搜档网
当前位置:搜档网 › 地铁隧道控制测量技术(地面控制测量、联系测量、洞内控制测量)分解知识分享

地铁隧道控制测量技术(地面控制测量、联系测量、洞内控制测量)分解知识分享

地铁隧道控制测量技术(地面控制测量、联系测量、洞内控制测量)分解知识分享
地铁隧道控制测量技术(地面控制测量、联系测量、洞内控制测量)分解知识分享

地铁隧道施工控制测量

目录

一、地铁隧道施工测量的内容及特点

二、编制目的

三、编制依据

四、地面控制测量

五、联系测量

六、高程传递测量

八、洞内施工测量

九、贯通误差测量

十、断面测量

十一、结束语

地铁隧道施工控制测量

中铁X局集团有限公司万海亮

一、地铁隧道施工测量的内容及特点

地铁工程主要有车站和隧道组成,多建于城市地下,但也有些区段会采用地面或者高架线路。隧道施工控制测量是地铁施工测量的重点和难点,所以这里主要介绍地铁隧道施工控制测量。

1.1地铁隧道施工测量的内容

地铁隧道控制测量一般是要通过已完成的车站(盾构始发井)、竖井、或地面钻孔把地面(井上)控制点的坐标、方位及高程传递到地下(井下),从而将地面和地下控制网统一为同一坐标(高程)系统,作为地下导线的起算坐标、起始方位角和起始高程基准,依此指导和控制地下区间隧道开挖并保证正确贯通。

因此,地铁隧道施工测量的内容主要有:地面平面控制测量、地面水准控制测量、联系测量、竖井高程传递、洞内控制测量、隧道施工测量、贯通测量。地铁隧道施工产生的测量误差除地面控制点的因素外,还包括井上与井下联系测量误差以及区间隧道施工控制测量误差。因此,地面控制测量、联系测量及区间隧道施工控制测量是地铁施工测量的三个关键因素,也是直接影响地铁贯通精度的关键控制点。

1.2地铁隧道施工测量的特点

1、地铁工程线路长,全线分区段施工,各区段开工时间、施工方法各异,且由不同承包商施工,要确保贯通,每个区段不仅要完成本段的测量任务,还要注意与邻接工程的衔接。

2、地铁线路长,且在主要地下施工,控制网要采取分级分段建立。

3、地铁暗挖隧道,施工工艺复杂,地下施测条件差,测量工作量大。

4、地铁隧道贯通精度及建筑限界都有要求严格,在隧道施工的各个阶段必须对地面和地下控制网进行联系测量。

因此应结合城市地铁的工程的特点建立合理、满足精度要求的地铁施工控制网对地铁隧道的顺利、准确贯通非常关键。

二、编制目的

为使地铁施工优质、高效、顺利进行,施工过程中不出现由于测量错误或误差超限而引起的结构物返工或整改等质量问题,在施工过程中必须通过科学的测量方法,按照规范要求定期对控制网进行复测,使施工测量全过程处于受控状态。最终保证按期完成施工任务并交付验收。

三、编制依据

1、《城市轨道交通工程测量规范》(GB50308-2008)

2、《工程测量规范》(GB50026-2007)

3、《城市测量规范》(CJJ8-99)

4、《西安地铁建设工程施工测量管理细则》

5、《西安地铁工程施工测量、监测管理管理办法(暂行)》

6、业主测量队所交测点,控制点数据资料。

四、地面控制测量

4.1 地面平面控制测量

《城市轨道交通工程测量规范GB50308-2008》规定:向隧道内传递坐标和方位时,应在每个井(洞)口或车站附近至少布设三个平面控制点及两个水准控制点作为联系测量的依据。

平面控制网测量严格按照《城市轨道交通工程测量规范GB50308-2008》中精密导线网测量的方法与要求进行。

4.1.1平面控制网测量主要技术要求如下表:

表1精密导线测量主要技术要求

4.1.2平面控制网测量注意事项

a、采用I级全站仪进行测量,为了提高精度,测量时可采用六测回作业,采用方向观测法,六测回作业,各测回按照下表变换度盘:

d、水平角观测误差超限时,在原来度盘位置上按上述要求进行重测。

e、精密导线边长测量在成像清晰和气象条件稳定时进行,往返观测,单向由正倒镜各一测回构成,测距时测出气象数据并加以改正,测距的技术要求:

站气象数据。温度读至0.2℃,气压读至50Pa。气象改正,根据仪器提供的公式进行改正;也可以将气象数据输入全站仪内自动改正。

g、其他技术要求例如:高程归化及高斯投影改化参考规范

4.2地面水准控制测量

4.2.1地面水准控制测量主要技术要求如下表:

根据《城市轨道交通工程测量规范GB50308-2008》,本次高程复测采用二等水准测量,技术要求如下:

注: L为往返测段、附合或环线的路线长(以㎞计)。

4.2.1地面水准控制测量注意事项

a、二等水准网测量的观测方法应符合下列规定:

往测奇数站上:后—前—前—后,

偶数站上:前—后—后—前,

返测奇数站上:前—后—后—前,

偶数站上:后—前—前—后。

并且往测与返测采用分时段测量(上午往测,下午返测);往测转为返测时,两根水准尺必须互换以抵消铟瓦尺误差,并应重新整置仪器。

b、二等水准测量关于视线长度、视距差、视线高度要求(m):

c

常用的方法有:联系三角形法;陀螺经纬仪、铅垂仪(钢丝)组合法;导线直接传递法;

5.1联系三角形法

如图5.1所示A为地面控制点,与其他地面控制点通视(如图中T方向),实际工作中至少有两个控制点通视。A’为地下洞内定向点(地下导线点),与另外一地下导线点T’通视;O1、O2为悬挂在井口支架上的两根钢丝,钢丝下端挂重锤,并将重锤置于机油桶内,使之稳定。

T'

图5.1:联系三角形定向法

5.1.1联系三角形布设要求:

(1)竖井中悬挂钢丝的距离a应尽可能长;

(2)联系三角形锐角宜小于1°,呈直伸三角形;

(3)b/a及b’/a’宜小于1.5,b为近井点至悬挂钢丝的最短距离。

5.1.2联系三角形测量

采用方向观测法观测地上和地下联系三角形角度w、w’a、a’各4~6测回,角度中误差应在±2.5″;联系三角形边长测量可采用光电测距仪(配合反射棱镜片)或者经检定的钢尺丈量,每次独立测量三测回,每测回三次读数,各测回较差应小于1㎜。地上与地下丈量的钢丝间距较差应小于2㎜,同时实测值a(a’)与由余弦定理计算的联系三角形同一边长差值也应小于2㎜。钢尺测距注意加力、倾斜、温度尺长改正。

5.1.3联系三角形计算

(1)根据传递方向应选择小角B(B’)的原则,定向边坐标方位角α(A’T’)为:

α(A’T’)= α(AT)+w+a+B- B’+ w’(范围0°~360°)

α(AT)为地面已知点坐标方位角;

w、w’为观测角值;

B 、B’为联系三角形推算值。

(2)地下定向点A’的坐标X(A’)、Y(A’)为:

X(A’)= X(A)+c*cos(AO2)+b’* cos(O2 A’)

Y(A’)= Y(A)+c*sin(AO2)+b’* sin(O2 A’)

对于联系三角形定向法的精度不做讨论。

5.1.4联系三角形法注意事项

(1)具体测量中为提高定向精度,一般在进行一组测量后稍微一动吊锤线,使传递经过不同的三组联系三角形独立进行。

(2)有条件时可以悬挂三根钢丝,组成双联系三角形,这样传递过程中可以同时获取地下定向边的两个方位角,提高地下定向边方位角精度。

5.1.4工程实例

西安地铁一号线玉~洒区间联系测量采用联系三角形法,从盾构接收井和出土井分别挂钢丝GS1、GS2,相对于一井中两根钢丝这样做最大的优点是两钢丝间的距离大大增加,使投向误差明显减小。如图5.2所示地面近井点通过Y1、Y2、Y3将悬挂钢丝GS1、GS2与AD、SG(GPS点)组成闭合导线(局部为结点导线网),以此可以求得近井点(Y1、Y2、Y3)、钢丝(GS1、GS2)的坐标及坐标方位角。

5.2

井下如图5.3所示,置镜S1,后视GS1,前视S3,测出边长GS1- S1、边长S1- S3及角度A;置镜S3,后视GS2,前视S1,测出边长GS2- S3、边长S3- S1及角度B;

5.3

通过解三角形的方法求得边长S3-GS1、边长S1-GS2,角C、角D;进而求得S1、 S3坐标及其坐标方位角。

5.2 两井定向

两井定向的外业测量与一井定向类似。也包括投点、地面和井下连接测量,只是两井定向时每个井筒只悬挂一根钢丝。两井定向与一井定向相比,两钢丝间的距离大大增加,使投向误差明显减小。这是两井定向的最大优点。

由于两井定向中两根钢丝间往往不能直接通视,而是通过导线连接起来。通过联测测出井上、井下导线各边的边长及其连接水平角,在内业计算时必须采用假定坐标系。

两井定向是在两个井筒内各投下一个点,它们的坐标是通过地面连接

导线测设后计算出来的。而到了井下,它们之间是不能通视的,这样井下连接导线A ′—1—2—3—4—B ′就形成一条定向符合导线。具体计算如下:

(1)根据地面连接测量的成果,按照导线的计算方法,计算出地面两钢丝点A 、B 的平面坐标(x A ,y A )、(x B ,y B )。

(2)计算两钢丝点A 、B 的连线在地面坐标系统中的方位角和边长: tan y y x x αB A AB B A

-=-

AB D =(3)以井下导线起始边A ′1为x ′轴,A 点为坐标原点建立假定坐标系,计算井下导线各连接点在此假定坐标系中的平面坐标,设B ′点的假定坐标为(x B ′,y B ′)。

(4)计算AB 连线在假定坐标系中的方位角αAB ′''''arctan '''B A B AB B A B

y y y x x x α-==- (5)计算井下起始边在地面坐标系统系统中的方位角'1'AB AB αααA =-

(6)然后根据'1αA 和A 点的地面坐标计算出井下导线各点在地面坐标系

统中的坐标和方位角,最后算得悬线垂线B 的坐标。

5. 3陀螺经纬仪、铅垂仪(钢丝)组合法

一井定向也可以采用激光垂准仪与陀螺经纬仪组合的方法进行。如图

5.4所示投点前先于竖井底合适位置布设点J1、J2,再将垂准仪依次架于J1、J2之上,垂准仪激光向下对点J1、J2;竖井上方架设简易平台,将配套激光靶固定于简易平台之上,垂准仪激光向上投于激光靶上;为减小投点误差可以将垂准仪依次置于0°、90°、180°270°四次投点,四次投点形成四边形的中心计为J1’、J2’的最终位置,然后进行将J1’、J2’与地面近井点组合成闭合(或附合)线路进行测量,如图5所示。同时可以采用陀螺经纬仪对J1、J2的坐标方位角进行校核、修正,进而得到J1、J2

的坐标及坐标方位角α(J1J2)。

陀螺经纬仪、铅垂仪(钢丝)组合法注意事项:

(1)地面定向边陀螺方位角测量应采用“地面已知边-地下定向边-地面已知边”的测量程序进行,每次应测三测回;

(2)隧道内定向边边长应大于60m,视线距隧道边墙的距离应大于0.5 m;

(3)垂准仪的支架与观测台应该分离,互不影响;

为提高测量精度,还应注意垂准仪、陀螺经纬仪的一些操作规程及细则,此处不再赘述。

图5.4、激光垂准仪投点示意图

六、高程传递测量

向洞内传递高程一般采用悬挂钢尺的方法,上下两台水准仪同时观测倒挂钢尺。地面由近井点测起,再前视钢尺m处;井下后视钢尺n处,前视b处,如图6.1所示。按以上方法独立测量三次,最后取平均值即为高程。悬挂钢尺应注意加力、温度尺长改正数,另外确保上下两台水准仪同时观测。

图6.1悬挂钢尺传递高程示意图

七、洞内控制测量

洞内施工控制测量包括洞内导线测量和洞内水准测量,根据联系测量传递到洞内的方位角、坐标及高程,建立地下平面与高程控制网,用以指导隧道开挖方向,并作为洞内施工放样的依据,保证开挖隧道在精度要求范围内贯通。

7.1洞内平面控制测量

当隧道较长时必须建立洞内精密导线作为洞内平面控制。洞内导线测量的起算数据是通过联系测量传递至洞内定向边的方位角和定向坐标。

洞内导线由洞口定向点开始,随隧道的开挖而逐渐向前延伸,在隧道施工期间洞内导线只能布设成支导线的形式。洞内导线可以采用分级布设的方法,先布设精度较低的、边长较短的施工导线,当隧道开挖到一定距离后可布设边长较长的主要导线,边长不宜短于200m,另外导线点力求沿隧道中线方向布设,布设成多边闭合导线或者主副导线环(即双支导线),如下图所示。洞内控制导线的测量方法、技术要求可参考地面平面控制网测量。

7.2洞内控制导线注意事项及要求

1、由于地下隧道为一个不稳定的载体,对设置在隧道中的控制点影响比较

大,所以每次建立新导线点时,都必须检测前一个“旧点”,确认没有发生位移后,才能发展新点;

2、根据规范要求贯通面一侧的隧道长度大于1500时,应在适当位置,通过钻孔投测坐标点或者加测陀螺仪方位角等方法提高控制导线精度。

3、相邻竖井间或相邻车站间隧道贯通后,地下平面控制点应构成附合导线(网)。

7.3洞内高程控制测量

洞内高程控制网以地下近井水准点为起算点,随隧道开挖向前延伸,测定布设在隧道内各水准点的高程,作为隧道施工放样的依据,确保隧道在高程(竖向)准确贯通。

洞内高程控制点可利用洞内导线点,洞内高程控制测量的方法精度应该满足二等水准测量要求,水准线路往返较差、附合或闭合差为±8√L㎜。

隧道贯通前,水准线路均为支水准路线,因而需要往返测或多次观测进行检核;相邻竖井间或相邻车站间隧道贯通后,地下高程控制点应构成附合水准线路。

八、洞内施工测量

在隧道施工过程中,根据洞内布设的地下导线点、水准点,确定隧道中线方向上有关点位及标高,以准确指导隧道的开挖方向。

8.1开挖施工放样

随着测量仪器的发展,以前的切线支距法、弦线支距法(测设中点)等逐渐淘汰,直接使用全站仪确定隧道中线,配合悬挂锤球确定隧道开挖方向。注意控制好放样点位之间的距离,尤其是小半径曲线,做到勤测断面、勤放样。当隧道采用导坑法施工时,左右导坑宜共同控制,另外上部导坑的中线每引申

一定距离后都要与下部导坑的中线联测一次。联测可以采用长线锤球、垂准仪或经纬仪光学对点器将下导坑的中线引至上到坑拱顶,进行复核。

隧道掘进也可以借助激光指向仪进行指导,注意仪器的安全牢靠,另外激光指向仪安置距工作面距离不应小于30m,并对激光指向仪位置的正确性定期进行检查。

8.2隧道开挖断面测量及衬砌施工测量

隧道在马头门开挖工作完成后,需要根据线路中线和附近地下水准点进行断面测量,检测隧道内轮廓是否符合设计要求,并用来确定超挖或欠挖工程量。一般常用极坐标发、直角坐标法及交汇法进行测量。随着测量仪器的发展,断面测量工作变得简单、方便。我们可以直接采用断面仪采集数据,或者全站仪采集三维坐标,然后借助计算机处理断面资料,进而了解隧道断面情况,以指导隧道的进一步开挖。

隧道二衬结构施工测量前应进行贯通测量,相邻车站或竖井间的地下控制导线和水准线路应形成附合线路并进行严密平差,以平差后的地下控制点作为二衬施工测量依据,进行中线和高程控制测量。如果隧道未贯通前必须进行二衬施工时,应采取增加控制点测量次数(联系测量和控制点复测)、钻孔投点以及加测陀螺方位等方法,提高现有控制点的精度,并以其调整中线和高程控制线。同时应预留不小于150米长度的隧道不得进行二衬施工,作为贯通误差调整段。待预留段贯通后,应以平差后的控制点为依据进行二衬施工测量,包括中线恢复、模板净空、标高检测,模板台车相关尺寸鉴定应符合规范要求。为确保净空满足设计要求,可对二衬模板(台车)进行适当的外放。

九、贯通误差测量

隧道贯通后应利用贯通面两侧平面和高程控制点进行贯通误差测量,

贯通误差测量包括隧道的纵向、横向、高程贯通误差测量。

隧道的纵向、横向贯通误差可以根据两侧控制点测定贯通面上统一临时点的坐标闭合差,并分别投影到线路和线路的法线方向上确定。也可以利用两侧中线延伸到贯通面上同一里程处各自临时点的间距确定。隧道高程贯通误差测量应由两侧地下水准控制点测定贯通面附近同一水准点的高程较差确定。

十、断面测量

工程竣工后,根据合同的规定和设计的要求,对隧道的结构断面进行测量。断面测量可以采用支距法、全站仪解析法、断面仪法等方法。

结构断面测量应以贯通平差后的施工平面和高程控制点及设计线路为依据进行,直线段每6m,曲线段每5m测量一个断面,结构断面变化处和施工偏差较大处应加测断面。另外对结构断面测量成果进行检核,结构尺寸异常的断面应现场复测。结构断面测量点的位置应为建筑界限控制点或设计指定位置的断面点。

横断面里程中误差为±50mm,断面点与线路中线法距的测量中误差为±10mm,断面点高程的测量中误差为±20mm。

十一、结束语

地铁隧道施工测量是通过竖井联系测量将地面坐标(高程)系统传递至井下,进而以同一坐标(高程)系统控制隧道掘进施工。联系测量精度将直接影响到隧道的准确开挖及在精度要求范围内贯通,另外联系测量工作量大,影响精度因素较多,因此联系测量是地铁隧道施工测量的重点、难点。

地铁施工测量

一、 工程概况 本标段为昆明市轨道交通首期工程十三标段,包括2座车站和3个盾构区间,分别是金星站、白云路站、北辰小区站~金星站区间、金星站~白云路站区间、白云路站~昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工,围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层,与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 二、工程地质与水文地质概况 1)地形地貌 昆明市区内地址构造复杂,但大部分隐伏于盆地松散岩层下,根据基底构造图资料,本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动,受区域构造应力场中南北向力偶的作用,同时发育了北东、北西南构造。 2)地层岩性描述 本次勘察揭露地层最大深度为50m ,按地层沉积年代、成因类型将本工程场地勘察范围内的土层划分为第四系全新人工填土层、第四系全新统冲洪积层、第四系上更新统冲湖层、第四系上更新统坡残积层、更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土:褐灰、黑灰,稍密~稍湿,表层为沥青混凝土,下含碎石,局部夹有碎砖块等,为路基结构层。分布较连续,厚度1.50~2.40m ,平均厚度1.69m 。 第②1层粘土:褐黄色,湿,中压缩性,含云母、氧化铁,含少许风化碎石。局部为粉质粘土。分布较连续,层顶埋深1.50~1.80m ,厚度0.60~1.50m ,平均厚度0.95m 。 第②3层粘土:褐灰~深灰色,湿,中压缩性,含少量有机质,局部为粉质 昆明北站 北辰小区站 金星站 白云路站

粘土。分布较连续,层顶埋深2.30~3.30m,厚度0.50~3.00m,平均厚度1.45m。 第②4层粉土:褐灰~灰色,稍密,夹粉砂薄层。分布不连续,层顶埋深1.60~4.00m,厚度0.80~2.30m,平均厚度1.55m。 第②5层泥炭质粘土:黑灰~黑,软塑~可塑,高压缩性,有机质含量约12~40%,局部有机质含量大于60%,相变为泥炭。分布较连续,层顶埋深2.20~2.60m,厚度0.50m。 第③1层圆砾:深灰~兰灰、褐黄,中密。圆形及亚圆形,级配较差,砾石成分为砂岩及灰岩,中等风化。20~25m以上为粉土、粉砂为主要填充物,以下以粘性土为充填物。夹卵石、粘性土及粉土夹层,局部夹有胶结块。连续分布,且厚度大,均未揭穿,层顶埋深3.30~5.50m。 第③12层粘土:褐黄、兰灰、灰,硬塑,中压缩性。局部含5~15%砾石,砾石成分为砂岩及灰岩,中等风化。分布不连续,厚度0.40~2.50m,平均厚度0.98m;层顶埋深8.10~37.60m。 第③13层粉土:褐灰、灰、深灰,中密,局部地段相变为粉砂层,含砾,砾石含量3~15%,局部夹腐木。分布不连续,厚度0.30~2.60m,平均厚度1.33m。 3)地下水的腐蚀性评价 据在场地内取地下水样水质分析结果,场地地下水及地表水对混凝土结构无腐蚀性,对钢结构具弱腐蚀性,在Ⅱ类场地条件下对混凝土结构中钢筋无腐蚀性。 4)不良地质作用 ①液化土层 对已收集资料进行分析、整理、判别②4层粉土粉砂层为液化土层,其余各层粉土粉砂层属上更新统地层,判定为不液化土层。 ②岩溶 场地环城北路至人民路口下卧二迭系茅口组灰岩。节理裂隙十分发育,并与临近盘龙江有水力联系。具溶孔、溶沟、溶槽及溶洞等形态。多数溶洞、裂隙有充填物冲填,少数为空洞。 5)工程地质总体评价 车站开挖深度范围内的人工填土层密实度差,自稳性能差,开挖过程中易坍塌。②5层软土对基坑支护不利,开挖过程中易发生坍塌及“泥流”现象。②4层

地铁隧道控制测量技术(地面控制测量、联系测量、洞内控制测量)分解

地铁隧道施工控制测量

目录 一、地铁隧道施工测量的内容及特点 二、编制目的 三、编制依据 四、地面控制测量 五、联系测量 六、高程传递测量 八、洞内施工测量 九、贯通误差测量 十、断面测量 十一、结束语

地铁隧道施工控制测量 中铁X局集团有限公司万海亮 一、地铁隧道施工测量的内容及特点 地铁工程主要有车站和隧道组成,多建于城市地下,但也有些区段会采用地面或者高架线路。隧道施工控制测量是地铁施工测量的重点和难点,所以这里主要介绍地铁隧道施工控制测量。 1.1地铁隧道施工测量的内容 地铁隧道控制测量一般是要通过已完成的车站(盾构始发井)、竖井、或地面钻孔把地面(井上)控制点的坐标、方位及高程传递到地下(井下),从而将地面和地下控制网统一为同一坐标(高程)系统,作为地下导线的起算坐标、起始方位角和起始高程基准,依此指导和控制地下区间隧道开挖并保证正确贯通。 因此,地铁隧道施工测量的内容主要有:地面平面控制测量、地面水准控制测量、联系测量、竖井高程传递、洞内控制测量、隧道施工测量、贯通测量。地铁隧道施工产生的测量误差除地面控制点的因素外,还包括井上与井下联系测量误差以及区间隧道施工控制测量误差。因此,地面控制测量、联系测量及区间隧道施工控制测量是地铁施工测量的三个关键因素,也是直接影响地铁贯通精度的关键控制点。 1.2地铁隧道施工测量的特点 1、地铁工程线路长,全线分区段施工,各区段开工时间、施工方法各异,且由不同承包商施工,要确保贯通,每个区段不仅要完成本段的测量任务,还要注意与邻接工程的衔接。

2、地铁线路长,且在主要地下施工,控制网要采取分级分段建立。 3、地铁暗挖隧道,施工工艺复杂,地下施测条件差,测量工作量大。 4、地铁隧道贯通精度及建筑限界都有要求严格,在隧道施工的各个阶段必须对地面和地下控制网进行联系测量。 因此应结合城市地铁的工程的特点建立合理、满足精度要求的地铁施工控制网对地铁隧道的顺利、准确贯通非常关键。 二、编制目的 为使地铁施工优质、高效、顺利进行,施工过程中不出现由于测量错误或误差超限而引起的结构物返工或整改等质量问题,在施工过程中必须通过科学的测量方法,按照规范要求定期对控制网进行复测,使施工测量全过程处于受控状态。最终保证按期完成施工任务并交付验收。 三、编制依据 1、《城市轨道交通工程测量规范》(GB50308-2008) 2、《工程测量规范》(GB50026-2007) 3、《城市测量规范》(CJJ8-99) 4、《西安地铁建设工程施工测量管理细则》 5、《西安地铁工程施工测量、监测管理管理办法(暂行)》 6、业主测量队所交测点,控制点数据资料。 四、地面控制测量 4.1 地面平面控制测量 《城市轨道交通工程测量规范GB50308-2008》规定:向隧道内传递坐标和方位时,应在每个井(洞)口或车站附近至少布设三个平面控制点及两个水准控制点作为联系测量的依据。

地铁隧道贯通测量

毕业设计(论文)题目地铁隧道贯通测量 英文题目Through Measurement of Subway Tunnel 摘要 为了使两个或多个掘进工作面按其设计要求在预定地点正确接通而进行的工作 叫做贯通测量,这是一项重要的地下隧道施工技术。贯通测量的基本任务是保证各 项掘进工作面均沿着设计的位置和方向掘进,使贯通后结合处不超过规定的限度。 贯通测量工作直接影响到地下工程的质量,因此有必要对其方法做系统的学习研究。 关键字:地下工程测量沈阳地铁贯通测量 Abstract

The main target of through measurement is to make sure two or more heading face according to the design requirements connected at the correct point. Through measurement,one of the underground measurement methods, is an important technology of underground tunnel construction.Through measurement direct impact the quality of underground works. It is therefore necessary to make its way to study systems. Key word:underground measurement, Shenyang metro, through measurement

浅谈地铁盾构隧道施工测量技术

浅谈地铁盾构隧道施工测量技术 发表时间:2019-01-21T15:41:47.030Z 来源:《建筑模拟》2018年第31期作者:宁安平杨兴元 [导读] 近年来,随着我国经济的快速发展以及城镇化进程的加快,城市人口不断增加,城市交通拥堵问题越来越突出,因此发展城市轨道交通、缓解紧张的交通运输压力也日益成为各大城市迫切需要解决的问题。 宁安平杨兴元 中国水利水电第四工程局有限公司测绘中心青海西宁 810007 摘要:近年来,随着我国经济的快速发展以及城镇化进程的加快,城市人口不断增加,城市交通拥堵问题越来越突出,因此发展城市轨道交通、缓解紧张的交通运输压力也日益成为各大城市迫切需要解决的问题。与其他交通形式相比,地铁以运量大、快速、准时、节能环保及安全舒适等特点受到了各大中型城市的青睐,也逐渐成为城市展示经济实力、城市化建设程度以及高新技术应用的重要标志。 关键词:地铁盾构;隧道施工;测量技术 盾构法施工是一种先进的隧道施工技术,与其他施工技术相比较,盾构施工引起的地表沉降较小,对施工现场周围环境的影响小,是目前地铁隧道施工中最安全有效也是应用最广泛的施工方法。本文结合某市地铁隧道盾构施工测量工作的具体问题和实际做法,总结出了某市地铁盾构施工建设各个阶段测量工作的要点,提出了一种适用于某市地铁盾构施工的的测量流程,以便为某市后续线路的建设提供测量依据,并且也能为其他地区和单位的地铁盾构施工测量管理提供一个有价值的参考。 一、盾构施工测量简介 盾构隧道施工测量是指为盾构掘进施工和管片拼装符合设计要求而进行的测量工作。盾构施工测量工作主要内容包括地面控制测量、联系测量、地下控制测量、和贯通测量等。 二、盾构施工测量 1、设计数据的复核 工程准备开工时,应进行图纸会审。图纸会审时,测量人员应根据图纸线路参数对盾构掘进轴线(隧道中线)三维坐标进行计算,计算资料必须做到两人独立计算复核,必要时经过第三者计算复核或用不同的方法进行计算复核,对比检查,自检合格后报监理单位及第三方控制测量单位复核,经多方确认的盾构轴线坐标数据由相关方各执一份,作为以后施工过程轴线偏位检查的重要依据。 2、盾构设计数据的导入验收 盾构施工隧道中线坐标进行计算完成之后,土建施工单位要将计算得到的数据导入到盾构机导向系统,这个过程要求业主、土建施工单位、监理单位和第三方控制测量单位共同参与,验收无误后要求各方签字确认,并且拍照留存。 3、地面控制测量 轨道交通平面控制测量,一般分为三级。首级控制网通常是整个轨道交通线路网的平面控制网,是整个城市的轨道交通线路网的控制骨架,二级平面控制网一般为某条线路的平面控制网,三级控制网是在施工过程中根据二级平面控制网形成的精密导线。高程控制测量一般分两个等级布设,一等高程控制网主要是某城市中某条线路的高程控制网,二等高程控制网是施工水准网的基础和起算依据。 地面平面控制测量:为方便施工,在一、二级平面控制网的基础上加密布设精密导线。精密导线一般采用附合导线、闭合导线或节点导线形式。地面导线平均边长宜在350米左右,精密导线相邻边的短边和长边的比例不宜过小,不宜小于1:2,且个别短边不应小于100米。精密导线外业观测应满足《城市轨道交通工程测量规范》中相应的技术要求。精密导线网应整体严密平差,平差计算前将观测边长进行高程归化和投影改化。并分段进行单导线平差验算。 地面高程控制测量:二等高程控制网沿轨道交通线路两侧布设,一般采用附合线路、闭合线路或节点网形式进行布设,水准点平均间距应小于2KM。水准测量外业观测应按照二等水准测量观测技术要求进行。高程控制网的内业数据处理必须采用严密平差,在处理过程中应注意每千米高差中数偶然中误差、高差中数全中误差及最弱点高程中误差。水准路线按测段往返测高差中数偶然中误差MΔ;MΔ按下列公式计算: 式中MΔ—— 每千米高差中数偶然中误差(mm); L ——水准测量的测段长度(km); Δ——水准路线测段往返高差不符值(mm); n ——往返测水准路线的测段数。 当附合路线和水准环多于20个时,每千米水准测量高差中数全中误差应按下式计算: 式中MW—— 每千米高差中数全中误差(mm); W——附合线路或环线闭合差(mm); L——计算附合线路或环线闭合差时的相应路线长度(km); N——附合线路和闭合线路的条数。 4、始发托架的定位 在盾构机始发托架安装前,利用联系测量引至井下控制点精确定位始发托架中心线,一般采用全站仪极坐标法现场放样。特别注意因盾构机是以隧道设计中心线为参考依据掘进的,托架中心一般由施工单位依据隧道中心线和洞门钢环实际中心自行设计托架中心线。始发托架放样时,如果在直线段(或大半径曲线段)始发时,托架前端和后端中心形成的直线应和设计线路(或线路对应的托架前端和后端位

地铁隧道控制测量技术地面控制测量联系测量洞内控制测量分解

地铁隧道施工控制测量 地铁隧道施工控制测量

页16共页1第 地铁隧道施工控制测量目录 一、地铁隧道施工测量的内容及特点 二、编制目的 三、编制依据 四、地面控制测量 五、联系测量 六、高程传递测量 八、洞内施工测量 九、贯通误差测量 十、断面测量 十一、结束语 页16共页2第 地铁隧道施工控制测量

地铁隧道施工控制测量 中铁X局集团有限公司万海亮 一、地铁隧道施工测量的内容及特点 地铁工程主要有车站和隧道组成,多建于城市地下,但也有些区段会采用地面或者高架线路。隧道施工控制测量是地铁施工测量的重点和难点,所以这里主要介绍地铁隧道施工控制测量。 1.1地铁隧道施工测量的内容 地铁隧道控制测量一般是要通过已完成的车站(盾构始发井)、竖井、或地面钻孔把地面(井上)控制点的坐标、方位及高程传递到地下(井下),从而将地面和地下控制网统一为同一坐标(高程)系统,作为地下导线的起算坐标、起始方位角和起始高程基准,依此指导和控制地下区间隧道开挖并保证正确贯通。 因此,地铁隧道施工测量的内容主要有:地面平面控制测量、地面水准控制测量、联系测量、竖井高程传递、洞内控制测量、隧道施工测

量、贯通测量。地铁隧道施工产生的测量误差除地面控制点的因素外,还包 括井上与井下联系测量误差以及区间隧道施工控制测量误差。因此,地面控制测量、联系测量及区间隧道施工控制测量是地铁施工测量的三个关键因素,也是直接影响地铁贯通精度的关键控制点。 1.2地铁隧道施工测量的特点 1、地铁工程线路长,全线分区段施工,各区段开工时间、施工方法各异,且由不同承包商施工,要确保贯通,每个区段不仅要完成本段的测量任务,还要注意与邻接工程的衔接。 页16共页3第 地铁隧道施工控制测量 2、地铁线路长,且在主要地下施工,控制网要采取分级分段建立。 3、地铁暗挖隧道,施工工艺复杂,地下施测条件差,测量工作量大。 4、地铁隧道贯通精度及建筑限界都有要求严格,在隧道施工的各个阶段必须对地面和地下控制网进行联系测量。 因此应结合城市地铁的工程的特点建立合理、满足精度要求的地铁施 工控制网对地铁隧道的顺利、准确贯通非常关键。 二、编制目的 为使地铁施工优质、高效、顺利进行,施工过程中不出现由于测量错误或误差超限而引起的结构物返工或整改等质量问题,在施工过程中必须通过科学的测量方法,按照规范要求定期对控制网进行复测,使施工测量全过程处于 受控状态。最终保证按期完成施工任务并交付验 三、编制依据

地铁施工测量技术方案

第15章施工测量 施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。 15.1 施工测量技术要求 1、施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。 2、对甲方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。 3、对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。 4、场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8L mm(L为线路长度,以km计)之内。 5、北京地铁工程隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。 北京地铁工程平面与高程贯通误差分配表15-1 15.2 施工测量特点 1、车站包括主体结构、出入口、换乘通道和风道。采用明、暗挖相结合的施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。 2、地面导线控制网和高程控制网由地面传递到地下,必须保证精度,且要布设形成检测条件并经常复测控制点。 3、对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽量:50mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。 4、车站钢管柱的位置,其测设允许误差为±3mm。钢管柱安装过程应检测其垂直度,安装

地铁浅埋暗挖隧道施工控制测量

地铁浅埋暗挖隧道施工控制测量 摘要:从地铁浅埋暗挖隧道地铁施工出发,阐述西安地下铁道工程浅埋暗挖法施工控制测量的现状和主要技术工作方法。 关键字:城市轨道;浅埋暗挖法;测量 Abstract: from the shallow depth excavation construction of subway tunnel, this paper expounds xian underground engineering shallow depth and the present situation of the WaFa construction control survey and main technical working methods. Keyword: urban rail; sallow buried-tunnelling method ; measurement 工程简介 西安轨道交通二号线TJSG-23标三爻~凤栖原区间,由中铁十七局集团承建,右线起讫里程YDK21+978.600~YDK23+386.300,右线全长1407.7m;左线起讫里程ZDK21+978.600~ZDK23+386.300(长链 1.215m),左线全长1408.915m。区间隧道断面为单线单洞,区间隧道采用浅埋暗挖法施工,复合式衬砌,复合式衬砌的外衬为衬期支护,由注浆加固的地层、网喷支护与钢拱架等支护形式组成,内衬采用钢筋混凝土模筑衬砌,内外层衬砌之间铺设封闭的防水层。马蹄形断面依据隧道建筑界限,设计时在宽度和高度上外放100㎜拟定。直线段:隧道中线与线路中线重合;曲线段:采用移动隧道中心线方法代替限界加宽。 洞顶覆土11.5~28.7米,线间距13.0~15.0米。区间含两处平曲线,最小曲线半径650m。线路为单面坡,最大纵坡12‰。 本区间共设两座施工竖井。1#竖井及联通道位置为YDK22+270,竖井为矩形断面,截面尺寸7.8*9.8米,施工横通道长37.49米。2#竖井及联通道位置为YDK23+005,竖井为矩形断面,截面尺寸7.8*9.8米, 井深31.302米,施工横通道长35.57米。左右线间施工横通道兼做联络通道。 本区间共有3处地裂缝,采用矿山法处理。过地裂缝段设置变形缝,初支变形缝位置与二衬保持一致,采用初衬格栅的纵向连接筋断开处理,且每道变形缝接口处局部二衬厚度需要加大以适应地裂缝较大变形,二衬变形缝采用特殊防水措施。 地铁测量控制因素 本工程主要为暗挖区间,施工工艺复杂,暗挖区间的地下施测条件差,测量工作量大,如何保证工程控制测量精度,是本工程测量的重点。 地铁暗挖区间施工往往是要通过已施工好的车站、竖井、盾构井,或通过地

地铁隧道贯通测量

地铁隧道贯通测量 林正庆 上海地铁一号线纵贯市区,全长14.7km,是上海目前较大的市政施工项目之一。上海隧道一号线全线采用盾构机械施工,施工时要进行跟踪测量,即贯通测量。隧道贯通测量精度指标有多种,其中横向和竖向精度指标最为重要,是衡量隧道掘进的准确程度的标准。贯通测量指导盾构到达竖井预留门洞,要求准确贯通,因此贯通测量在盾构施工中起到很重要的作用。 地铁隧道贯通测量的目的,是使盾构准确地沿着设计轴线开挖推进,并进入接收井的预留门洞。盾构机头中心与预留门洞中心的偏差值称为贯通误差。预留门洞的大小,应该是盾构内径、隧道内衬管径厚度、施工误差、测量误差这四个方面的总和。测量误差如能达到设计所要求的±5cm,就能达到贯通测量规定的要求。但一般情况下,建设单位为了保证质量起见,对测量精度提出更高的要求。 上海地铁一号线平面首级控制为四等空中导线,一般点位设置在区间隧道附近较稳定的高大建筑物上,观测视线由空中传递,并采取强制归心测角测距。高程控制点为二等几何水准网进行联测,点位远离施工区,较稳定。地面坐标传递到进下隧道的方法,一般采用方向线法、投点法两种;高程控制传递至井下采用钢尺悬挂观测法进行。 常熟路站至陕西南路站区间隧道工程,由于受施工现场条件的限制,采用常规的地面坐标传递到井下的方向线法和投点法已不能保证精度,而采用经纬仪加光电测距仪直接进行传递,这是首次。 1工程概况 地铁一号线常熟路站至陕西南路站区间隧道工程全长742m,为上、下两平行隧道,位于淮海中路下面。该区间隧道采用逆向施工技术进行掘进,先埋设地下管线,在隧道轴线上预留门洞,再进行路面铺装,而后进入地下施工。 两车站各预留施工沉井,井口边长仅8m,且偏离隧道轴线设置。沉井深15m,施工出土、进料都由井口通过。同时控制点受施工现场限制,控制点所在的建筑物在施工区沉井旁,建筑物沉降使控制点产生位移,由此给确保隧道贯通测量的精度带来很大难度。 隧道贯通测量误差,是指纵、横向和竖向误差。纵向误差影响掘进长度,横向、竖向误差则影响贯通的准确性。 2 横向贯通测量 横向贯通测量一般包括:地面控制测量;竖井联系测量;井下导线测量。 如图1,Ⅳ424甲控制点设置在常熟路附近建筑物上,距井口170m。Ⅳ423在瑞金路比较稳定的建筑物上,距井口约180m。这两点是该地铁区段上、下行线隧道贯通测量的起始点。 图1 控制点分布图 2.1 误差源 (1)Ⅳ424甲~Ⅳ423方向与隧道轴线近似平行,故起始边长度误差对横向贯通误差的影响可忽略不计。

地铁施工测量

工程概况 本标段为昆明市轨道交通首期工程十三标段,包括2座车站和3个盾构区间,分别是金星站、白云路站、北辰小区站?金星站区间、金星站?白云路站区间、白云路站?昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工,围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层,与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 北辰小区站金星站白云路站昆明北站 二、工程地质与水文地质概况 1 )地形地貌 昆明市区内地址构造复杂,但大部分隐伏于盆地松散岩层下,根据基底构造图资料,本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动,受区域构造应力场中南北向力偶的作用,同时发育了北东、北西南构造。 2)地层岩性描述 本次勘察揭露地层最大深度为50m,按地层沉积年代、成因类型将本工程场地勘察范围内的土层划分为第四系全新人工填土层、第四系全新统冲洪积层、第四系上更新统冲湖层、第四系上更新统坡残积层、更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土:褐灰、黑灰,稍密?稍湿,表层为沥青混凝土,下含碎石, 局部夹有碎砖块等,为路基结构层。分布较连续,厚度 1.50?2.40m,平均厚

度 1.69m 。 第②1 层粘土:褐黄色,湿,中压缩性,含云母、氧化铁,含少许风化碎石。 局部为粉质粘土。分布较连续,层顶埋深1.50?1.80m ,厚度0.60?1.50m,平均厚度0.95m 。 第② 3层粘土:褐灰?深灰色,湿,中压缩性,含少量有机质,局部为粉质粘土。分布较连续,层顶埋深 2.30 ?3.30m ,厚度0.50?3.00m ,平均厚度1.45m 。 第② 4层粉土:褐灰?灰色,稍密,夹粉砂薄层。分布不连续,层顶埋深1.60? 4.00m ,厚度0.80?2.30m ,平均厚度1.55m 。 第② 5层泥炭质粘土:黑灰?黑,软塑?可塑,高压缩性,有机质含量约12?40%,局部有机质含量大于60%,相变为泥炭。分布较连续,层顶埋深 2.20?2.60m ,厚度 0.50m 。 第③1层圆砾:深灰?兰灰、褐黄,中密。圆形及亚圆形,级配较差,砾石成分为砂岩及灰岩,中等风化。20?25m 以上为粉土、粉砂为主要填充物,以下以粘性土为充填物。夹卵石、粘性土及粉土夹层,局部夹有胶结块。连续分布,且厚度大,均未揭穿,层顶埋深 3.30?5.50m 。 第③12层粘土:褐黄、兰灰、灰,硬塑,中压缩性。局部含5?15 %砾石,砾石成分为砂岩及灰岩,中等风化。分布不连续,厚度0.40?2.50m,平均厚度0.98m ;层顶埋深8.10?37.60m。 第③13层粉土:褐灰、灰、深灰,中密,局部地段相变为粉砂层,含砾,砾 石含量3?15 %,局部夹腐木。分布不连续,厚度0.30?2.60m,平均厚度1.33m。 3)地下水的腐蚀性评价 据在场地内取地下水样水质分析结果,场地地下水及地表水对混凝土结构无

地铁隧道联系测量方法及精度控制讲解

地铁隧道联系测量方法及精度控制 (王伟中交隧道盾构公司江西南昌30029) [摘要] 本文以南昌地铁一号线青山湖站至高新大道站为例,对盾构隧道区间联系测量方法进行详细的介绍。同时对数据的处理方法,对投点方法及两井定向精度进行了相关分析。 [关键词] 联系测量两井定向精度分析数据处理 1前言 随着中国的城市化进程的加快,城市人口的增加给城市交通带来的压力日渐明显。然而,城市化的发展绝不可以被交通压力所约束。因而与我们传统的地上交通相对应的地下交通就成为缓解城市交通压力的新渠道。这就是目前的大、中城市正在极力发展的地铁交通。地铁的发展主要依赖与地下工程隧道开挖等的相关技术的进步,了解相关的主要技术就会知道地铁测量对地铁隧道尤为重要,这是地铁施工的最重要的基本条件。 2工程背景概况 青山湖大道站~高新大道站区间里程范围:SK20+052.554~SK20+902.822,区间长度为850.268双线延米,下行线在XK20+840.204里程处设置XK20+840.000长链(XK20+840.204=XK20+840.000 长链0.204),区间线路间距13.4~15.0m,线路包括2个曲线,曲线半径均为3000m。区间最大坡度为22‰,区间隧道覆土厚度在10.0m~16.5m。本区间设置一处联络通道(兼泵站),中心里程在为:SK20+502.007和XK20+502.042。区间西端为青山湖大道站,东端为高新大道站。青山湖大道站~高新大道站区间区间隧道,线路在北京东路下方。隧道结构距离地面319#、320#、321#、371#(19层)建筑物建筑物均在14m以上,地面建构筑物无需采取特殊处理和保护措施。 根据盾构工程筹划,两台盾构机从青山湖大道站东端出发,向东掘进到高新大道站西端结束。 3联系测量 在地铁隧道推进前必须要进行联系测量,即将车站地面平面坐标系统和高程系统传递到井下,使车站上下能采用同一坐标系统所进行的测量工作;两井定向有物理定向、几何定向等,这里主要阐述两井几何定向。联系测量须独立进行两次,在互差不超过限差时采用均值作为联系测量的最终结果。

浅谈地铁轨道施工中CPⅢ测量技术的应用 冯恺

浅谈地铁轨道施工中CPⅢ测量技术的应用冯恺 发表时间:2018-05-18T16:54:41.503Z 来源:《基层建设》2018年第3期作者:冯恺 [导读] 摘要:在地铁轨道施工过程中,为了保障地铁施工的安全和准确性,地铁引入了高铁施工中一项常见和重要CPⅢ测量技术。 中国电建市政建设集团有限公司天津 300384 摘要:在地铁轨道施工过程中,为了保障地铁施工的安全和准确性,地铁引入了高铁施工中一项常见和重要CPⅢ测量技术。CPⅢ控制网作为测量系统的组成部分,发挥的作用非常重要。 关键词:地铁;CPⅢ控制网测量;分析 1地铁建设及其特点 地铁建设与社会经济发展是密切相关的,传统地铁速度较低,逐渐无法更好的适应当下经济发展的需求,因此需要适当的提升运输速度,使交通效率提升。以往地铁在建设的过程中,对于轨道的平顺度要求比较低,施工环节没有基于工作需要与实际情况建立完整的测量系统,平面控制网的等级可以分为一等至五等,坐标系应用方面可以选用国家坐标系,也可以局部假定。地铁CPⅢ测量区别于一般的测量,控制网等级分为三级,均利用国家坐标系,从而使其更加的规范与统一,方便后期管理与控制。现阶段地铁建设标准与要求高,车辆行驶的速度高,对于无碴轨道的要求高,平顺性与稳定性要求高。为了达成上述要求就需要建立一套完善的控制测量体系,确保测量结果精度能够得到保障。无砟轨铺设作为一项引进技术,应用于国内地铁建设的时间比较短,在应用的过程中技术标准高,新工艺多,前期测量工作十分的重要。地铁建设应用该项技术,测量工作采用了三维控制测量,利用GPS开展控制测量,CPI属于高等级控制网,对于测量结果的误差要求高,是确保道路正常运行的基础。 2测量工作应用的方法 2.1平面控制测量 采用此方法开展测量工作对全站仪要求有测量的精度,包括角度与距离两个方面,能够自动对中目标,检定合格。具体的测量操作,利用边交换绘测量,CPCPⅢ控制网控制点的间距通常保持在50到60米范围内每对,第一站的位置设在起始CPⅢ点的中间,前后分别有一对,第二站在4对CPⅢ中间,前后各两对,依次进行设置。观测点应该对CPⅢ进行至少两次观测,水平角度与距离观测工作二者应该保持同步,观察设备主要是利用全站仪,确保每个点最终能够被观测到的次数在三次,每个观测站的测量长度控制在150米范围内,在倒数第三站开始测量工作要以相反的顺序进行,如果有多个观测段,相邻观测点之间应该重叠测量CPⅢ点,测量数量保持在3对,衔接数量保持在4对。测量工作要依据测量作业指导书开展,实际测量工作与指导书确立的标准二者之间会存在一定的差异,属于正常现象。与上一级控制点进行联测,间隔联测的距离保持在600米左右,一般情况下需要通过两个以上的观测站点。高等级控制点在进行联测时,至少应该观测三个完整的数据。采用边交绘测量的方法需要对误差进行分析,从而使其保持在合理的范围内。观测点位于疏散平台上部5-10cm,车站位于站台板外侧,观测工作进行时需要专业棱镜。全站仪采用自由设站,只需要对设备进行整平操作,使设备的对点误差减少,测量精度提升。仪器在安置时尽可能前后视距保持相等,避免视距过大从而产生视距误差。后方交会的测量方法在严密性方面存在不足,误差较大,因此在测量工作中需要确保控制点测量的次数在三次以上,分析数据需要使用专业的处理软件。 2.2高程控制测量 高程控制测量主要利用电子水准仪,通过往返测量从而得到精确的高程,对水准仪的要求是检定合格并且精度能够得到保障。具体的观测操作是,以某个水准点为已知点进行测量,水准测量路线需要确立两个点,一是交替测量点,二是中视点,测量至下一水准点则可以结束工作。返测工作是基于已知的往测水准点,此时的前后视点是往测工作进行时的中视点,中视点则是另一侧相对CPⅢ点,测量至往测起始水准点时结束工作。为保证精度,测量时在尺上安装自制灯带。 2.3线下精密控制网复测 精密控制网是测量工作的基础,无砟轨道对线下基础工程测量沉降要求较高,控制网测量工作需要工程变形与沉降满足要求,并且对轨道铺设条件进行评估,确认其不存在问题后进行。CPⅢ在建网前需要复测精测网,并分别进行高程控制网与平面控制网复测作业,联测基点与CPO,计算整网平差,使控制网准确性得到保证。为使CPⅢ网建立的过程高效准确,通常情况下需要对CPⅡ网加密,加密工作主要是方便观测工作进行,弥补无法利用或者是损坏的CPⅢ点与CPI。线下工程轨道铺设工作开展前需要复测平面线位,对施工造成的误差超限进行处理,为轨道铺设工作奠定基础。 3 CPⅢ数据采集与计算 为满足地铁建设工作测量与建网要求,降低人员工作强度,提升工作效率与质量,设备自带软件需要具备以下特点,对数据采集限差进行设置,包括指标差与指标互差,水平角与竖直角互差等,依据数据采集限差规定,采集与要求与质量标准相符的数据。为了的确保整体工作的质量,需要建立完善的质量管理体系,全程对质量进行控制,对各项限差进行实时核检,与要求不相符的数据需要重新测量。结合到数据限差要求筛选数据,保存符合要求与标准的数据到指定的位置,观测过程的原始数据需要妥善保存,便于后期出现问题时查找原因及对工作进行总结。将数据导入软件进行处理时,软件需要结合到相关规定,再次对数据进行筛选与检查,并最终确定参与平差计算的各项数据符合工作相关标准与规定。测量工作对外部环境也有一定的要求,需要天气条件稳定,温度与湿度变化较小,洞内需干燥,车站及联络通道范围内无脚手架遮挡。 4自由设站法 地铁与一般地铁控制网的区别在于通过自由设站对控制点进行观测,CPⅢ需要安装对中棱镜,自由设站测量点地面无需任何标志,CPⅢ点即是控制点。该方法是将站点设置在待定的控制点上,特定坐标计算方面采用的是间接平差法进而进行测量,自由设站的控制点点位误差包含了相邻与系统点位误差,已知控制点的点位误差会使自由站点的点位产生位移,对设站点的误差进行控制需要在观测的范围内单位确保有足够多的控制点。该方法能够确立站点坐标,仪器设备的水平方位也能够确定,定向精度也会高于利用控制点的精度,自由设站时,控制点的数量越多,定向的精度就会越高。 5地铁CPⅢ控制网测量 某地铁位于,线路全长19.8公里,全为地下线,13座站台,测量工作内容是平面控制网测量,高程控制网测量。平面控制测量工作内

地铁测量方案

第一章工程概况 本工程段为地铁号线站~ 站区间工程,设计范围为K3+582.820~K4+975.405m,总长1392.585m,左右双线均采用矿山法施工,区间隧道沿造甲街和丰台东大街下方设置,整体呈南北走向,隧道覆土10~19.5m,周边房屋密集;由于单线隧道较长在区间内拟开3个竖井施工,因地面条件的制约每个施工场区都比较狭小,而隧道埋深又较深,给施工中的测量工作带来很大的困难。施工工作面多,测量工作量大,施工期间需要更好的安排测量工作,满足施工需要。

第二章施工测量准备 2.1 施工测量仪器准备 施工测量使用仪器表详见表2-1。 表2-1 施工测量使用仪器表 所有测量仪器必须经过计量检测部门检测并且具有检定合格证方可使用。 2.2 施工测量人员组织 公司拟设专业测量队,具体人员配备(所有测量人员必须持有效证件上岗): 测量工程师2名 高级测量放线工2名 测量放线工4名 2.3 施工测量技术要求 1)测量计算工作的要求 依据正确(对原始数据要认真仔细地逐项审阅与校核)、方法科学(各项计算要在规定的表格中进行)、计算有序(各项计算前后有联系时,前者经校核无误后,后者方可开始)、步步校核(各项计算应由不同的人用不同的方法独立进行,结果正确后方可进行下一步工作)、结果可靠(计算中所用的数据应与观测精度相适应,在满足精度的前提下,应及时合理地删除多余数字,以便提高计算速度,多余数字的删除应遵循“四舍、六入、五凑偶”的原则)。 2)测量记录工作的要求 原始真实(不允许抄录)、数字正确(不允许有涂改现象)、内容完整(表头填齐,附有草图和点志记图等)、字体工整。 3)测量观测的精度要求 工程自始至终保持等精度观测,观测人员、记录人员、仪器、测量方法和测量路线等基本保持不变。

地铁隧道贯通测量方法的改进与精度分析

地铁隧道贯通测量方法的改进与精度分析 发表时间:2018-06-06T10:37:55.260Z 来源:《基层建设》2018年第10期作者:李徐亮 [导读] 摘要:随着社会的进步和国民经济的发展,人们对于出行的质量要求越来越高,这就促使大量的公共基础设施投入的建设。 河北省煤田地质局物测地质队河北邢台 054000 摘要:随着社会的进步和国民经济的发展,人们对于出行的质量要求越来越高,这就促使大量的公共基础设施投入的建设。地铁作为城市当中最为重要的交通基础设施,在其轨道的布设时经常会因为种种原因需要穿越隧道。地铁工程施工的过程当中确保隧道贯通是在地铁测量工作中的一个非常重要的任务,其贯通误差的程度将会对地铁工程的整体施工质量以及工程造价形成直接的影响。 关键词:地铁隧道贯通;测量方法;精度 引言 地铁施工过程中保证隧道贯通是地铁测量的一项主要任务,其贯通误差的大小将直接影响到地铁建设质量和工程造价。因此,在地铁工程测量精度设计中,为用尽可能小的成本保证隧道按设计要求进行贯通,合理地规定隧道贯通误差及其允许值,以便制定在技术、经济上合理的贯通测量方案,是地铁测量的一项重要的研究任务。 1概述 1.1贯通测量研究的现状 中国是一个多山国家,其中山地、丘陵、高原占大部分,平原只占12%,大小山脉纵横全国。隧道建设在我国公路工程,铁路工程,引水工程等工程建设中占有重要地位。据统计,目前全国公路隧道达2889处,总长1527km。其中特长隧道43处,占166km,长隧道381处,占625km。 1.2工程概况 某隧道工程,其隧道是一座左、右线分离的四车道高速公路特长隧道,隧道设计时速80km/h。隧道长度见表1。 表1 礼让隧道长度表 2贯通测量误差分析 地铁隧道贯通测量误差主要有3种:纵向贯通误差,即贯通误差在隧道施工中线方向上的投影;横向贯通误差,即贯通误差在垂直于隧道施工中线的水平方向上的投影;高程贯通误差,即贯通误差在垂直于隧道施工中线的竖直方向上的投影。总体来看,纵向贯通误差和高程贯通误差不会严重影响隧道施工质量,高程贯通误差只影响地铁接轨点的坡度。但在实际测量中,当横向贯通误差超出一定范围时,除影响隧道施工质量外,还会使隧道无法准确贯通,严重时会导致隧道重建,影响工程进度,浪费人力物力资源。因此,为了避免此类误差,地铁隧道在施工过程中,除需要利用一定测量工具外,还需要使用一些控制方法才能减小贯通误差。一般认为,矿山隧道施工中会在3个环节出现误差。第一环节,地面控制测量,误差为m1;第二环节,竖井测量,误差为m2;第三环节,地下导线测量,误差为m3。结合实际经验,每一项的允许误差为m1=1m,m2=2m,m3=3m,那么区间隧道允许的横向贯通误差为: 因此,对于在地铁隧道贯通中易出现误差的3个环节,应采取相应的测量方法,增加检核条件,减小误差。 3隧道贯通测量的预计方法 在隧道测量中,由于隧道施工测量在隧道洞内和洞外进行,受场地与测量作业的限制,隧道洞内施工测量使用导线测量方法进行测量时,容易导致测量误差的积累,使得隧道贯通位置和设计位置的预计误差变化明显,降低了隧道贯通质量。因此在隧道贯通工程设计阶段,必须做好所选测量方案与方案的误差预计工作,对测量方案中设定精度进行计算,确保修正后的测量方案和方法满足工程施工的精度要求。随着测量仪器测距精度的提升,隧道施工测量在纵向上所出现的贯通预计误差会小于测量限差要求,使用常规的水准测量均可满足工程精度要求。但由于隧道横向贯通误差的大小直接关系到隧道整体的施工质量,严重者会导致整个隧道报废,因此必须加强与控制横向贯通的误差参数,确保误差预计在限定范围内。 4改进措施以及应用成果 4.1CORS用在地铁控制网的解算 将撑死高等级的控制点当作地铁平面的控制网,这是我们国家在早期地铁的施工建设过程当中所应用最主要的做法,而且现在有很多城市也在使用这种方法。要是城市之中不具备足够范围以及密度的高等级控制点,那么久要耗费很多精力在市区的范围之内对控制网加以布设,不过因为城市建设进程的逐步加快,所布设出的高等级控制点经常会受到破坏,遭受破坏的频率相当高。本文结合某地铁线路建设工程实例进行探讨,该线路的GPS控制网一共新埋设了二十九个,包括地面点十四个,搂定点十五个,对三个城市的高等级控制点加以联测。GPS观测利用静态作业的形式,利用六台Trim-ble5700型的双频接收机实现观测,同时选取网中的A1、A11、A15、A25、B1以及三个CORS起算点Ⅰ站,Ⅱ站以及Ⅲ站构成框架网实施长时间的观测。然后把所获得的数据信息加以基线质量的检核、二维约束平差以及三维约束平差,将对结果加以检验之后发现能够满足规范当中的要求。 4.2地下导线测量的改进 隧道内控制导线是随着隧道开挖而向前延伸的,一般布设成支导线。在隧道,受到条件的限制导致导线的图形强度较弱,其点位精度也会随着隧道掘进距离的延长而变差。尤其是在城市地铁建设中,外界环境对联系测量的影响越来越大,极大地限制了在洞内引测方位角的条件,很难保证洞内定向的精度。利用陀螺经纬仪定向时,定向精度达到了要求,验证了原一井定向测量资料的可靠性。与传统的几何定向相比,陀螺经纬仪定向具有操作简单,占用井筒和平巷的时间,精度高等优点。同时,在导线传递过程中,加测一条陀螺经纬仪定向

地铁测量控制要点

地铁测量控制要点 何晓辉 (中铁隧道勘测设计院有限公司,河南洛阳 471009) 摘要:简要介绍了地铁施工测量过程中的地面平面控制测量重点,竖井联系测量的方法及建议,地下平面控制网平差原则以及铺轨基标测量工作的特点,供相关人员参考,从而在测量重要环节进行有效的控制,确保工程质量。关键词:地铁测量;特点;难点;控制要点中图分类号:U 452 文献标识码:B Control Esse ntials ofM etro Survey HE X iao hu i (China Rail w ay Tunnel Survey &D esign Institute C o .,L t d .,Luoyang 471009,H enan,Ch i n a ) Abst ract :The paper presents the essentials o f the surface plan control survey o fM etro w or ks ,the m ethod of shaft re la ti o n survey and related reco mm endations ,the adjust m ent pri n ciple o f under g r ound plan control net w or k and the features of the track lay i n g base m ark survey ,wh ich can provide reference for the concer ned persons to perfor m effective contro l i n the critical survey stages so as to guaran tee the w orks qua lity .K ey w ords :M etro survey ;feature ;difficulty ;control essen tials 地铁建设周期长、投资大,是一项系统综合性工程。地铁工程全线分区段施工,开工时间、施工方法不同,并由不同施工单位施工,技术水平不一。我国目前 地铁测量[1] 管理模式一般设业主方、监理单位和施工单位三级,参与建设各方应能够充分认识到地铁测量工作的特点、难点和重点,掌握各关键环节重点控制对象,才能使测量更好的服务于施工,创造更大的效益。 1地铁测量工作的特点 地铁工程建设期长,投资大,测量工作贯穿始 终。 地铁工程有严格限界规定,为降低工程成本,施 工误差裕量已很小,设计采用三维坐标解析法,所以对施工测量精度有较高的要求。 !地铁联系测量是质量控制过程中的关键环节。?地铁隧道内轨道结构采用整体道床,铺轨基标测量精度要求高。 #隧道及车站内的控制点数量多、使用频繁,应做好标志,加强维护,为地铁不同阶段施工及后期测量工作提供基础点位及资料。 2地面平面控制网测量 地铁平面控制网分首级GPS 控制网和二级精密 导线控制网。在满足规范前提下,平面控制网点还应 布设合理、灵活,满足工程实际需要。在工程实施阶 段,应按原测精度对控制网进行定期全面复测和不定期局部复测,确保网形结构的连续、稳固和使用。因此,点位的选埋和维护是地面测量工作的难点和重点。2.1 GPS 控制网应收集的基础资料 测区中央子午线、坐标系转换参数、椭球参数、起 算点已知坐标、测区高程异常值、测区的平均高程。这些基础数据为保密资料,应严格按照保密协议交接、签收和使用。2.2 精密导线网 精密导线点应尽量沿地铁线路布设成直伸形状,形成挂在GPS 点上的附合导线、多边形闭合导线或结点网。 选点和观测是控制精密导线质量的两个重要因素,工作的重点是精密导线的选点和观测,难点是选点工作。根据地铁线路附近GPS 网点位的分布通视情况,车站、竖井的设计位置,经过现场踏勘后可以初步在线路平面图上绘制精密导线网形,根据规范和测区环境条件详细制定出外业测角、测边以及高程联测作业方法等。2.3 平面控制网布设形式探讨 近年来,由于设计技术发展、施工工法进步,测量 收稿日期:2006-09-13;修回日期:2006-11-06 作者简介:何晓辉(1974-),男,2000年毕业于解放军郑州军事测绘学院工程测量专业,工程师,主要从事地铁工程测量、勘测管理等工作。 第27卷 第4期2007年8月 隧道建设TunnelC onstru cti on 27(4):72~73 Aug .,2007

相关主题