搜档网
当前位置:搜档网 › 51单片机各针脚介绍

51单片机各针脚介绍

51单片机各针脚介绍
51单片机各针脚介绍

51单片机各引脚及端口详解

51单片机引脚功能:

MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图:

l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。

l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。

l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。

l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。

这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。

P0口有三个功能:

1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)

2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)

3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。

P1口只做I/O口使用:其内部有上拉电阻。

P2口有两个功能:

1、扩展外部存储器时,当作地址总线使用

2、做一般I/O口使用,其内部有上拉电阻;

P3口有两个功能:

除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。

有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,

即:编程脉冲:30脚(ALE/PROG)

编程电压(25V):31脚(EA/Vpp)

接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD)引入,以保护内部RAM中的信息不会丢失。

在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。

ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。参见图2(8051扩展2KB EEPROM电路,在图中ALE 与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址,即P0口输出。

由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

PSEN 外部程序存储器读选通信号:在读外部ROM时PSEN低电平有效,以实现外部ROM单元的读操作。

1、内部ROM读取时,PSEN不动作;

2、外部ROM读取时,在每个机器周期会动作两次;

3、外部RAM读取时,两个PSEN脉冲被跳过不会输出;

4、外接ROM时,与ROM的OE脚相接。

参见图2—(8051扩展2KB EEPROM电路,在图中PSEN与扩展ROM的OE脚相接)

EA/VPP 访问和序存储器控制信号

1、接高电平时:

CPU读取内部程序存储器(ROM)

扩展外部ROM:当读取内部程序存储器超过0FFFH(8051)1FFFH(8052)时自动读取外部ROM。

2、接低电平时:CPU读取外部程序存储器(ROM)。

3、8751烧写内部EPROM时,利用此脚输入21V的烧写电压。

RST 复位信号:当输入的信号连续2个机器周期以上高电平时即为有效,用以完成单片机的复位初始化操作。

XTAL1和XTAL2 外接晶振引脚。当使用芯片内部时钟时,此二引脚用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。

VCC:电源+5V输入 VSS:GND接地。

8031各端口工作原理讲解

并行端口

P0端口

总线I/O端口,双向,三态,数据地址分时复用,该端口除用于数据的输入/输出外,在8031单片机外接程序存储器时,还分时地输出/输入地址/指令。由Po端口输出的信号无锁存,输入的信息有读端口引脚和读端口锁存器之分。P0端口8位中的一位结构图见下图:

由上图可见,P0端口由锁存器、输入缓冲器、切换开关与相应控制电路、场效应管驱动电路构成。

在输出状态下,当切换开关MUX向下时,从内部总线来的数据经锁存器反相和场效应管T2反相,输出到端口引脚线上。此时,场效应管T1关断,因而这种输出方式应为外接上拉电阻的漏极开路式。当切换开关MUX向上时,一位地址/数据信号分时地输出到端口线上。此外,由T1、T2的通断组合,形成高电平、低电平与高阻浮动三态的输出。

在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,Q=1,场效应管T2开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电乎还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,Q=0,场效应管T2截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:凡属于读-修改-写方式的指令,从锁存器读入信号,其它指令则从端口引脚线上读入信号。

读-修改-写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读--修改-写指令的例子。

这样安排的原因在于读-修改-写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因而使原端口的状态被读错。 P0端口是8031单片机的总线口,分时出现数据D7一D0、低8位地址A7一AO,以及三态,用来接口存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。

P1端口:

通用I/0端口,准双向静态口。输出的信息有锁存,输入有读引脚和读锁存器之分。P1端口的一位结构见下图. 由图可见,P1端口与P0端口的主要差别在于,P1端口用内部上拉电阻R代替了P0端口的场效应管T1,并且输出的信息仅来自内部总线。由内部总线输出的数据经锁存器反相和场效应管反相后,锁存在端口线上,所以,P1端口是具有输出锁存的静态口。由下图可见,要正确地从引脚上读入外部信息,必须先使场效应管关断,以便由外部输入的信息确定引脚的状态。为此,在作引脚读入前,必须先对该端口写入l。具有这种操作特点的输入/输出端口,称为准双向I/O口。8031单片机的P1、P2、P3都是准双向口。P0端口由于输出有三态功能,输入前,端口线已处于高阻态,无需先写入1后再作读操作。

单片机复位后,各个端口已自动地被写入了1,此时,可直接作输入操作。如果在应用端口的过程中,已向P1一P3端口线输出过0,则再要输入时,必须先写1后再读引脚,才能得到正确的信息。此外,随输入指令的不同,H端口也有读锁存器与读引脚之分。

Pl端口是51单片机中唯一仅有的单功能I/O端口,并且没有特定的专用功能,输出信号锁存在引脚上。

P2端口:

P2端口的一位结构见下图:

由图可见,P2端口在片内既有上拉电阻,又有切换开关MUX,所以P2端口在功能上兼有P0端口和P1端口的特点。这主要表现在输出功能上,当切换开关MUX向左时,从内部总线输出的一位数据经反相器和场效应管反相后,输出在端口引脚线上;当MUX向右时,输出的一位地址信号也经反相器和场效应管反相后,输出在端口引脚线上。

由于8031单片机必须外接程序存储器才能构成应用电路,而P2端口就是用来周期性地输出从外存中取指令的地址(高8位地址),因此,P2端口的切换开关MUX总是在进行切换,分时地输出从内部总线来的数据和从地址信号线上来的地址。因此P2端口是动态的I/O端口。输出数据虽被锁存,但不是稳定地出现在端口线上。其实,这里输出的数据往往也是一种地址,只不过是外部RAM的高8位地址。

在输入功能方面,P2端口与P0和H端口相同,有读引脚和读锁存器之分,并且P2端口也是准双向口。

可见,P2端口的主要特点包括:①不能输出静态的数据;

②自身输出外部程序存储器的高8位地址;

②执行MOVX指令时,还输出外部RAM的高位地址,故称P2端口为动态地址端口。(这是针对8031说的,P2端口的描述与8051的不同。8051有内部的ROM,无需外加ROM,所以8051的P2可以输出静态的数据。也可以作为外部存储器的地址总线。)

P3端口:

双功能静态I/O口P3端口的一位结构见下图。

由上图可见,P3端口和P1端口的结构相似,区别仅在于P3端口的各端口线有两种功能选择。当处于第一功能时,第二输出功能线为1,此时,内部总线信号经锁存器和场效应管输入/输出,其作用与P1端口作用相同,也是静态准双向I/O端口。当处于第二功能时,锁存器输出1,通过第二输出功能线输出特定的内含信号,在输入方面,即可以通过缓冲器读入引脚信号,还可以通过替代输入功能读入片内的特定第二功能信号。由于输出信号锁存并且有双重功能,故P3端口为静态双功能端口。

P3口的特殊功能(即第二功能):

使P3端品各线处于第二功能的条件是:

1\串行I/O处于运行状态(RXD,TXD);

2\打开了处部中断(INT0,INT1);

3\定时器/计数器处于外部计数状态(T0,T1)

4\执行读写外部RAM的指令(RD,WR)

在应用中,如不设定P3端口各位的第二功能(WR,RD信号的产生不用设置),则P3端口线自动处于第一功能状态,也就是静态I/O端口的工作状态。在更多的场合是根据应用的需要,把几条端口线设置为第二功能,而另外几条端口线处于第一功能运行状态。在这种情况下,不宜对P3端口作字节操作,需采用位操作的形式。

端口的负载能力和输入/输出操作:

P0端口能驱动8个LSTTL负载。如需增加负载能力,可在P0总线上增加总线驱动器。P1,P2,P3端口各能驱动4个LSTTL负载。

前已述及,由于P0-P3端口已映射成特殊功能寄存器中的P0一P3端口寄存器,所以对这些端口寄存器的读/写就实现了信息从相应端口的输入/输出。例如: MOV A, P1 把Pl端口线上的信息输入到A MoV P1, A 把A的内容由P1端口输出 MOV P3, #0FFH 使P3端口线各位置l

串行端口:

MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD(P3.0)和TXD(P3.1)可与外设电路进行全双工的串行异步通信。

1.串行端口的基本特点

8031单片机的串行端口有4种基本工作方式,通过编程设置,可以使其工作在任一方式,以满足不同应用场合的需要。其中,方式0主要用于外接移位寄存器,以扩展单片机的I/O电路;方式1多用于双机之间或与外设电路的通信;方式2,3除有方式1的功能外,还可用作多机通信,以构成分布式多微机系统。

串行端口有两个控制寄存器,用来设置工作方式、发送或接收的状态、特征位、数据传送的波特率(每秒传送的位数)以及作为中断标志等。

串行端口有一个数据寄存器SBUF(在特殊功能寄存器中的字节地址为99H),该寄存器为发送和接收所共同。发送时,只写不读;接收时,只读不写。在一定条件下,向阳UF写入数据就启动了发送过程;读SBUf就启动了接收过程。

串行通信的波特率可以程控设定。在不同工作方式中,由时钟振荡频率的分频值或由定时器Tl的定时溢出时间确定,使用十分方便灵活。

2.串行端口的工作方式①方式0

8位移位寄存器输入/输出方式。多用于外接移位寄存器以扩展I/O端口。波特率固定为fosc/12。其中,fosc为时钟频率。

在方式0中,串行端口作为输出时,只要向串行缓冲器SBUF写入一字节数据后,串行端口就把此8位数据以等的波特率,从RXD引脚逐位输出(从低位到高位);此时,TXD输出频率为fosc/12的同步移位脉冲。数据发送前,仅管不使用中断,中断标志TI还必须清零,8位数据发送完后,TI 自动置1。如要再发送,必须用软件将TI清零。

串行端口作为输入时,RXD为数据输入端,TXD仍为同步信号输出端,输出频率为fosc/12的同步移位脉冲,使外部数据逐位移入RxD。当接收到8位数据(一帧)后,中断标志RI自动置。如果再接收,必须用软件先将RI清零。

串行方式0发送和接收的时序过程见下图。

②方式1

10位异步通信方式。其中,1个起始位(0),8个数据位(由低位到高位)和1个停止位(1)。波特率由定时器T1的溢出率和SMOD位的状态确定。一条写SBUF指令就可启动数据发送过程。在发送移位时钟(由波特率确定)的同步下,从TxD先送出起始位,然后是8位数据位,最后是停止位。这样的一帧10位数据发送完后,中断标志TI置位。

在允许接收的条件下(REN=1),当RXD出现由1到O的负跳变时,即被当成是串行发送来的一帧数据的起始位,从而启动一次接收过程。当8位数据接收完,并检测到高电乎停止位后,即把接收到的8位数据装入SBUF,置位RI,一帧数据的接收过程就完成了。方式1的数据传送波特率可以编程设置,使用范围宽,其计算式为:波特率=2SMOD/32×(定时器T1的溢出率)

其中,SMOD是控制寄存器PCON中的一位程控位,其取值有0和l两种状态。显然,当SMOD =0时,波特率=1/32(定时器Tl溢出率),而当SMOD=1时,波特率=1/16(定时器T1溢出率)。所谓定时器的溢出率,就是指定时器一秒钟内的溢出次数。波特率的算法,以及要求一定波特率时定时器定时初值的求法,后面将详细讨论。·串行方式1的发送和接收过程的时序见下图。

③方式2,3

11位异步通信方式。其中,1个起始位(0),8个数据位(由低位到高位),1个附加的第9位和1个停止住(1)。方式2和方式3除波特率不同外,其它性能完全相同。方式2,3的发送、接收时序见下图。

由图可见,方式2和方式3与方式l的操作过程基本相同,主要差别在于方式2,3有第9位数据。

发送时,发送机的这第9位数据来自该机SCON中的TB8,而接收机将接收到的这第9位数据送入本机SCON中的RB8。这个第9位数据通常用作数据的奇偶检验位,或在多机通信中作为地址/数据的特征位。

方式2和方式3的波特率计算式如下:方式2的波特率=2SMOD/64×fosc

方式3的波特率=2SMOD/32×定时器T1的溢出率

由此可见,在晶振时钟频率一定的条件下,方式2只有两种波特率,而方式3可通过编程设置成多种波特率,这正是这两种方式的差别所在。 3.串行端口的控制寄存器

串行端口共有2个控制寄存器SCON和PCON,用以设置串行端口的工作方式、接收/发送的运行状态、接收/发送数据的特征、波特率的大小,以及作为运行的中断标志等。

单片机引脚说明-按其引脚功能分为四部分叙述这40条引脚的功能

单片机引脚说明-按其引脚功能分为四部分叙述这40条引脚的功能

下面按其引脚功能分为四部分叙述这40条引脚的功能。 1、主电源引脚VCC和VSS VCC——(40脚)接+5V电压;VSS——(20脚)接地。 2、外接晶体引脚XTAL1和XTAL2 XTAL1(19脚)接外部晶体的一个引脚。在单片机内部,它是一个反相放大器的输入端,这个放大器构成了片内振荡器。当采用外部振荡器时,对HMOS单片机,此引脚应接地;对CHMOS 单片机,此引脚作为驱动端。 XTAL2(18脚)接外晶体的另一端。在单片机内部,接至上述振荡器的反相放大器的输出端。采用外部振荡器时,对HMOS单片机,该引脚接外部振荡器的信号,即把外部振荡器的信号直接接到内部时钟发生器的输入端;对XHMOS,此引脚应悬浮。 3、控制或与其它电源复用引脚RST/VPD、ALE/PROG、PSEN和EA/VPP ①RST/VPD(9脚)当振荡器运行时,在此脚上出现两个机器周期的高电平将使单片机复位。推

荐在此引脚与VSS引脚之间连接一个约8.2k的下拉电阻,与VCC引脚之间连接一个约10μF 的电容,以保证可靠地复位。 VCC掉电期间,此引脚可接上备用电源,以保证内部RAM的数据不丢失。当VCC主电源下掉到低于规定的电平,而VPD在其规定的电压范围(5±0.5V)内,VPD就向内部RAM提供备用电源。 ②ALE/PROG(30脚):当访问外部存贮器时,ALE(允许地址锁存)的输出用于锁存地址的低位字节。即使不访问外部存储器,ALE端仍以不变的频率周期性地出现正脉冲信号,此频率为振荡器频率的1/6。因此,它可用作对外输出的时钟,或用于定时目的。然而要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。ALE端可以驱动(吸收或输出电流)8个LS型的TTL输入电路。 对于EPROM单片机(如8751),在EPROM编程期间,此引脚用于输入编程脉冲(PROG)。 ③PSEN(29脚):此脚的输出是外部程序存储器的读选通信号。在从外部程序存储器取指令(或常数)期间,每个机器周期两次PSEN有效。

STC89C51单片机引脚功能介绍

C51单片机引脚功能介绍 C51单片机引脚功能介绍 单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。 ⒈电源: ⑴VCC - 芯片电源,接+5V; ⑵VSS - 接地端; ⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 ⒊控制线:控制线共有4根, ⑴ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ①ALE功能:用来锁存P0口送出的低8位地址新门户 ②PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。 ⑵PSEN:外ROM读选通信号。

⑶RST/VPD:复位/备用电源。 ①RST(Reset)功能:复位信号输入端。 ②VPD功能:在Vcc掉电情况下,接备用电源。 ⑷EA/Vpp:内外ROM选择/片内EPROM编程电源。 ①EA功能:内外ROM选择端。 ②Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 ⒋I/O线 89C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。 拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为89C51的芯片,下面我们就看一下如何给它连线。 1、电源:这当然是必不可少的了。单片机使用的是5V电源,其中正极接40管脚,负极(地)接20管脚。 2、振蒎电路:单片机是一种时序电路,必须供给脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。只要买来晶体震荡器,连上就能了,按下图1接上即可。 3、复位管脚:按下图1中画法连好。 EA管脚:EA管脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。 我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个管脚相连,不然单片机就没法控制它了,单片机上除了刚才用掉的5个管脚,还有35个,我们将这个LED和1脚相连。(见图1,其中R1是限流电阻) 按照这个图的接法,当1脚是高电平时,LED不亮,只有1脚是低电平时,LED才发亮。因此要1脚我们要能够控制,也就是说,我们要能够让1管脚按要求变为高或低电平。即然要控制1脚,就得给它起个名字,叫它什么名字呢,设计51芯片的INTEL公司已经起好了,就叫它P1.0,这是规定。 名字有了,要计算机做事,也得要向计算机发命令,计算机能听得懂的命令称之为计算机的指令。让一个管脚输出高电平的指令是SETB,让一个管脚输出低电平的指令是CLR。因此,我们要P1.0输出高电平,只要写SETB P1.0,要P1.0输出低电平,只要写CLR P1.0就能了。但是我们怎样才能计算机执行这条指令呢?要解决这个问题,第一,计算机看不懂SETB CLR之类的指令,我们得把指令翻译成计算机能懂的方式,再让计算机去读。计算机只懂一样东西:数字。因此我们得把SETB P1.0变为(D2H,90H ),把CLR P1.0变为(C2H,90H ),至于为什么是这两个数字,这也是由51芯片的设计者--INTEL规定的,我们不去研究。第二步,在得到这两个数字后,还要借助于一个硬件工具"编程器"将这两个数字进入单片机的内部。编程器:就是把你在电脑上写出来的代码用汇编等编译器生成的一个

AT89C51单片机简介

4.1 AT89C51 简介: AT89C51(如图2-10所示)是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 AT89C51单片机示 意图(4-2-1) VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时当8051通电,时钟电路开始工作,在RESET引脚上出现24个时钟周期以上的高电平,系统即初始复位。初始化后,程序计数器PC指向0000H,P0-P3输出口全部为高电平,堆栈指钟写入07H,其它专用寄存器被清“0”。RESET由高电平下降为低电平后,系统即从0000H地址开始执行程序。然而,初始复位不改变RAM(包括工作寄存器R0-R7)的状态, 8051的初始态(4-2-2)

80C51单片机引脚图及引脚功能介绍

80C51单片机引脚图及引脚功能介绍 首先我们来介绍一下单片机的引脚图及引脚功能(如下图所示),引脚的具体功能将在下面详细介绍 单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。 ⒈ 电源: ⑴ VCC - 芯片电源,接+5V; ⑵ VSS - 接地端; ⒉ 时钟:

XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 ⒊ 控制线:控制线共有4根, ⑴ ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ① ALE功能:用来锁存P0口送出的低8位地址 ② PROG功能:片内有EPROM的芯片,在EPROM 编程期间,此引脚输入编程脉冲。 ⑵ PSEN:外ROM读选通信号。 ⑶ RST/VPD:复位/备用电源。 ① RST(Reset)功能:复位信号输入端。 ② VPD功能:在Vcc掉电情况下,接备用电源。 ⑷ EA/Vpp:内外ROM选择/片内EPROM编程电源。 ① EA功能:内外ROM选择端。 ② Vpp功能:片内有EPROM的芯片,在EPROM 编程期间,施加编程电源Vpp。 ⒋ I/O线

80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。 P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。 拿到一块单片机,想要使用它,首先必须要知道怎样去连线,我们用的一块89C51的芯片为例,我们就看一下如何给它连线。 1、电源:这当然是必不可少的了。单片机使用的是5V电源,其中正极接40管脚,负极(地)接20管脚。 2、振蒎电路:单片机是一种时序电路,必须供给脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。只要买来晶体震荡器,电容,连上就能了,按图1接上即可。 3、复位管脚:按图1中画法连好,至于复位是何含义及为何需要复要复位,在单片机功能中介绍。 4、 EA管脚:EA管脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。

AT89S51单片机简介复习过程

A T89S51单片机简介

一、AT89S51单片机简介 AT89S51 为 ATMEL 所生产的可电气烧录清洗的 8051 相容单芯片,其内部程序代码容量为4KB (一)、AT89S51主要功能列举如下: 1、为一般控制应用的 8 位单芯片 2、晶片内部具时钟振荡器(传统最高工作频率可至 12MHz) 3、内部程式存储器(ROM)为 4KB 4、内部数据存储器(RAM)为 128B 5、外部程序存储器可扩充至 64KB 6、外部数据存储器可扩充至 64KB 7、32 条双向输入输出线,且每条均可以单独做 I/O 的控制 8、5 个中断向量源 9、2 组独立的 16 位定时器 10、1 个全多工串行通信端口 11、8751 及 8752 单芯片具有数据 保密的功能 12、单芯片提供位逻辑运算指令 (二)、AT89S51各引脚功能介绍: VCC: AT89S51 电源正端输入,接+5V。 收集于网络,如有侵权请联系管理员删除

VSS: 电源地端。 XTAL1: 单芯片系统时钟的反相放大器输入端。 XTAL2: 系统时钟的反相放大器输出端,一般在设计上只要在 XTAL1 和 XTAL2 上接上一只石英振荡晶体系统就可以动作了,此外可以在两引脚与地之间加入一20PF 的小电容,可以使系统更稳定,避免噪声干扰而死机。 RESET: AT89S51的重置引脚,高电平动作,当要对晶片重置时,只要对此引脚电平提升至高电平并保持两个机器周期以上的时间,AT89S51便能完成系统重置的各项动作,使得内部特殊功能寄存器之内容均被设成已知状态,并且至地址0000H处开始读入程序代码而执行程序。 EA/Vpp: "EA"为英文"External Access"的缩写,表示存取外部程序代码之意,低电平动作,也就是说当此引脚接低电平后,系统会取用外部的程序代码(存于外部EPROM中)来执行程序。因此在8031及8032中,EA引脚必须接低电平,因为其内部无程序存储器空间。如果是使用 8751 内部程序空间时,此引脚要接成高电平。此外,在将程序代码烧录至8751内部EPROM时,可以利用此引脚来输入21V的烧录高压(Vpp)。 ALE/PROG: 收集于网络,如有侵权请联系管理员删除

单片机各个引脚功能概述

单片机引脚,单片机引脚是什么意思 8051单片机引脚功能介绍 首先我们来连接一下单片机的引脚图,如果,具体功能在下面都有介绍。 单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。 ⒈ 电源: ⑴ VCC - 芯片电源,接+5V; ⑵ VSS - 接地端; ⒉ 时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 ⒊ 控制线:控制线共有4根, ⑴ ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ① ALE功能:用来锁存P0口送出的低8位地址 ② PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。 ⑵ PSEN:外ROM读选通信号。 ⑶ RST/VPD:复位/备用电源。 ① RST(Reset)功能:复位信号输入端。 ② VPD功能:在Vcc掉电情况下,接备用电源。 ⑷ EA/Vpp:内外ROM选择/片内EPROM编程电源。 ① EA功能:内外ROM选择端。 ② Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 ⒋ I/O线 80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。

〈51单片机引脚图及引脚功能〉 拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为89C51的芯片,下面我们就看一下如何给它连线。 1、电源:这当然是必不可少的了。单片机使用的是5V电源,其中正极接40管脚,负极(地)接20管脚。 2、振蒎电路:单片机是一种时序电路,必须供给脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。只要买来晶体震荡器,电容,连上就能了,按图1接上即可。 3、复位管脚:按图1中画法连好,至于复位是何含义及为何需要复要复位,在单片机功能中介绍。 4、 EA管脚:EA管脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。 我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个管脚相连,不然单片机就没法控制它了,那么和哪个管脚相连呢?单片机上除了刚才用掉的5个管脚,还有35个,我们将这个LED和1脚相连。(见图1,其中R1是限流电阻) 按照这个图的接法,当1脚是高电平时,LED不亮,只有1脚是低电平时,LED 才发亮。因此要1脚我们要能够控制,也就是说,我们要能够让1管脚按要求变为高或低电平。即然我们要控制1脚,就得给它起个名字,总不能就叫它一脚吧?叫它什么名字呢?设计51芯片的INTEL公司已经起好了,就叫它P1.0,这是规定,不能由我们来更改。

51单片机引脚介绍

51单片机引脚功能介绍 引脚大全 51单片机引脚功能: MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图: l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。 l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。 l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。 l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。 这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。 P0口有三个功能: 1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口) 2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口) 3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。 P1口只做I/O口使用:其内部有上拉电阻。 P2口有两个功能: 1、扩展外部存储器时,当作地址总线使用 2、做一般I/O口使用,其内部有上拉电阻; P3口有两个功能: 除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。

有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的, 即:编程脉冲:30脚(ALE/PROG) 编程电压(25V):31脚(EA/Vpp) 接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD)引入,以保护内部RAM中的信息不会丢失。 在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。 ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址,即P0口输出。 由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。 PSEN 外部程序存储器读选通信号:在读外部ROM时PSEN低电平有效,以实现外部ROM单元的读操作。 1、内部ROM读取时,PSEN不动作; 2、外部ROM读取时,在每个机器周期会动作两次; 3、外部RAM读取时,两个PSEN脉冲被跳过不会输出; 4、外接ROM时,与ROM的OE脚相接。 参见图2—(8051扩展2KB EEPROM电路,在图中PSEN与扩展ROM的OE脚相接) EA/VPP 访问和序存储器控制信号 1、接高电平时: CPU读取内部程序存储器(ROM) 扩展外部ROM:当读取内部程序存储器超过0FFFH(8051)1FFFH(8052)时自动读取外部ROM。

51单片机复习题及答案

第1章单片机概述 1.单片机与普通微型计算机的不同之处在于其将、、和 3部分集成于一块芯片上。 答:CPU、存储器、I/O口。 2.8051与8751的区别是。 A.内部数据存储单元数目不同B.内部数据存储器的类型不同 C.内部程序存储器的类型不同D.内部寄存器的数目不同 答:C。 3.在家用电器中使用单片机应属于微计算机的。 A.辅助设计应用;B.测量、控制应用;C.数值计算应用;D.数据处理应用 答:B。 4.微处理器、微计算机、微处理机、CPU、单片机它们之间有何区别? 答:微处理器、微处理机和CPU都是中央处理器的不同称谓;而微计算机、单片机都是一个完整的计算机系统,单片机特指集成在一个芯片上的用于测控目的的单片微计算机。 5.MCS-51系列单片机的基本型芯片分别为哪几种?它们的差别是什么? 答:MCS-51系列单片机的基本型芯片分别是8031、8051和8751。它们的差别是在片内程序存储器上。8031无片内程序存储器,8051片内有4KB的程序存储器ROM,而8751片内集成有4KB 的程序存储器EPROM。 6.为什么不应当把51系列单片机称为MCS-51系列单片机? 答:因为MCS-51系列单片机中的“MCS”是Intel公司生产的单片机的系列符号,而51系列单片机是指世界各个厂家生产的所有与8051的内核结构、指令系统兼容的单片机。 第2章 51单片机片内硬件结构 1.在51单片机中,如果采用6MHz晶振,一个机器周期为。 答:2μs 2.AT89C51单片机的机器周期等于个时钟振荡周期。 答:12。 3.若A中的内容为63H,那么,P标志位的值为。 答:P标志位的值为0。 4.内部RAM中,可作为工作寄存器区的单元地址为 H~ H。 答:00H;1FH。 5.通过堆栈操作实现子程序调用,首先要把的内容入栈,以进行断点保护。调用返回时,再进行出栈保护,把保护的断点送回到。 答:PC;PC。 6. 51单片机程序存储器的寻址范围是由程序计数器PC的位数所决定的,因为51单片机的PC 是16位的,因此其寻址的范围为 KB。 答:64KB。 7.判断下列项说法是正确的。

51单片机主要引脚功能

51单片机主要引脚功能 XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。 RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。 VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V 电源的正负端。 P0~P3 为可编程通用I/O 脚,其功能用途由软件定义 P0 口:P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8 个TTL 逻辑门电路,对端口P0 写1 时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash 编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 P1 口:P1 是一个带内部上拉电阻的8 位双向I/O 口,P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口写1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在 上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。 P2 口:P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口P2 写1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内 部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。 P3 口:P3 口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对P3 口写入1 时,它

外文翻译---51系列单片机的结构和功能

附录A 英文文献 Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computers . An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. ( 5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. ( 6) Five cut off cutting off the control system of the source . ( 7) One all duplexing serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. ( 8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertas now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarilies of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate

51单片机实例(含详细代码说明)

1.闪烁灯 1.实验任务 如图4.1.1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为0.2秒。 2.电路原理图 图4.1.1 3.系统板上硬件连线 把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上。 4.程序设计内容 (1).延时程序的设计方法 作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要 求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在 执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程 序是如何设计呢?下面具体介绍其原理:

如图4.1.1所示的石英晶体为12MHz,因此,1个机器周期为1微秒机器周期微秒 MOV R6,#20 2个 2 D1: MOV R7,#248 2个 2 2+2×248=498 20× DJNZ R7,$ 2个2×248 (498 DJNZ R6,D1 2个2×20=40 10002 因此,上面的延时程序时间为10.002ms。 由以上可知,当R6=10、R7=248时,延时5ms,R6=20、R7=248时, 延时10ms,以此为基本的计时单位。如本实验要求0.2秒=200ms, 10ms×R5=200ms,则R5=20,延时子程序如下: DELAY: MOV R5,#20 D1: MOV R6,#20 D2: MOV R7,#248 DJNZ R7,$ DJNZ R6,D2 DJNZ R5,D1 RET (2).输出控制 如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管 的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0 端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。 5.程序框图 如图4.1.2所示

80C51单片机的引脚功能

1.1 80C51单片机的引脚功能 80C51系列中,用CHMOS工艺制造的单片机都采用双列直插式(DIP)40脚封装,引脚信号完全相同。图2-9为引脚图,这40根引脚大致可分为:电源(V CC、V SS、V PP、V PD)、时钟(XTAL1、XTAL2)、I/O口(P0~P3)、地址总线(P0口、P2口)和控制总线(ALE、RST、、、)等几部分。它们的功能简述如下: 1.电源 Vcc(引脚号40),芯片电源,接+5V;Vss(引脚号20),电源接地端。 2.时钟 XTAL1(引脚号18)内部振荡电路反相放大器的输入端,是外接晶振的一个引脚。当采用外部振荡器时,此引脚接地。 XTAL2(引脚号19)内部振荡器的反相放大器输出端,是外接晶振的另一端。当采用外部振荡器时,此引脚接外部振荡源。 3.控制总线 (1)ALE/(引脚号30):正常操作时为ALE功能(允许地址锁存),用来把地址的低字节锁存到外部锁存器。ALE引脚以不变的频率(振荡器频率的 1/6)周期性地发出正脉冲信号。因此,它可用作对外输出的时钟信号或用于定时。但要注意,每当访问外部数据存储器时,将跳过一个ALE脉冲。ALE端可以驱动(吸收或输出电流)8个LSTTL电路。在8751单片机EPROM编程期间,此 引脚接编程脉冲(功能)。 (2)(引脚号29):外部程序存储器读选通信号。在从外部程序存储器取指令(或数据)期间,在每个机器周期内两次有效。可以驱动8个LSTTL电路。 (3)RST/VPD(引脚号9):复位信号输入端。振荡器工作时,该引脚上持续2个机器周期的高电平可实现复位操作。此引脚还可接上备用电源。在Vcc掉电期间,由向内部RAM提供电源,以保持内部RAM中的数据。 (4)/Vpp(引脚号31):为内部程序存储器和外部程序存储器的选择端。当为高电平时,访问内部程序存储器(PC值小于4K);当为低电平时,访问外部程序存储器。对于87C51单片机,在EPROM编程期间,此端为21V编程电源输入端。

at89c51引脚图及功能

at89c51引脚图及功能 AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。 主要性能参数: ·与MCS-51产品指令系统完全兼容·4k字节可重擦写Flash闪速存储器·1000次擦写周期 ·全静态操作:0Hz-24MHz ·三级加密程序存储器·128×8字节内部RAM ·32个可编程I/O口线·2个16位定时/计数器·6个中断源 ·可编程串行UART通道·低功耗空闲和掉电模式 功能特性概述: AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。 ·P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。 在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。 在FIash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 ·P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱

51系列单片机的区别与特点介绍

51系列单片机的区别与特点介绍8031的特点8031片内不带程序存储器ROM,使用时用户需外接程序存储器和一片逻辑电路373,外接的程序存储器多为EPROM的2764系列。用户若想对写入到EPROM中的程序进行修改,必须先用一种特殊的紫外线灯将其照射擦除,之后再可写入。写入到外接程序存储器的程序代码没有什么保密性可言。 8051的特点8051片内有4k ROM,无须外接外存储器和373,更能体现“单片”的简练。但是你编的程序你无法烧写到其ROM中,只有将程序交芯片厂代你烧写,并是一次性的,今后你和芯片厂都不能改写其内容。 8751的特点8751与8051基本一样,但8751片内有4k的EPROM,用户可以将自己编写的程序写入单片机的EPROM中进行现场实验与应用,EPROM的改写同样需要用紫外线灯照射一定时间擦除后再烧写。 由于上述类型的单片机应用的早,影响很大,已成为事实上的工业标准。后来很多芯片厂商以各种方式与Intel公司合作,也推出了同类型的单片机,如同一种单片机的多个版本一样,虽都在不断的改变制造工艺,但内核却一样,也就是说这类单片机指令系统完全兼容,绝大多数管脚也兼容;在使用上基本可以直接互换。人们统称这些与8051内核相同的单片机为“51系列单片机”,学了其中一种,便会所有的51系列。 AT89C51、AT89S51的特点在众多的51系列单片机中,要算 ATMEL 公司的AT89C51、AT89S51更实用,因他不但和8051指令、管脚完全兼容,而且其片内的4K程序存储器是FLASH工艺的,这种工艺的存储器用户可以用电的方式瞬间擦除、改写,一般专为 ATMEL AT89xx 做的编程器均带有这些功能。显而易见,这种单片机对开发设备的要求很低,开发时间也大大缩短。写入单片机内的程序还可以进行加密,这又很好地保护了你的劳动成果。再着,AT89C51、AT89S51目前的售价比8031还低,市场供应也很充足。AT89S51、52是2003年ATMEL推出的新型品种,除了完全兼容8051外,还多了ISP编程和看门狗功能。我们也专门为这种新片设计了一款编程、学习、实验板。 AT89C2051、AT89C1051等的特点ATMEL公司的51系列还有AT89C2051、AT89C1051等品种,这些芯片是在AT89C51的基础上将一些功能精简掉后形成的精简版。AT89C2051取掉了P0口和P2口,内部的程序FLASH存储器也小到2K,封装形式也由51的P40脚改为20脚,相应的价格也低一些,特别适合在一些智能玩具,手持仪器等程序不大的电路环境下应 用;AT89C1051在2051的基础上,再次精简掉了串口功能等,程序存储器再次减小到1k,当

51单片机读引脚及读锁存器

51单片机I/O引脚IO口工作原理 一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。 下面,我们先就组成P0口的每个单元部份跟大家介绍一下: 先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为…读锁存器?端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为…读引脚?的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。 D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O 口线中都是用一个D触发器来构成锁存器的。大家看上图中的D锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。 对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。 多路开关:在51单片机中,当内部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机或者编写的程序超过了单片机内部的存储器容

51系列单片机介绍

51系列单片机是基本型,包括8031、8051、8751、8951这四个机种区别,仅在于内程序储存器。其中8031/8051/8751是Intel公司早期的产品。 8031的特点 8031片内不带程序存储器ROM,使用时用户需外接程序存储器和一片逻辑电路373,外接的程序存储器多为EPROM的2764系列。用户若想对写入到EPROM中的程序进行修改,必须先用一种特殊的紫外线灯将其照射擦除,之后再可写入。写入到外接程序存储器的程序代码没有什么保密性可言。 8051的特点 8051片内有4k ROM,无须外接外存储器和373,更能体现“单片”的简练。但是你编的程序你无法烧写到其ROM中,只有将程序交芯片厂代你烧写,并是一次性的,今后你和芯片厂都不能改写其内容。 8751的特点 8751与8051基本一样,但8751片内有4k的EPROM,用户可以将自己编写的程序写入单片机的EPROM中进行现场实验与应用,EPROM的改写同样需要用紫外线灯照射一定时间擦除后再烧写。 由于上述类型的单片机应用的早,影响很大,已成为事实上的工业标准。后来很多芯片厂商以各种方式与Intel公司合作,也推出了同类型的单片机,如同一种单片机的多个版本一样,虽都在不断的改变制造工艺,但内核却一样,也就是说这类单片机指令系统完全兼容,绝大多数管脚也兼容;在使用上基本可以直接互换。人们统称这些与8051内核相同的单片机为“51系列单片机”。 AT89C51、AT89S51的特点 在众多的51系列单片机中,要算ATMEL 公司的A T89C51、A T89S51更实用,因他不但和8051指令、管脚完全兼容,而且其片内的4K程序存储器是FLASH工艺的,这种工艺的存储器用户可以用电的方式瞬间擦除、改写,一般专为ATMEL AT89xx 做的编程器均带有这些功能。显而易见,这种单片机对开发设备的要求很低,开发时间也大大缩短。写入单片机内的程序还可以进行加密,这又很好地保护了你的劳动成果。再着,AT89C51、AT89S51目前的售价比8031还低,市场供应也很充足。 AT89C2051、AT89C1051等的特点 ATMEL公司的51系列还有A T89C2051、A T89C1051等品种,这些芯片是在AT89C51的基础上将一些功能精简掉后形成的精简版。A T89C2051取掉了P0口和P2口,内部的程序FLASH存储器也小到2K,封装形式也由51的P40脚改为20脚,相应的价格也低一些,特别适合在一些智能玩具,手持仪器等程序不大的电路环境下应用;AT89C1051在2051的基础上,再次精简掉了串口功能等,程序存储器再次减小到1k,当然价格也更低。 对2051和1051来说,虽然减掉了一些资源,但他们片内都集成了一个精密比较器,别小看这小小的比较器,他为我们测量一些模拟信号提供了极大的方便,在外加几个电阻和电容的情况下,就可以测量电压、温度等我们日常需要的量。这对很多日用电器的设计是很宝贵的资源。 由于51系列单片机的内核都一样,所以在51单片机教材方面目前仍然沿用Intel MCS 8051单片机的书籍。开发软件和工具也是一样,我们统称为8051开发系统、环境、等等,如我们网站介绍的汇编程序ASM51、Keil C51、MedWin 等均是针对8051内核单片机的开发软件。 单对AT89C51、A T89S51来说,在实际电路中可以直接互换8051\\8751,替换8031只是第31脚有区别,8031因内部没有ROM,31脚需接地(GND),单片机在启动后就到外面程序存储器读取指令;而8051/8751/89c51因内部有程序存储器,31脚接高电平(VCC),

相关主题