行口就是一个可编程全双工得通信接口,具有UART(通用异步收发器)得全部功能,能同时进行数据得发送与接收,也可以作为同步移位寄存器使用。 51单片机得串行口主要由两个独立得串行数据缓冲寄存器SBUF(发送缓冲寄存器与接收缓冲寄存器)与发送控制器、接收控制器、输入移位寄存器及若干控制门电路组成。 51 单片机可以通过特殊功能寄存器SBUF队串行接收或串行发送寄存器进行访问,两个寄存器共用一个地址99H,但在物理上就是两个独立得寄存器,由指令操作决定访问哪一个寄存器。执行写指令时访问串行发送寄存器;执行读指令时,访问串行接收寄存器。(接收器具有双缓冲结构,即在接收寄存器中读出前一个已接收到得字节之前,便能接收第二个字节,如果第二个字节已接收完毕,而第一个字节还没有读出,则将丢失其中一个字节,编程时应引起注意。对于发送器,因为就是由 cpu控制得,所以不需要考虑。 与串行口紧密相关得一个特殊功能寄存器就是串行

口控制寄存器SCON,它用来设定串行口得工作方式、接收/发送控制以及状态标志等。 串行口控制寄存器SCON 串行口控制寄存器SCON在特殊功能寄存器中,字节地址为98H,可位寻址,单片机复位时SCON全部被清零。 位序号 D7 D6 D5 D4 D3 D2 D1 D0 位符号 SM0 SM1 SM2 REN TB8

RB8 T1 R1 SM0,SM1为工作方式选择位。串行口有四种工作方式,它们由SM0、SM1设定。其中方式一最为常用。 SM2为多机通信控制位。 REN为允许串行接收位。 TB8为方式2、3中方式数据得第九位。 RB8为方式2、2中接收数据得第九位。 TI为发送中断标志位,在方式0时,当串行发送第8位数据结束时,或在其她方式,串行发送停止位得开始时,由内部硬件使TI置一,向CPU发出中断申请。在中断服务程序中,必须使用软件将其清零,取消此中断申请。 RI为接收中断标志位。在方式0时,当串行接收第8位数据结束时,或在其她方式,串行接收停止位得中间时,由内部硬件使RI置一,向CPU发出中断申请。在中断服务程序中,必须使用软件将其清零,取消此中断申请。 串口工作方式1简介(0、2、3以后再说),串行口方式传送1帧数据共10位,其中一位起始位(0),八位数据位(最低位在前,高位在后),一位停止位(1)。帧与帧之间可以有空闲,也可以无空闲。TXD(P3、1)位

MFC串口通信编程详解解析

MFC串口通信编程介绍 主要介绍了用CreateFile(函数和WriteFile(函数读写串口的实例,以及设置串口属性的实例. 在工业控制中,工控机(一般都基于Windows平台经常需要与智能仪表通过串口 进行通信.串口通信方便易行,应用广泛. 一般情况下,工控机和各智能仪表通过RS485总线进行通信.RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点.每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答. 在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活.其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活.下面只介绍API串口通信部分. 串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式.同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中, 虽然不会阻塞主线程,但是仍然会阻塞监听线程;而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞. 无论哪种操作方式,一般都通过四个步骤来完成: (1打开串口 (2配置串口 (3读写串口 (4关闭串口

一打开串口 Win32系统把文件的概念进行了扩展.无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的.该函数的原型为: HANDLE CreateFile( LPCTSTR lpFileName, DWORD dwDesiredAccess, DWORD dwShareMode, LPSECURITY_ATTRIBUTES lpSecurityAttributes, DWORD dwCreationDistribution, DWORD dwFlagsAndAttributes, HANDLE hTemplateFile; ?lpFileName:将要打开的串口逻辑名,如“COM1”; ?dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列; ?dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0; ?lpSecurityAttributes:引用安全性属性结构,缺省值为NULL; ?dwCreationDistribution:创建标志,对串口操作该参数必须置为 OPEN_EXISTING; ?dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操 作;

51单片机串口通信(相关例程)

51单片机串口通信 1./*打开串口调试程序,将波特率设置为9600,无奇偶校验 晶振11.0592MHz,发送和接收使用的格式相同,如都使用 字符型格式,在发送框输入hello,I Love MCU ,在接 收框中同样可以看到相同字符,说明设置和通信正确*/ #include /*主程序*/ void main (void) { SCON = 0x50; /* SCON: 模式1, 8-bit UART, 使能接收*/ TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload*/ TH1 = 0xFD; /* TH1: reload value for 9600 baud @ 11.0592MHz */ TR1 = 1; /* TR1: timer 1 run */ EA = 1; /*打开总中断*/ ES = 1; /*打开串口中断*/ while (1) /*主循环不做任何动作*/ { } } void UART_SER (void) interrupt 4 //串行中断服务程序 { unsigned char Temp; //定义临时变量 if(RI) //判断是接收中断产生 { RI=0; //标志位清零 Temp=SBUF; //读入缓冲区的值 P1=Temp; //把值输出到P1口,用于观察 SBUF=Temp; //把接收到的值再发回电脑端 } if(TI) //如果是发送标志位,清零 TI=0; } 2.51单片机与电脑串口通信的C程序,最好是中断方式的 #include #include unsigned char ch; bit read_flag= 0 ; void init_serialcom( void ) //串口通信初始设定 { SCON = 0x50 ; //UART为模式1,8位数据, 允许接收 TMOD |= 0x20 ; //定时器1为模式2,8位自动重装 PCON |= 0x80 ; //SMOD=1; TH1 = 0xFD ; //Baud:19200 fosc="11".0592MHz IE |= 0x90 ; //Enable Serial Interrupt TR1 = 1 ; // timer 1 run

相关主题