搜档网
当前位置:搜档网 › 双目标定-opencv-双目相机标定

双目标定-opencv-双目相机标定

#include
#include
#include
#include

#include

#include
#include
#include
#include
#include
#ifndef DEBUG
#pragma comment(lib, "opencv_features2d249.lib")
#pragma comment(lib, "opencv_core249.lib")
#pragma comment(lib, "opencv_highgui249.lib")
#pragma comment(lib, "opencv_nonfree249.lib")
#pragma comment(lib, "opencv_imgproc249.lib")
#pragma comment(lib, "opencv_calib3d249.lib")
#else
#pragma comment(lib, "opencv_features2d249d.lib")
#pragma comment(lib, "opencv_core249d.lib")
#pragma comment(lib, "opencv_highgui249d.lib")
#pragma comment(lib, "opencv_nonfree249d.lib")
#pragma comment(lib, "opencv_imgproc249d.lib")
#pragma comment(lib, "opencv_calib3d249d.lib")
#endif
#ifndef _CRT_SECURE_NO_WARNINGS
# define _CRT_SECURE_NO_WARNINGS
#endif

using namespace cv;
using namespace std;

static void help()
{
cout << "This is a camera calibration sample." << endl
<< "Usage: calibration configurationFile" << endl
<< "Near the sample file you'll find the configuration file, which has detailed help of "
"how to edit it. It may be any OpenCV supported file format XML/YAML." << endl;
}
class Settings
{
public:
Settings() : goodInput(false) {}
enum Pattern { NOT_EXISTING, CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
enum InputType {INVALID, CAMERA, VIDEO_FILE, IMAGE_LIST};

void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize
<< "Calibrate_Pattern" << patternToUse
<< "Calibrate_NrOfFrameToUse" << nrFrames
<< "Calibrate_FixAspectRatio" << aspectRatio
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint

<< "Write_DetectedFeaturePoints" << bwritePoints
<< "Write_extrinsicParameters" << bwriteExtrinsics
<< "Write_outputFileName" << outputFileName

<< "Show_UndistortedImage" << showUndistorsed

<< "Input_FlipAroundHorizontalAxis" << flipVertical
<< "Input_Delay" << delay
<< "Input" << input
<< "}";
}
void read(const FileNode& node) //Read serialization for this class
{
node["BoardSize_Width" ] >> boardSize.width;
node["BoardSize_Height"] >> boardSize.height;
node["Calibrate_Pattern"] >> patternToUse;
node["Square_Size"] >> squareSiz

e;
node["Calibrate_NrOfFrameToUse"] >> nrFrames;
node["Calibrate_FixAspectRatio"] >> aspectRatio;
node["Write_DetectedFeaturePoints"] >> bwritePoints;
node["Write_extrinsicParameters"] >> bwriteExtrinsics;
node["Write_outputFileName"] >> outputFileName;
node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
node["Input_FlipAroundHorizontalAxis"] >> flipVertical;
node["Show_UndistortedImage"] >> showUndistorsed;
node["Input"] >> input;
node["Input_Delay"] >> delay;
interprate();
}
void interprate()
{
goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0)
{
cerr << "Invalid Board size: " << boardSize.width << " " << boardSize.height << endl;
goodInput = false;
}
if (squareSize <= 10e-6)
{
cerr << "Invalid square size " << squareSize << endl;
goodInput = false;
}
if (nrFrames <= 0)
{
cerr << "Invalid number of frames " << nrFrames << endl;
goodInput = false;
}

if (input.empty()) // Check for valid input
inputType = INVALID;
else
{
if (input[0] >= '0' && input[0] <= '9')
{
stringstream ss(input);
ss >> cameraID;
inputType = CAMERA;
}
else
{
if (readStringList(input, imageList))
{
inputType = IMAGE_LIST;
nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();
}
else
inputType = VIDEO_FILE;
}
if (inputType == CAMERA)
inputCapture.open(cameraID);
if (inputType == VIDEO_FILE)
inputCapture.open(input);
if (inputType != IMAGE_LIST && !inputCapture.isOpened())
inputType = INVALID;
}
if (inputType == INVALID)
{
cerr << " Inexistent input: " << input;
goodInput = false;
}

flag = 0;
if(calibFixPrincipalPoint) flag |= CV_CALIB_FIX_PRINCIPAL_POINT;
if(calibZeroTangentDist) flag |= CV_CALIB_ZERO_TANGENT_DIST;
if(aspectRatio) flag |= CV_CALIB_FIX_ASPECT_RATIO;


calibrationPattern = NOT_EXISTING;
if (!https://www.sodocs.net/doc/852563914.html,pare("CHESSBOARD")) calibrationPattern = CHESSBOARD;
if (!https://www.sodocs.net/doc/852563914.html,pare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
if (!https://www.sodocs.net/doc/852563914.html,pare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXIST

ING)
{
cerr << " Inexistent camera calibration mode: " << patternToUse << endl;
goodInput = false;
}
atImageList = 0;

}
Mat nextImage()
{
Mat result;
if( inputCapture.isOpened() )
{
Mat view0;
inputCapture >> view0;
view0.copyTo(result);
}
else if( atImageList < (int)imageList.size() )
result = imread(imageList[atImageList++], CV_LOAD_IMAGE_COLOR);

return result;
}

static bool readStringList( const string& filename, vector& l )
{
l.clear();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
}
public:
Size boardSize; // The size of the board -> Number of items by width and height
Pattern calibrationPattern;// One of the Chessboard, circles, or asymmetric circle pattern
float squareSize; // The size of a square in your defined unit (point, millimeter,etc).
int nrFrames; // The number of frames to use from the input for calibration
float aspectRatio; // The aspect ratio
int delay; // In case of a video input
bool bwritePoints; // Write detected feature points
bool bwriteExtrinsics; // Write extrinsic parameters
bool calibZeroTangentDist; // Assume zero tangential distortion
bool calibFixPrincipalPoint;// Fix the principal point at the center
bool flipVertical; // Flip the captured images around the horizontal axis
string outputFileName; // The name of the file where to write
bool showUndistorsed; // Show undistorted images after calibration
string input; // The input ->



int cameraID;
vector imageList;
int atImageList;
VideoCapture inputCapture;
InputType inputType;
bool goodInput;
int flag;

private:
string patternToUse;


};

static void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{
if(node.empty())
x = default_value;
else
x.read(node);
}

enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };

bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector > imagePoints );


/// 全局变量
Mat src, srcGray;
int maxCorners = 10; //角点个数的最大值
int maxCornersThresh = 20; //角点个数最大值的上限(滑动条范围0-20)
char* detectWindow = "detection";
char* refineWindow = "ref

inement";

/// 角点精准化函数声明
void doCornerRefinement( int, void* );

int main1( )
{
/// 载入图像并灰度化
src = imread( "house.jpg", 1 );
cvtColor( src, srcGray, CV_BGR2GRAY );

/// 创建显示窗口以及滑动条
namedWindow( detectWindow, CV_WINDOW_AUTOSIZE );
createTrackbar( "max num:", detectWindow, &maxCorners, maxCornersThresh, doCornerRefinement );
imshow( detectWindow, src );

doCornerRefinement( 0, 0 );

waitKey(0);
return(0);
}

/// 使用Shi-Tomasi方法检测角点,再对角点位置进行精准化
void doCornerRefinement( int, void* )
{
if( maxCorners < 1 )
maxCorners = 1;

/// Shi-Tomasi的参数设置
vector corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false; //不使用Harris检测算法
double k = 0.04;

/// 深度拷贝原图像用于绘制角点
Mat detectSrcCopy = src.clone();
Mat refineSrcCopy = src.clone();

/// 应用Shi-Tomasi角点检测算法
goodFeaturesToTrack( srcGray,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(), //未选择感兴趣区域
blockSize,
useHarrisDetector,
k );

/// 当maxCorners的值较小时,以下两个值基本是一样的;
/// 当maxCorners的值较大时,实际检测到的角点数目有可能小于maxCorners,以下两个值不一样。
cout<<"* detected corners : "<cout<<"** max corners: "<
/// 1--显示角点检测结果
int r = 3;
cout<<"-- Before refinement: "<for( int i = 0; i < corners.size(); i++ )
{
// 标示出角点
circle( detectSrcCopy, corners[i], r, Scalar(255,0,255), -1, 8, 0 );
// 输出角点坐标
cout<<" ["<}
namedWindow( detectWindow, CV_WINDOW_AUTOSIZE );
imshow( detectWindow, detectSrcCopy );

/// 角点位置精准化参数
Size winSize = Size( 5, 5 );
Size zeroZone = Size( -1, -1 );
TermCriteria criteria = TermCriteria(
CV_TERMCRIT_EPS + CV_TERMCRIT_ITER,
40, //maxCount=40
0.001 ); //epsilon=0.001
/// 计算精准化后的角点位置
cornerSubPix( srcGray, corners, winSize, zeroZone, criteria );

/// 2--显示精准化后的角点
cout<<"-- After refinement: "<for( int i = 0; i < corners.size(); i++ )
{
// 标示出角点
circle( refineSrcCopy, corners[i], r, Scalar(255,0,255), -1, 8, 0 );
// 输出角点坐标
cout<<" ["<}
namedWindow( refineWindow, CV_WINDOW_AUTOSIZE );
imshow( refineWindow, refineSrcCopy );

cout<}

int main11(int argc, char* argv[])
{
help();

//main1();
Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{

cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
return -1;
}
fs["Settings"] >> s;
fs.release(); // close Settings file

if (!s.goodInput)
{
cout << "Invalid input detected. Application stopping. " << endl;
return -1;
}

vector > imagePoints;
Mat cameraMatrix, distCoeffs;
Size imageSize;
int mode = s.inputType == Settings::IMAGE_LIST ? CAPTURING : DETECTION ;
clock_t prevTimestamp = 0;
const Scalar RED(0,0,255), GREEN(0,255,0);
const char ESC_KEY = 27;
Mat view;
for(int i = 0;;++i)
{

bool blinkOutput = false;

view = s.nextImage();

//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )
{
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If no more images then run calibration, save and stop loop.
{
if( imagePoints.size() > 0 )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
break;
}


imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 );

vector pointBuf;

bool found;
switch( s.calibrationPattern ) // Find feature points on the input format
{
case Settings::CHESSBOARD:
found = findChessboardCorners( view, s.boardSize, pointBuf,
/*CV_CALIB_CB_ADAPTIVE_THRESH |*/ CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGE);
break;
case Settings::CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf );
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
break;
default:
found = false;
break;
}
cout<<"found num : "<if ( found) // If done with success,
{
// improve the found corners' coordinate accuracy for chessboard
if( s.calibrationPattern == Settings::CHESSBOARD)
{
Mat viewGray;
cvtColor(view, viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf, Size(5,5),
Size(-1,-1), TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));
}

if( mode == CAPTURING && // For camera only take new samples after delay time
(!s.inputCapture.isOpened() ||

clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();
}

// Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}

//----------------------------- Output Text ------------------------------------------------
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);

if( mode == CAPTURING )
{
if(s.showUndistorsed)
msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
else
msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
}

putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);

if( blinkOutput )
bitwise_not(view, view);

//------------------------- Video capture output undistorted ------------------------------
if( mode == CALIBRATED && s.showUndistorsed )
{
Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);
}

//------------------------------ Show image and check for input commands -------------------
imshow("Image View", view);
char key = (char)waitKey(500);

if( key == ESC_KEY )
break;

if( key == 'u' && mode == CALIBRATED )
s.showUndistorsed = !s.showUndistorsed;

if( s.inputCapture.isOpened() && key == 'g' )
{
mode = CAPTURING;
imagePoints.clear();
}
}

// -----------------------Show the undistorted image for the image list ------------------------
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{
Mat view, rview, map1, map2, xx;
xx=getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 0.999, imageSize, 0);
cout<initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
xx, imageSize, CV_16SC2, map1, map2);

for(int i = 0; i < (int)s.imageList.size(); i++ )
{
view = imread(s.imageList[i], 1);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = (char)waitKey();
if( c == ESC_KEY || c == 'q' || c == 'Q' )
break;
}
}


return 0;
}

static double computeReprojectionErrors( const vector >& objectPoints,

const vector >& imagePoints,
const vector& rvecs, const vector& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector& perViewErrors)
{
vector imagePoints2;
int i, totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());

for( i = 0; i < (int)objectPoints.size(); ++i )
{
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix,
distCoeffs, imagePoints2);
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), CV_L2);

int n = (int)objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err;
totalPoints += n;
}

return std::sqrt(totalErr/totalPoints);
}

static void calcBoardCornerPositions(Size boardSize, float squareSize, vector& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();

switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));
break;

case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));
break;
default:
break;
}
}

static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector > imagePoints, vector& rvecs, vector& tvecs,
vector& reprojErrs, double& totalAvgErr)
{

cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CV_CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at(0,0) = 1.0;

distCoeffs = Mat::zeros(8, 1, CV_64F);

vector > objectPoints(1);
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);

objectPoints.resize(imagePoints.size(),objectPoints[0]);

//Find intrinsic and extrinsic camera parameters
double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5);

cout << "Re-projection error reported by calibrateCamera: "<< rms << endl;

bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);

totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints,

rvecs, tvecs, cameraMatrix, distCoeffs, reprojErrs);

return ok;
}

// Print camera parameters to the output file
static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
const vector& rvecs, const vector& tvecs,
const vector& reprojErrs, const vector >& imagePoints,
double totalAvgErr )
{
FileStorage fs( s.outputFileName, FileStorage::WRITE );

time_t tm;
time( &tm );
struct tm *t2 = localtime( &tm );
char buf[1024];
strftime( buf, sizeof(buf)-1, "%c", t2 );

fs << "calibration_Time" << buf;

if( !rvecs.empty() || !reprojErrs.empty() )
fs << "nrOfFrames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_Width" << imageSize.width;
fs << "image_Height" << imageSize.height;
fs << "board_Width" << s.boardSize.width;
fs << "board_Height" << s.boardSize.height;
fs << "square_Size" << s.squareSize;

if( s.flag & CV_CALIB_FIX_ASPECT_RATIO )
fs << "FixAspectRatio" << s.aspectRatio;

if( s.flag )
{
sprintf( buf, "flags: %s%s%s%s",
s.flag & CV_CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "",
s.flag & CV_CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "",
s.flag & CV_CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "",
s.flag & CV_CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "" );
cvWriteComment( *fs, buf, 0 );

}

fs << "flagValue" << s.flag;

fs << "Camera_Matrix" << cameraMatrix;
fs << "Distortion_Coefficients" << distCoeffs;

fs << "Avg_Reprojection_Error" << totalAvgErr;
if( !reprojErrs.empty() )
fs << "Per_View_Reprojection_Errors" << Mat(reprojErrs);

if( !rvecs.empty() && !tvecs.empty() )
{
CV_Assert(rvecs[0].type() == tvecs[0].type());
Mat bigmat((int)rvecs.size(), 6, rvecs[0].type());
for( int i = 0; i < (int)rvecs.size(); i++ )
{
Mat r = bigmat(Range(i, i+1), Range(0,3));
Mat t = bigmat(Range(i, i+1), Range(3,6));

CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
//*.t() is MatExpr (not Mat) so we can use assignment operator
r = rvecs[i].t();
t = tvecs[i].t();
}
cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 );
fs << "Extrinsic_Parameters" << bigmat;
}

if( !imagePoints.empty() )
{
Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
for( int i = 0; i < (int)imagePoints.size(); i++ )
{
Mat r = imagePtMat.row(i).reshape(2, imagePtMat.cols);
Mat imgpti(imageP

oints[i]);
imgpti.copyTo(r);
}
fs << "Image_points" << imagePtMat;
}
}

bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector > imagePoints )
{
vector rvecs, tvecs;
vector reprojErrs;
double totalAvgErr = 0;

bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
reprojErrs, totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ;

if( ok )
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,
imagePoints, totalAvgErr);
return ok;
}

相关主题