搜档网
当前位置:搜档网 › 输电线路电流电压保护设计

输电线路电流电压保护设计

输电线路电流电压保护设计
输电线路电流电压保护设计

电力系统保护与控制课程设计

设计题目二:输电线路电流电压保护设计(2)

课程设计任务书

一、系统接线图如图:

二、课程设计的内容及技术参数参见下表

三、工作计划:

第一天:收集资料,确定设计方案。第二天:等值电抗计算、短路电流计算。第三天:电流I段整定计算及灵敏度校验。第四天:电流II段整定计算及灵敏度校验。

第五天:电流III段整定计算及灵敏度校验。第六天:绘制保护原理图。

第七、八天:MATLAB建模仿真分析。第九天:撰写说明书。

第十天:课设总结,迎接答辩。

摘要

电力系统的输、配电线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障。

本任务书研究的是不带方向判别的相间短路电流电压保护。该线路相间短路电流电压保护又称为三段式电流电压保护,确定出最大、最小运行方式下的等值电抗,进行相间短路的最大、最小短路电流的计算。绘制三段式电流保护原理接线图,并分析动作过程。

电流电压保护在单电源辐射网中一般有很好的选择性和灵敏度。而且电流电压保护的电路构成、整定计算及调试维护都较简单,因此,它是最可靠的一种保护。

但是,三段式电流电压保护在多电源或单电源环网灯复杂网络中无法保证其选择性,另外在系统运行方式变化很大、线路很短和线路长而负荷重等情况下,其灵敏度可能不满足要求,甚至出现保护范围为零的情况。因此主要用于35kV及以下单电源辐射网络作为线路保护,也可以作为电动机和小型变压器等元件的保护。

关键词:电流电压保护、三段式、选择性、灵敏度

目录

一、绪论 (1)

电流电压保护概述 (1)

电流电压保护概况 (1)

电流电压保护的性能分析 (1)

课程设计主要内容及目的 (2)

二、输电线路电流保护整定计算 (3)

电流Ι段整定计算 (3)

保护3在最大、最小运行方式下的等值电抗 (3)

C母线、D母线、E母线相间短路的最大、最小短路电流 (4)

整定计算1、2、3的电流速断保护定值 (4)

电流Ⅱ段整定计算 (5)

电流Ⅲ段整定计算 (6)

三、电流保护原理图的绘制与动作过程分析 (7)

电流三段式保护原理图 (7)

电流三段式保护展开图 (8)

四、MATLAB建模仿真结果推测 (9)

五、课程设计总结 (10)

六、参考文献 (11)

一、绪论

1.1 电流电压保护概述

1.1.1 电流电压保护概况

电力系统中线路的电流电压保护包括:带方向判别和不带方向判别的相间短路电流电压保护,带方向判别和不带方向判别的接地短路电流电压保护。他们分别是用于双电源网络、单电源环形网络及单电源辐射网络的线路上切除相间或接地短路故障。

线路相间短路电流电压是根据输、配电线上发生相间短路时线路电流增加而母线电压下降的特征而设计的一种保护,主要用于35kA及以下的小接地电流系统中。电流电压保护中有一种是以反应电流增大而动作的电流测量元件为基础构成的电流保护,另一种是以反应电流增大而动作的电流测量元件和反应电压下降而动作的电压测量元件为基础构成的电流电压保护。为了实现保护之间的配合和保护的选择性,在这些保护中一般需要增加延时元件等逻辑元件才能形成一个完整的保护方案。电流保护及电流电压保护的原理很简单,它们的关键在于如何选择保护的整定值,以及如何设计保护中各个元件间的逻辑关系。

1.1.2 电流电压保护的性能分析

1)电流电压保护的选择性

电流电压保护在单电源辐射网中一般有很好的选择性。电流(电压)保护第Ⅰ段主要靠动作电流值来区分被保护范围内部和外部短路而具有选择性。而电流保护第Ⅱ段和第Ⅲ段则应由动作电流和动作时间二者相结合才能保证其选择性,缺一不可。但在多电源或单电源环网等复杂网络中这种保护可能无法保证其选择性。

2)电流电压保护的动作速度

电流电压保护第Ⅰ段和第Ⅱ段共同作为线路的主保护,能满足《技术规程》关于35kV及以下网络主保护的速动性要求。电流电压保护第Ⅲ段因为越接近电源,动作时间越长,有时候动作时间长达好几秒,因而一般情况下只能作为线路的后备保护。

3)电流电压保护的灵敏度

电流电压保护的灵敏度因系统运行方式的变化而变化。一般情况下能满足灵敏度要求。但在系统运行方式变化很大、线路很短和线路长而负荷重等情况下,其灵敏度可能不容易满足要求,甚至出现保护范围为零的情况。这也是电流保护的主要缺点。

4)电流电压保护的可靠性

电流电压保护的电路构成、整定计算及调试维护都较简单,因此,它是最可靠的一种保护。

电流电压保护因为选择性、灵敏度和动作速度等方面都存在不足,故主要用于35kV及以下单电源辐射网络作为线路保护,也可电动机和小型变压器等元件的保护。

1.2 课程设计主要内容及目的

线路相间短路的电流电压保护有三种:第一,无时限电流速断保护或无时限电流电压联锁速断保护;第二,带时限电流速断保护或带时限电流电压联锁速断保护:第三,定时限过电流保护或低电压启动过电流保护。这三种相间短路电流电压保护分别称为相间短路电流保护第Ⅰ段、第Ⅱ段和第Ⅲ段。其中第Ⅰ段和第Ⅱ段作为线路主保护,第Ⅲ段作为本线路主保护的近后备保护和相邻线路或元件的远后备保护。这第Ⅰ、Ⅱ、Ⅲ段统称为线路相间短路的三段式电流电压保护。

第Ⅰ段称为无时限电流速断保护,该段动作时间快但是不能保护线路全长。第Ⅱ段称为带时限电流速断保护,该段保护在任何情况下均能保护本线路的全长(包括线路末端),但是为了保证在相邻的下一个线路出口处短路时保护的选择性,必须和相邻的无时限电流速断保护配合。第Ⅲ段称为定时限过电流保护,该段保护主要是作为本线路主保护的近后备保护和相邻下一线路(或元件)的远后备保护。

本文主要内容是研究在母线短路时,保护1、2、3的第Ⅰ段、第Ⅱ段和第Ⅲ段的整定值,并检验它们的灵敏度确定它们是否能够保护线路。

通过本课程设计,使学生掌握和应用电力系统继电保护的设计、整定计算、资料整理查询和电气绘图等使用方法。在此过程中培养学生对各门专业课程整体观的综合能力,通过较为完整的工程实践基本训练,为全面提高学生的综合素质及增强工作适应能力打下一定的基础。本课程主要设计35KV(110KV)线路、变压器、发电机继电保护的原理、配置及整定计算,给今后继电保护的工作打下良好的基础。

输电线路电流电压保护

辽宁工业大学 电力系统继电保护课程设计(论文)题目:输电线路电流电压保护设计(7) 院(系):电气工程学院 专业班级:电气09 学号: 学生姓名: 指导教师:(签字) 起止时间: 2012.12.31-2013.01.11

课程设计(论文)任务及评语

续表 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 电力系统的输、配线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障。 针对电力系统输电线路进行继电保护设计,采用三段式电流电压保护的方法,确定出最大、最小运行方式下的等值电抗。进行了相间短路的最大、最小短路电流的计算。进行了保护1、2、3的电流速断保护整定值计算,并计算了各自的最小保护范围。进行了保护2、3的限时电流速断保护定值计算,并校验了灵敏度。进行了保护1、2、3的过电流保护定值计算,确定保护1、2、3过电流保护的动作时限,校验保护1作近后备,保护2、3作远后备的灵敏度。绘制三段式电流保护原理接线图。并分析了动作过程。采用MATLAB建立系统模型进行输电线路电流电压保护仿真分析。 关键词:三段式电流电压保护;整定值计算;灵敏度;等值电抗

目录 第1章绪论 (4) 第2章输电线路电流保护整定计算 (7) 2.1电流Ι段整定计算 (7) 2.1.1保护3在最大、最小运行方式下的等值电抗 (7) 2.1.2C、D、E母线相间短路的最大、最小短路电流 (8) 2.1.3保护1、2、3的电流速断整定值 (8) 2.2电流Ⅱ段整定计算 (9) 2.3电流Ⅲ段整定计算 (10) 第3章电流保护原理图的绘制与动作过程分析 (12) 3.1电流三段式保护原理接线图 (12) 3.2电流三段式保护原理展开图 (13) 第4章MATLAB建模仿真分析 (15) 第5章课程设计总结 (17) 参考文献 (18)

35kV输电线路电流电压保护设计

-- 1 辽宁工业大学 微机继电保护课程设计(论文) 题目:35kV输电线路电流电压保护设计(3) 院(系): 电气工程学院 专业班级: 学号: 学生姓名: 指导教师: (签字) 1

起止时间: 2014 —2014 课程设计(论文)任务及评语

续表

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 电力系统的输、配线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障。 针对电力系统输电线路进行继电保护设计,采用三段式电流电压保护的方法,确定出最大、最小运行方式下的等值电抗。进行了相间短路的最大、最小短路电流的计算。进行了保护1、2、3的电流速断保护整定值计算,并计算了各自的最小保护范围。进行了保护2、3的限时电流速断保护定值计算,并校验了灵敏度。进行了保护1、2、3的过电流保护定值计算,确定保护1、2、3过电流保护的动作时限,校验保护1作近后备,保护2、3作远后备的灵敏度。绘制三段式电流保护原理接线图。通过实验验证并分析了动作过程。采用MATLAB建立系统模型进行输电线路电流电压保护仿真分析。 关键词:三段式电流电压保护;整定值计算;灵敏度;等值电抗

目录 第1章绪论 ............................................. 错误!未定义书签。第2章输电线路电流保护整定计算 ......................... 错误!未定义书签。 2.1电流Ι段整定计算?错误!未定义书签。 2.1.1保护3在最大、最小运行方式下的等值电抗?错误!未定义书签。 2.1.2 C、D、E母线相间短路的最大、最小短路电流 ..... 错误!未定义书签。 2.1.3保护1、2、3的电流速断整定值?错误!未定义书签。 2.2电流Ⅱ段整定计算............................... 错误!未定义书签。 2.3电流Ⅲ段整定计算 .................................. 错误!未定义书签。第3章硬件电路设计 ..................................... 错误!未定义书签。 3.1单片机主系统设计.................................. 错误!未定义书签。 3.1.1单片机主系统介绍 ............................. 错误!未定义书签。 3.3.2 可编程I/O口8255A?错误!未定义书签。 第4章软件设计 ........................................ 错误!未定义书签。 4.1保护算法......................................... 错误!未定义书签。 4.1.1概述 ....................................... 错误!未定义书签。 4.1.2全波傅立叶算法 ........................... 错误!未定义书签。 4.2保护软件流程?错误!未定义书签。 4.2.1 主程序 ....................................... 错误!未定义书签。 4.2.2采样中断服务程序 (13) 4.2.3 事故处理程序 ................................ 错误!未定义书签。4.3MATLAB建模仿真分析.............................. 错误!未定义书签。第5章实验验证及分析 ................................... 错误!未定义书签。第6章课程设计总结?错误!未定义书签。 参考文献 ............................................... 错误!未定义书签。

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

输电线路三段式电流保护的构成及动作过程

输电线路三段式电流保护的构成及动作过程 来源:中电易展网时间:2011-10-27 14:11 阅读:236次 标签:断路器电流保护 (原理图) (展开图) 线路三段式电流保护的原理接线图及展开图如图所示。其中KA1、KA2、KS1构成第Ⅰ段瞬时电流速断;KA3、KA4、KT1、KS2构成第Ⅱ段限时电流速断;KA5、KA6、KT2、KS3构成第Ⅲ段定时限过电流。三段保护均作用于一个公共的出口中间继电器KOM,任何一段保护动作均启动KOM,使断路器跳闸,同时相应段的信号继电器动作掉牌,值班人员便可从其掉牌指示判断是哪套保护动作,进而对故障的大概范围作出判断。

用三相试验台作微机变压器差动保护比率制动曲线变压器 关键词:变压器,必备保护差动保护是许多电气设备的必备保护,变压器的差动保护由于有变比误差和星角变换问题,相对其他电气设备的差动保护较为复杂,常规的变压器差动保护为了保证星角接线方式的变压器保护差流的平衡,一般将星侧的CT接角形,而将角侧的CT接成星形。而现代的微机变压器差动保护已开始采用将变压器两侧CT均接成星形进入装置,由装置内部软件完成星角转换。做常规变压器差动保护制动特性时,可用一个三相试验台通过调整角度输出两相电流,模拟区内或区外故障两侧CT的同名相的电流加入装置,分别做每相的制动特性。如何用一个三相试验台做微机变压器差动保护比率制动曲线呢?下面以Y/△-11接线的两卷变压器为例进行说明。 假定变压器星侧二次电流为IH,角侧二次电流为IL。确定输入装置的CT电流极性为:当一次电流流入变压器时,装置的感应电流都为正极性电流流入装置(如图1),这样在正常运行或区外故障时,星侧流入装置的电流与一次同向,角侧流入装置的电流与一次反向,但又由于星角变换而使一次星侧电流滞后角侧30度,所以最后流入装置的二次电流为星侧超前角侧150度,向量如图2,进入装置后,软件通过以下计算完成转角:请登陆:输配电设备网浏览更多信息 图2图3 即星侧电流 通过以上转换之后,两侧电流大小未变,方向相反,但由于变压器变比和CT变比问题,进入装置的两侧电流大小不相等,所以还要加上平衡系数,最后计算差电流的算法为: 经过以上运算,可以得出,在区外故障和正常运行时,装置算得的差流为零。这就是国内微机变压器差动保护的算法。 由于星角变换由软件进行,所以在做单相比率制动特性时就不一样了。可以看到,如果在星侧加入A相电流I,而软件却计算出星侧: 这时,要做A相比率制动特性,首先要在角侧加入C相电流,方向与星侧所加A相电流相同,大小适当,平衡掉C相差流,否则C相总能使差动保护先动作。之后,在角侧A 相加入与星侧A相方向相反的电流,调整电流大小,就可以作出差动保护的比率制动特性曲线。B相和C相做法与此相同。以此类推,也可以得出其他星角接线方式的变压器的微机差动保护比率制动特性曲线的做法。 综上所述,用一个三相试验台在星侧加一相电流,在角侧加两相电流,调整适当的大小和方向,就可以做星角接线变压器的微机差动保护的比率制动特性试验。

过电压保护电路

新疆大学 课程设计报告 所属院系:科学技术学院 专业:电气工程及其自动化 课程名称:电子技术基础上 设计题目:过电压保护电路设计 班级:电气14-1 学生姓名:庞浩 学生学号:20142450007 指导老师:常翠宁 完成日期:2016.6.30

课程设计题目: 课程设计是将理论知识应用到实践中的过程,是理论和实践的结合。此外,电子技术综 合课程设计是将我们所学的《模拟电子技术基础》和《电路》的综合应用,欲通过此次课程设计将我们所学的理论知识运用到生活实践之中去,一致更好的学习理论知识。我们此次的设计任务是“电网电压异常报警器过电压保护电路设计”,主要是针对我们学习模拟电子技术与之前所学的物理、电路基础综合起来,进行综合,以设计培养我们独立分析、思考与解决实际问题的能力。以及如何学以致用,将所学的课程运用到实践生活中。 通过此次的课程设计,我们应该达到以下的基本要求: 1.能够在理论知识的基础上进一步熟悉常用电子器件得的类型和特性,合理地进行选择和运用。 2.能够独立地对课题进行分析,运用所学的理论知识,通过翻阅资料,设计出最优方案。 3.学会电子电路的安装与调试技能,培养我们分析与解决问题的能力。 指导教师评语: 评定成绩为: 指导教师签名:2016年6月30日

电网电压异常报警器 过电压保护电路设计(Over Voltage Protection) 一、总体方案的选择 经过小组成员的分析与讨论,得出过电压保护电路设计的框图如下: 1.双向二极管限幅电路 运用二极管的单向导通性,可以对输入电压进行限幅。电路图如1-1所示,限幅后的波形图如图1-2所示。 图1-1二极管双向限幅仿真电路图

继电保护课程设计输电线路电流电压保护设计

继电保护课程设计输电线路电流电压保护设计

第1章绪论 (1) 第2章设计的原始资料 (2) 2.1题目内容 (2) 2.2课程设计的内容与技术参数参见下表 (2) 2.3 工作计划: (3) 2.4设计需要考虑的问题 (3) 2.5保护方式的选取与整定计算 (3) 第3章输电线路电流保护整定计算 (4) 3.1保护3在最大、最小运行方式下的等值阻抗 (4) 3.2保护3在最小运行方式下G2退出运行,L2退出运行等值电路 (4) 3.3进行C母线、D母线、E母线相间短路的最大、最小短路电流的计算 (5) 3.4整定保护1、2、3的电流速断保护定值,并计算各自的最小保护范围 (6) 3.5整定保护2、3的限时电流速断保护定值,并校验灵敏度 (7) 3.6整定保护1、2、3的过电流保护定值 (8) 第4章电流保护原理图的绘制与动作过程分析 (9) 4.1电流三段式保护原理图 (9) 4.2电流三段式原理展开图 (10) 第5章MATLAB建模仿真分析 (12) 5.1 MATLAB的概述 (12) 5.2 仿真设计 (13) 5.3仿真结果 (13) 5.4结果分析 (15) 第6章课程设计总结与心得 (16) 参考文献 (16)

第1章绪论 继电保护装置是指能反应电力系统中电气元件发生的故障或不正常远行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是:(1)自动、迅速、有选择地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。(2)反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于发出信号、减负荷或跳闸。一般情况下不要求保护迅速动作,而是根据对电力系统与其元件的程度经一定的延时动作于信号。目前,继电保护装置是以各电气元件作为保护对象的,其切除故障的范围是断路器之间的区段。反应整个被保护元件上的故障,并能以最短的延时有选择性地切除故障的保护称为主保护;当主保护或断路器拒绝动作时,用来切除故障的保护称为后备保护。 电力系统对动作于跳闸的继电保护装置提出了四个基本要求,即选择性、速动性、灵敏性和可靠性。这四个基本要求是分析研究继电保护性能的基础,在它们之间,既有矛盾的一面,又有在一定条件下统一的一面。除了以上四个基本要求以外,选用保护装置时还应该考虑经济性。在保证电力系统安全运行的前提下,尽可能采用投资少、维护费用低的保护装置。 线路相间短路的电流电压保护有三种:第一,无时限电流速断保护;第二,带时限电流速断保护;第三,定时限过电流保护。这三种相间短路电流电压保护分别称为相间短路电流保护第Ⅰ段、第Ⅱ段和第Ⅲ段。其中第Ⅰ段和第Ⅱ段作为线路主保护,第Ⅲ段作为本线路主保护的近后备保护和相邻线路或元件的远后备保护。第Ⅰ、Ⅱ、Ⅲ段统称为线路相间短路的三段式电流电压保护。 第Ⅰ段称为无时限电流速断保护,该段动作时间快但是不能保护线路全长。第Ⅱ段称为带时限电流速断保护,该段保护在任何情况下均能保护本线路的全长(包括线路末端),但是为了保证在相邻的下一个线路出口处短路时保护的选择性,必须和相邻的无时限电流速断保护配合。第Ⅲ段称为定时限过电流保护,该段保护主要是作为本线路主保护的近后备保护和相邻下一线路(或元件)的远后备保护。 本文主要内容是研究在母线短路时,保护1、2、3的第Ⅰ段、第Ⅱ段和第Ⅲ段的整定值,并检验它们的灵敏度确定它们是否能够保护线路。

三段式电流保护的设计(完整版)

学号 2010 《电力系统继电保护》 课程设计 (2010届本科) 题目:三段式电流保护课程设计 学院:物理与机电工程学院 专业:电气程及其自动化 作者姓名: 指导教师:职称:教授 完成日期:年12 月26 日

目录 1 设计原始资料........................................................................................................................................ - 3 - 1.1 具体题目..................................................................................................................................... - 3 - 1.2 要完成的内容............................................................................................................................. - 3 - 2 设计要考虑的问题................................................................................................................................ - 3 - 2.1 设计规程..................................................................................................................................... - 3 - 2.1.1 短路电流计算规程.......................................................................................................... - 3 - 2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 - 2.2 本设计的保护配置..................................................................................................................... - 5 - 2.2.1 主保护配置...................................................................................................................... - 5 - 2.2.2 后备保护配置.................................................................................................................. - 5 - 3 短路电流计算........................................................................................................................................ - 5 - 3.1 等效电路的建立......................................................................................................................... - 5 - 3.2 保护短路点及短路点的选取..................................................................................................... - 6 - 3.3 短路电流的计算......................................................................................................................... - 6 - 3.3.1 最大方式短路电流计算 .................................................................................................. - 6 - 3.3.2 最小方式短路电流计算 .................................................................................................. - 7 - 4 保护的配合及整定计算........................................................................................................................ - 8 - 4.1 主保护的整定计算..................................................................................................................... - 8 - 4.1.1 动作电流的计算............................................................................................................ - 8 - 4.1.2 灵敏度校验...................................................................................................................... - 9 - 4.2 后备保护的整定计算................................................................................................................. - 9 - 4.2.1 动作电流的计算.............................................................................................................. - 9 - 4.2.2 动作时间的计算............................................................................................................ - 10 - 4.2.3 灵敏度校验.................................................................................................................... - 10 - 5 原理图及展开图的的绘制.................................................................................................................. - 10 - 5.1 原理接线图............................................................................................................................... - 10 - 5.2 交流回路展开图........................................................................................................................- 11 - 5.3 直流回路展开图....................................................................................................................... - 12 - 6 继电保护设备的选择.......................................................................................................................... - 12 - 6.1 电流互感器的选择................................................................................................................... - 12 - 6.2 继电器的选择........................................................................................................................... - 13 - 7 保护的评价.......................................................................................................................................... - 14 -

第六节 方向性电流保护

第六节方向性电流保护 本节主要讲方向性电流保护工作原理以及中性点直接接地电网中接地短路的零序电流及方向保护。 一、方向性电流保护工作原理 前面所讲的三段式电流保护是以单侧电源网络为基础进行分析的,各保护都安装在被保护线路靠近电源的一侧,在发生故障时,它们都是在短路功率从母线流向被保护线路的情况下,按照选择性的条件和灵敏性的配合来协调工作的。 短路功率:一般指短路时某点电压与电流相乘所得到的感性功率,在无串联电容也不考虑分布电容的线路上短路时,认为短路功率从电源流向短路点。 目前双侧电源供电较为普遍。 在下图的双侧电源网络接线中,由于两侧都有电源,则在每条线路的两侧均需装设断路器和保护装置。假设断路器8断开,电源不存在,则发生短路时,保护1、2、3、4的动作情况和由电源单独供电是一样的,它们之间的选择性是能够保证的。 如果电源不存在,则保护5、6、7、8由电源单独供电,此时它们之间也同能够保证动作的选择性。 图2-29 双侧电源网络接线 如果两个电源同时存在,当点短路时,按照选择性的要求,应该由距故障点最近的保护2、 6动作切除故障。但由电源供给的短路电流也将通过保护1,如果保护1采用电流速断且 大于保护装置的起动电流,则保护1的电流速断就要误动作;如果保护1采用过电流保护且其动作时限,则保护1的过电流保护也将误动作。 (b)中k2点短路时,本应由保护1和7动作切除故障,但是由电源供给的短路电流将通 过保护6,如果,则保护6的电源速断要误动作;如果过电流保护的动作时限,则保护6的过电流保护也要误动作。其他亦如此。

图2-30 方向过电流保护的原理接线图 方向性继电保护的主要特点就是在原有保护的基础上增加一个功率方向判别元件,以在反方向故障时保证保护不致误动作。 原理图如上图所示,主要由方向元件、电流元件和时间元件组成,方向元件和电流元件必须都动作之后,才能去起动时间元件,再经过预定的延时后动作于跳闸。 二、中性点直接接地电网中接地短路的零序电流及方向保护

电力系统继电保护课程设计-输电线路方向电流保护设计

电力系统继电保护课程设计-输电线路方向电流保护设计

电力系统机电保护课程设计论文 设计课题电力系统继电保护课程设计 论文题目输电线路方向电流保护设计 学部 专业电气工程及其自动化班级 学号 学生姓名 指导教师

年月日 广东工业大学华立学院 课程设计(论文)任务书 一、课程设计(论文)的内容 输电线路方向电流保护设计 二、设计(论文)的要求与数据

1、设计技术参数: ,20,3/1151Ω==G X kV E φ ,12,1232Ω=Ω=G G X X L1=L2=60km,L3=50km,LB-C=40km, LC-D=50km,LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏ rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=360A, IC-D.Lmax=210A, ID-E.Lmax=110A, 2、、统接线图如图: 三、课程设计(论文)应完成的工作 1、值电抗计算、短路电流计算。 2、整定保护4、5的电流速断保护定值,并尽可能在一端加装方向元件。 3、定保护5、7、9限时电流速断保护的电流定值,并校验灵敏度。 4、定保护4、 5、 6、 7、 8、9过电流保护的时间定值,并说明何处需要安装方向元件。 5、制方向过电流保护的原理接线图。并分析动作过程。 6、采用MATLAB 建立系统模型进行仿真分析。

四、课程设计(论文)进程安排 五、应收集的资料及主要参考文献 [1]谷水清.电力系统继电保护[M].北京:中国电力出版社,2005 [2]贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3]能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4]方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5]崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6]卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992 [8]陈曾田.电力变压器保护[M].北京:水利电力出版社,1989 [9]许建安.电力系统继电保护[M].北京:水利电力出版社,2003

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

110kV输电线路零序电流保护设计 课程设计

110kV输电线路零序电流保护设计课程设计

辽宁工业大学微机继电保护课程设计(论文) 题目:110kV输电线路零序电流保护设计(2) 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气工程及其自动化学号学生姓名专业班级 课程设 110kV输电线路零序电流保护设计(2) 计(论 文)题目

系统接线图如图: 课程设计的内容及技术参数参见下表 设计技术参数 工作量 , 3/115kV E =φ 2 .1=I rel K ,=∏rel K 1 .1=I ∏ rel K , 系统中各元件及线路的负序阻抗与正 序阻抗相同,其他参数见图。 计算最大和最小零 序电流,应根据当Z1∑<Z0∑时,则有)1.1(.0)1(.0k k I I ?;反之,当Z1∑ >Z0∑时,则有 一、整定计算 1.计算B 母线、C 母线、D 母线处正序(负序)及零序综合阻抗Z1∑、Z0∑。 2.计算B 母线、C 母线、 D 母线处发生单相或两相接地短路时出现的最大、最小零序电 流。 3.整定保护1、2、3 零序电流I 段的定值, 并计算各自的最小保 护范围。 Z T4 = Z =Z T2 =1 Z G2 =1Z T1 = 3 2 1 Z G1 = Z 1.CD =Z 0.CD = Z 1.BC =Z 0.BC =Z 0.AB =A Z 1.AB = D C B

续表 进度计划第一天:收集资料,确定设计方案。 第二天:计算综合阻抗和零序电流,零序I段的整定计算。 第三天:零序II段、零序III段的整定计算。 第四天:硬件电路设计(最小系统、数据采集、状态检测部分)。第五天:硬件电路设计(控制输出、报警显示部分)。 第六天:软件设计(有效值计算、故障判据)。 第七天:软件设计(绘制流程图或逻辑图) 第八天:仿真验证及分析。 第九天:撰写说明书。 第十天:课设总结,迎接答辩。 指 导 教 师 评 语 及 成 绩 平时:论文质量:答辩: 总成绩:指导教师签字: 年月日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

过欠电压提示保护电路课程设计

山西大学课程设计报告 课程名称: 系部: 专业班级: 学生姓名: 指导教师: 完成时间: 报告成绩:

目录 1.概述 (3) 1.1 过欠压电路课程设计背景 (3) 1.2 过欠压电路课程设计目的 (3) 1.3设计任务与要求 (3) 2.设计内容 (4) 2.1 分模块电路设计思路··································42.2电源模块的设计······································4 2.3 比较模块的设计 (5) 2.4 报警模块的设计 (6) 3.总电路图··············································8 3.1图像 (8) 3.2 元件清单 (8) 3.3部分重要原件介绍·····································8 4.仿真与调试...........................................114.1仿真. (11) 4.2调试 (12) 4.3结论 (14) 5.心得体会··············································14 6.参考文献··············································15

1.概述 1.1过欠压电路课程设计背景 生活中,我们不可避免的要用到要用到各种各样的电气设备。由于电网电压的波动,在较高的电压下很有可能使电气设备受到损坏,而在低压时电气设备不能正常工作。那么,在这样的情况下就需要有一个电压报警指示设备,它可以及时准确地对电网电压进行分段指示并且对过、欠压进行指示报警,从而实现保护电器设备的目的。 1.2过欠压电路课程设计目的 1.设计一过/欠电压保护提示电路。 2.对给定的电路原理框图进行原理图设计,分单元进行设计。对电路参数进行必要的计算,选择元器件参数。 3.画出完整的电路原理图。 4.对设计的电路进行仿真验证。要求打印出仿真结果。 1.3 设计任务与要求 1.设计一个过欠电压保护电路,当电网交流电压大于250V或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。 2.在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设

输电线路的距离保护习题答案

输电线路的距离保护习题答案

姓名:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。

二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。(A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。( ) 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。() 5、阻抗继电器的最小精确工作电压,就是最小精确工作电流与电抗变压器转移阻抗值的乘积。() 6、在距离保护中,“瞬时测定”就是将距离元件的初始动作状态,通过起动元件的动作而固定下来,以防止测量元件因短路点过渡电阻的增大而返回,造成保护装置拒绝动作。( )

相关主题