搜档网
当前位置:搜档网 › 热力学一般关系(热学.doc高等数学偏微分)

热力学一般关系(热学.doc高等数学偏微分)

热力学一般关系(热学.doc高等数学偏微分)
热力学一般关系(热学.doc高等数学偏微分)

第二部分工质的热力性质

六热力学函数的一般关系式

由热力学基本定律引出的一些基本热力学状态函数(如能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。

这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。

热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性

对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的

一些基本定理。

设函数),(y x f z =具有全微分性质

dy y z dx x z dz x

y ???? ????+???

????= (6-1) 则必然有

(1) 互易关系

令式(6-1)中

),(y x M x z y

=????

????,

),(y x N y z x

=????

???? 则 y

x x N y

M ???? ????=?

???

???? (6-2)

互易关系与?=0dz 等价。它不仅是全微分的必要条件,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。

(2) 循环关系

当保持z 不变,即0=dz 时,由式(6-1),得

0=???? ????+???

????z x

z y dy y z dx x z

则 x

y z

y z x z x y ???? ????????

????-

=???? ???? 故有 1-=????

????????

???????? ????y

z x z x x y y z (6-3)

此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。

(3) 变换关系

将式(6-1)用于某第四个变量ω不变的情况,可有

ωωωdy y z dx x z dz x

y ?

??? ????+???

????= 两边同除以ωdx ,得

ω

ω???

???????? ????+??? ????=??? ????x y y z x z x z x y (6-4)

式中:y

x z ??? ????是函数),(y x z 对x 的偏导数;ω???

????x z 是以),(ωx 为独

立变量时,函数),(ωx z 对x 的偏导数。上面的关系可用于它们之间的变换。这一关系式对于热力学公式的推导十分重要。

(4) 链式关系

按照函数求导法则,可有下述关系:

1=???

??????? ????y

y z x x z (6-5)

1=???

??????? ??????? ????y

y y z x x z ωω (6-5a )

这是在同一参数(如y )保持不变时,一些参数

),,,( ωx z 循环求导所得偏导数间的关系。若将关系式中每

个偏导数视为链的一环,则链式关系的环数可随所涉及参数的个数而增减。

以上这些关系式都是针对二元函数的,即以具有两个独立状态参数的简单系统为背景。但对具有两个以上独立参数的系统即多元状态函数,其也有推广价值。

例题6-1 已知理想气体状态方程为RT pv =,试检验v 是否有全微分。

解 由状态方程得 p

RT

v =,故有

dp p v dT T v dv T

p ???? ????+???

????=

dp p

RT dT p R 2-= 于是

p R p T M =

),(, 2),(p

RT

p T N -=

2p R p R p p M

T

T -=????

????=???? ????

22p R p RT T T N p

-=???

?

????-=?

??? ????

二者相等,可见v 有全微分,即其为状态函数。

6.2 基本热力学关系式

6.2.1 基本热力学关系式

为简单计,以下推导全部采用比参数。由热力学第一定律,得

w du q δδ+= (3

-18d )

对简单可压缩系统,若过程可逆,则pdv w =δ,故 pdv du q +=δ

而由热力学第二定律

Tds q =δ

(4-14b ) 二式联立,最后得

pdv Tds du -= (6-6)

式(6-6)表达了热力学基本定律对系统状态参数变化的限制,是导出其它热力学关系式的基本依据,称为基本热力学关系式。

需要指出的是:虽然式(6-6)是从可逆变化推导而来,但因为du 是状态函数的变化,它只与变化前后的状态有关,而与实际过程的可逆与否无关,所以对于不可逆变化仍然适用。但若作为能量平衡方程,它只适用于可逆过程。

由焓的定义

pv u h += 得

vdp pdv du pv d du dh ++=+=)( 将式(6-6)代入上式,可得

vdp

Tds dh +=

(6-7)

同样,由自由能的定义 Ts u f -= 可得 pdv sdT df --=

(6-8)

由自由焓的定义 Ts h g -= 可得

vdp sdT dg +-=

(6-9)

以上式(6-7)~(6-9)为基本热力学关系式用组合参数表达的形式,故式(6-6)~(6-9)可统称为基本热力学关系式。

6.2.2 特性函数

基本热力学关系式(6-6)~(6-9)分别为以特定参数为独立变量的状态函数),(v s u 、),(p s h 、),(v T f 、),(p T g 的全微分表达式。这些函数有一个很重要的性质,就是它们的偏导数各给出一个状态函数。

对于函数),(v s u ,将其全微分解析式

dv v u ds s u du s

v ???

????+??? ????=

与式(6-6)作对比,即得

T s u v

=???

????

(6-10)

p v u s

-=???

???? (6-11)

同样,由于式(6-7)是函数),(p s h 的全微分,则有

T s h p

=???

???? (6-12) v p h s

=????

????

(6-13)

式(6-8)是函数),(v T f 的全微分,有 s T f v

-=??? ????

(6-14)

p v f T

-=???

????

(6-15)

式(6-9)是函数),(p T g 的全微分,有

s T g p

-=???

????

(6-16)

v p g T

=????

???? (6-17)

正因为如此,只需知道上述函数中的任意一个函数,就可确定出所有的状态函数。如已知),(v T f ,则由式(6-14)可得),(v T s ;由式(6-15)可得),(v T p 即状态方程;由自由能的定义Ts u f -=可得

v

T f T f v T u ???

????-=),(

由焓的定义pv u h +=可得

v v f T f T f v T h T

v ???

????-??? ????-=),(

由自由焓的定义pv f Ts h g +=-=可得

v v f f v T g T

???

????-=),(

由此可见,若状态函数的独立参数选择适当,则可由这个函数及其偏导数得到所有的状态函数,从而将工质的平衡性质完全确定。这样的函数称为特性函数。

特性函数包含了系统平衡状态的所有信息,它的自变量是特定的。一经变换虽然还是状态函数,但由于信息丢失而不再是特性函数了,这一点需特别注意。除了上面已给出的

),(v s u 、),(p s h 、),(v T f 、),(p T g 这四个特性函数,还

可通过基本热力学关系式寻找其它的特性函数。如将式(6-6)写成

dv T

p du T

ds +

=

1 (6-18)

则可知 ),(v u s 也是特性函数;将式(6-7)写成

dp T

v

dh T ds -=1 (6-19)

则可知 ),(p h s 也是特性函数,等等。

特性函数为联系各热力学函数的枢纽。在许多实际问题中,常采用v T ,或p T ,这些可测量作独立变量,所以),(v T f 和),(p T g 是两个最重要的特性函数。

6.2.3 麦克斯韦关系

由于基本热力学关系式(6-6)~(6-9)是各特性函数的全微分表达式,故可对它们应用互易关系式(6-2),因此可得

v

s s p v T ???

????-=??? ???? (6-20)

p

s s v p T ???

????=???? ???? (6-21)

v

T T p v s ???

????=?

?? ???? (6-22) p T

T v p s ???

????-=???? ???? (6-23)

这四个关系式称为麦克斯韦关系。借助它们可将包含不

可测量熵s 的关系式代换成用可测量p 、v 、T 表达的关系式。

6.3 热系数

状态函数的某些偏导数具有明确的物理意义,能表征工质的一定的热力性质,且可由实验测定,因而成为研究工质热力性质的重要数据,称为热系数。常用的热系数有:热膨胀系数、定温压缩系数、绝热压缩系数、压力温度系数、定容比热、定压比热和绝热节流系数等。

1. 热膨胀系数

p

p T v v ???

????≡1α (6-24)

热膨胀系数表征物质在定压下的体积随温度变化的性质,单位为1-K 。

2. 定温压缩系数

T

T p v v ????

????-≡1κ

(6-25)

定温压缩系数表征物质在恒定温度下的体积随压力变

化的性质。由于所有物质的T

p v ????

????均为负值,故在定义式中

引入负号,而使T κ为正值。其单位为1-Pa 。

3. 压力温度系数

v v T p p ???

????≡1β (6-26)

压力温度系数表征物质在定容下的压力随温度变化的性质,单位为1

-K 。

由微分的循环关系式(6-3),有

1-=????

??????? ??????? ????T

p v p v v T T p

因而,上面的三个热系数之间有如下关系

v T p p βκα=

(6-27)

显然,如果有了工质的状态方程,就可计算出这三个热系数。反之,如果由实验测出这些热系数数据,就可积分得到状态方程式。

4. 绝热压缩系数

s

s p v v ????

????-≡1κ (6-28)

绝热压缩系数表征工质在可逆绝热(定熵)变化中体积随压

力变化的性质,单位为1

-Pa 。

5. 定容比热

v

v dT q c ????

??≡δ (6-29)

定容比热表征物质在定容下的吸收热量的能力,单位为

)/(K kg kJ ?。

根据热力学第一定律解析式

w du q δδ+= (3-18d )

对简单可压缩系统,定容下的体积功0=w δ,故du q =δ,因而

v

v T u c ??? ????= (6-30)

6. 定压比热

p

p dT q c ???

??≡δ (6-31)

定压比热表征物质在定压下的吸收热量的能力,单位为

)/(K kg kJ ?。

对简单可压缩系统,定压下的体积功)(pv d pdv w ==δ,故由式(3-18d ),dh pv u d pv d du q =+=+=)()(δ,因而

p

p T h c ???

????= (6-32)

可直接采用式(6-30)和式(6-32)作为定容比热和定压比热的定义式。这样能更清楚地表明v c 和p c 是状态函数的偏导数,是热系数。此外,在物理意义上,可表明它们对状态函数能和焓h 的研究与计算起着重要作用,而不仅仅是计算热量。

7. 绝热节流系数

h

J p T ????

????≡μ

(6-33)

绝热节流系数(又称焦耳-汤姆逊系数)表征物质绝热节流过程的温度效应。J μ的数据可通过焦耳-汤姆逊实验测定,并可用以导出工质的状态方程式。因此,在工质热力性质的研究中,它是一个很重要的热系数。

例题6-2 已知水银的体膨胀系数13101819.0--?=K p α、定温压缩系数151087.3--?=MPa T κ,试计算液态水银在定容下温度由K 273升高到K 274时的压力增加。

解 由式(6-26)和式(6-27),有

K MPa MPa K p T p T p v v

/70.41087.3101819.01513=??===???

????----καβ 可见,液态水银温度定容升高1度,压力将增加MPa 70.4。因此,保持水银的体积不变,容器承受了相当大的压力。

例题6-3 若已从实验数据整理出物质的体膨胀系数和等温压缩系数分别为

Tv

a v p -=α, pv a v T 4)(3-=κ

其中a 为常数。试推导出该物质的状态方程。

解 对于以p 、T 为独立变量的状态方程),(T p v v =,有

dT T v dp p v dv p T

???

????+?

??? ????= 因为

p p p v v ???? ????=1α, T

T p v v ???? ????-=1κ 所以

vdT vdp dv p T ακ+-=

代入题给的p α及T κ表达式,得

dT Tv

a

v v dp pv a v v dv -+--=4)(3

分离变量

dT T

dp p a v dv 143+-=- 积分得

C T p a v ln ln ln )ln(4/3++=--

CT a v p =-)(4/3

此即为该物质的状态方程,其中C 为积分常数。

6.4 熵、能和焓的一般关系式

从理论上讲,可通过基本热力学关系式积分得到特性函数,再由特性函数得到其它状态函数,就可确定出工质的热力性质。但基本热力学关系式以及特性函数有一个很大缺陷,即u 、h 、s 及f 、g 本身的数值都不能用实验方法直接测定,更谈不上积分求解。因此,必须对基本热力学关系式作些代换,以得到完全用可测量表达的熵s 、能u 和焓h 的全微分表达式,或称一般关系式。这些表达式以可测参数p 、

v 、T 中的任一对作独立变量,且式中只包含p 、v 、T 和可

测的热系数。这样就可利用实验数据积分得到所需的状态函数。

6.4.1 熵的一般关系式

1. 以T 、v 为独立变量

以T 、v 为独立变量,即),(v T s s =,则

dv v s dT T s ds T

v ???

????+??? ????= (A )

由全微分的链式关系式(6-5a )及定容比热定义式(6-30),并考虑到式(6-10),有

1=???

??????? ??????? ????v

v v s u u T T s T c s u T u T s v

v

v v =???

?????

?? ????=?

?? ???? (B )

由麦克斯韦关系式(6-22),有

v

T T p v s ???

????=??? ???? (C )

将式(B )、式(C )代入式(A ),得

dv T p dT T c ds v

v ???

????+=

(6-34)

此称为第一ds 方程。

2. 以T 、p 为独立变量

以T 、p 为独立变量,即),(p T s s =,则

dp p s dT T s ds T

p ???? ????+???

????=

(A )

同样,由式(6-5a )、式(6-32)和式(6-12),有

T c s h T h T s p p

p p =???

?????

?? ????=

???

???? (B ) 由式(6-23),有

p T

T v p s ???

????-=???? ????

(C )

将式(B )、式(C )代入式(A ),得

dp T v dT T c ds p

p

???

????-= (6-35)

此称为第二ds 方程。 3. 以

p 、v 为独立变量

以p 、v 为独立变量,即),(v p s s =,则

dv v s dp p s ds p v

???

????+???? ????= (A ) 由链式关系式(6-5a ),及上面两个ds 方程推导中的(B )式,有

v

v v v v p T T c p T T s p s ????

????=???? ??????? ????=???? ????

(B )

p

p p p p v T T c v T T s v s ??? ????=???

??????? ????=??? ???? (C )

将式(B )、式(C )代入式(A ),得

dv v T T c dp p T T c ds p p v

v ??? ????+????

????= (6-36)

此称为第三ds 方程。它也可由式(6-34)和式(6-35)联立消去dT 得到。

三个ds 方程中,以第二ds 方程最为实用,因定压比热p

c 较定容比热v c 易于测定。上述ds 方程推导中,对工质没作任何假定,故它们可用于任何物质,当然也包括理想气体。只要将理想气体的状态方程代入式(6-34)~式(6-36),就可得理想气体的熵变计算式。

6.4.2 能的一般关系式

将所得到的三个ds 方程分别代入基本热力学关系式

pdv Tds du -= (6-6)

便可得到三个du 方程。

将第一ds 方程代入式(6-6)并整理,得

dv T p T p dT c du v v ???

??

???? ????--= (6-37)

此称为第一du 方程。它是以T 、v 为独立变量的能),(v T u 的全微分表达式。

将第二ds 方程代入式(6-6),并将式中的dv 按以T 、

p 为独立变量作如下展开:

dp p v dT T v dv T

p ???? ????+???

????=

然后整理得

dp p v p T v T dT T v p c du T p p p ???

??????

??? ????+??? ????-????

??????? ????-= (6-38) 此称为第二du 方程。它是以T 、p 为独立变量的能),(p T u 的全微分表达式。

将第三ds 方程代入式(6-6)并整理,得

dv v T c p dp p T c du p p v v ???

?

??????? ????--???? ????= (6-39)

此称为第三du 方程。它是以p 、v 为独立变量的能),(v p u 的

全微分表达式。

在以上三个du 方程中,第一du 方程的形式较简单,计算较方便,故使用较广泛。因此,在计算能变化时,宜选择

T 、v 为独立变量。

6.4.3 焓的一般关系式

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

热力学一般关系(热学高等数学偏微分)word版本

第二部分工质的热力性质 六热力学函数的一般关系式 由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。 这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。 热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性 对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的一些基本定理。

设函数),(y x f z =具有全微分性质 dy y z dx x z dz x y ???? ????+??? ????= (6-1) 则必然有 (1) 互易关系 令式(6-1)中 ),(y x M x z y =???? ????, ),(y x N y z x =???? ???? 则 y x x N y M ???? ????=? ??? ???? (6-2) 互易关系与?=0dz 等价。它不仅是全微分的必要条件,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。 (2) 循环关系 当保持z 不变,即0=dz 时,由式(6-1),得 0=???? ????+??? ????z x z y dy y z dx x z

则 x y z y z x z x y ???? ???????? ????- =???? ???? 故有 1-=???? ???????? ???????? ????y z x z x x y y z (6-3) 此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。 (3) 变换关系 将式(6-1)用于某第四个变量ω不变的情况,可有 ωωωdy y z dx x z dz x y ? ??? ????+??? ????= 两边同除以ωdx ,得 ω ω??? ????? ??? ????+??? ????=??? ????x y y z x z x z x y (6-4) 式中:y x z ??? ????是函数),(y x z 对x 的偏导数;ω??? ????x z 是以),(ωx 为 独立变量时,函数),(ωx z 对x 的偏导数。上面的关系可用于它们之间的变换。这一关系式对于热力学公式的推导十分重要。

第06章 热力学微分关系式

第六章 热力学微分关系式 1.基本概念 自由能:F =U -TS ,F 称为自由能,或称亥姆霍兹(Helmholtz )函数。 自由焓:令G = H -TS ,G 称为自由焓,或称吉布斯(Gibbs )函数。 2.重要公式 热力学能的基本关系式: V p U W U Q d d d +=+=δδ V p S T U d d d -= 焓的基本关系式: p V V p U H d d d d ++= p V S T H d d d += 自由能基本关系式: V p T S F d d d --= 自由焓的基本关系式: P V T S G d d d +-= 麦克斯韦关系式: v s )()( S p V T ??-=?? p s )()(S V p T ??=?? v T )()(T p V S ??=?? p T )()(T V p S ??=??- 热系数: ? ? ?? ?? ?????-=??=??= T p v )(1)(1)(1p v v T v v T p p μβα 式中 α——压力温度系数; v )( T p ??——物质在定容下压力随温度的变化率; β——容积膨胀系数,或称热膨胀系数; p )( T v ??——物质在定压下比体积随温度的变化率;

μ——定温压缩系数,或简称压缩系数; T )( p v ??——物质在定温下比体积随压力的变化率,表示物质在定温条件下受压后的压缩性。 这个偏导数为负值,加负号后,μ仍为正值。 熵方程: v T p T T c s d )(d d v v ??+= p T v T T c s d )( d d p p ??-= v v T T c p p T T c s d )(d )(d p p v v ??+??= 焓方程: p T v T v T c h d ])( [d d p p ??-+= 热力学能的微分方程式: ??-??+=-2 1 21 d ])( [d v v 12v v T T v p T p T T c u u 热量的微分方程式: v v p p d d ( )d d d ()d p q T s c T T v T v q T s c T T p T δδ?==+??==-? 上述两式适用于任意物质的任何可逆过程。 比热容与状态方程式的关系: 2T v 21()()v c p T v T ??=?? 2p T p 21()()c v T p T ??=-?? 2211 2p p T p 2()()d p p v c c T p T ?-=-?? 比定压热容与比定容热容的关系: T 2p v p )()( v p T v T c c ????-=- μ β2 v p Tv c c = - 克拉贝龙方程:

光子气体与它的热力学函数关系

目录 1引言 (1) 2热辐射和平衡辐射 (1) 3 用能量均分定律讨论热辐射 (3) 4 热力学量的统计表达式 (5) 4.1总分数和能的统计表达式 (5) 4.2广义作用力的统计表达式 (6) 4.3熵的统计表达式 (6) 5 光子气体的热力学函数 (7) 6 结论 (8) 参考文献 (9) 致谢 (10)

光子气体与它的热力学函数关系 摘要:早在1900年,马克斯·普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特·爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。 该文论述了光子气体热力学函数并根据光子气体巨配分函数推导出热力学函数能、压强、熵、焓、自由能和吉布斯函数以及物态方程。 关键词:光子;热辐射;巨配分函数;熵;压强。

1引言 早在1900年,马克斯.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特.爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c 在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。近代物理理论研究表明,辐射除了具有波动性质外,还具有微粒性质,辐射场可看成是有各种频率的电磁波所组成,也可以将其视为是光子的集合是光子气体。光子气体也普通气体一样按一定规律分布(波色分布),但与普通气体相比有着如下差异:(1)光子随时在产生或漂灭,故粒子数不能固定;(2) 由于光子具有相同的速度(光速) ,故不存在速度分布;(3)普通气体分子之间按速度的平衡分布,是通过分子之间相互碰撞与相互作用机制实现的.而光子气体中的光子彼此并不碰撞,其间的平衡分布,只在辐射场中有某种能够吸收和辐射光子的物体存在时才能建立起来.在吸收或辐射过程中,一种频率的光子将转变成另一种频率的光子.正是光子气体与普通气体之间的这些差异,从而导致光子气体具有与普通气体不同的热力学性质和特征函数。 2热辐射和平衡辐射 只要温度不是绝对零度,任何物体的表面都会向外发射各种波长的,频谱为连续的电磁波。温度升高,物体在单位时间从单位面积表面上向外发射的辐射总能量也之增加。一定时间辐射能量随波长的分布也与温度有关,简单来说爱热的固体会辐射电磁波,称为热辐射。一般情形下热辐射的强度和强度按频率的分布与辐射体的温度和性质有关。如果辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,于热辐射的其它特性无关,称为平衡辐射。. 考虑一个封闭的空窖,窖壁保持一定的温度T。窖壁将不断向空窖发射并吸收电磁波,窖辐射场与窖壁达到平衡后,二者具有共同的温度,显然空窖的辐射就是平衡辐射。 平衡辐射包含各种频率,沿各个方向传播的电磁波.这些电磁波的振幅和相位

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

2第二章_热力学函数与普遍关系式

第二章 热力学函数与普遍关系式 在给出了热力系统的一段性描述之后,就可以根据热力学第一定律和第二定律建立的解桥式,推导出热力学参数的各种微分关系式。这种推导过程只应用连续可微函数的数学性质,而不涉及系统的特殊情况,因此它们适用于状态连续变化的一切系统以及系统的全部状态,通常称之为热力学普遍关系式。热力学普遍关系式是非常有用的,利用有关的式子,可以由可测量决定非可测量,或对实例量进行热力学一致性检验。此外不论如何严密与细致的实验,所切得的数据总是有限的,在编制参数图表时,必须进行内插与外推,这时普遍关系式是导出有关公式的重要依据。 2-1 热力学一般关系式 1 一般关系式 热力学的普遍关系式 热力学一般关系据热力学基本定律导出,因此是任何工质都必然遵循的关系;是研究工质热力性质的理论基础,适于主要对象有约束作用的复杂系统对复杂系统的热力学分析。 热力学分析的主要对象的限制包括以下几点: ● 化学成分均匀不变 ● 纯物质 ● 不存在运动、毛细、固体变形效应 ● 不存在电场、磁场效应,忽略重力效应。 简单可压缩系统 一种与外界只有热量及准静态容积变化的热力学系统,其中:简单表示只有一种可逆功方式、可压缩表示可逆过程中,以体积变化做功,p d v 确定系统状态所需的参数: 热力学关系式中参数的个数是确定的,它们与能量相互作用方式数有相关关系。一个系统平衡状态所需的独立参数个数,等于可能存在的可逆功方式数再加一。其中,加一是因为系统中的热作用。 两参数法则: 一个简单系统平衡状态可由二个独立状态参数表示,同时二个独立状态参数也确定了一个简单系统平衡状态,即 简单系统平衡状态 2独立状态参数 [例] U ,V 非相互独立。 D ,M 非相互独立。 纯物质:液体 + 蒸汽混合物, T, P 非相互独立

热力学一般关系

热力学一般关系 本章提要及安排 本章提要: 1.工质的平衡热力性质是指工质状态参数间的函数关系,特别以可测参数为独立变量的热力学能、焓、熵函数在工程应用中尤为重要。 2.对热力学状态函数的研究通常从它们的偏微商着手。在常用状态函数的偏微商中,有的是可以通过实验测定的,常将它们定义为各种热系数;有的则不能用实验的方法得出。 3.工质在准平衡变化中的热力学基本定律表达式同时也表达了热力学状态函数之间的基本关系,又称基本热力学关系式。通过勒让德变换,基本热力学关系可以用不同的组合参数表达。基本热力学关系的一阶偏微商和二阶混合偏微商给出状态函数偏微商之间的一般关系。当然,与热力学基本定律一样这些一般关系对任何工质都是适用的。 4.按照基本热力学关系,可以用可测的状态参数和热系数来表达不能通过实验直接得出的偏微商,从而将各常用状态函数的全微分式用可测的参数及免系数表达出来。这样,就为在实验测定数据的基础上得出工质的状态函数开辟了道路。 5.在工质热力性质研究中,并非所有热系数都是必需沤过实验测定的,应用热系数间的一般关系可以由少虽测得的热系数得到所需的其它热系数。这样,可以大大减少研究中的实验工作量.同时减小由于有限的实验精确度带来的误差。 6.依据本章所导出的一般关系式,应用所讲述的推导方法,还可导得工程中需用的各种函数关系。 7.本章所导出的一般关系式只适用于简单可压缩系统。 本章要求: 1.了解热力学一般关系的内容及其在工质热力性质研究中的地位和作用; 2.掌握导出热力学一般关系的思路和推导方法; 3.熟悉简单可压缩工质基本的和常用的热力学一般关系。 学习建议: 本章学习时间建议共2学时:

文科高等数学(4.中值定理)

第四章 中值定理与导数的应用 §4. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0. 罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x )≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a , b )内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a , b ). 于是 0) ()(lim )()(≥--='='- →-ξξξξξ x f x f f f x , 0)()(lim )()(≤--='='+ →+ξ ξξξξ x f x f f f x , 所以f '(x )=0. 罗尔定理的几何意义: 二、拉格朗日中值定理 拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 那么在(a , b )内至少有一点ξ(a <ξ

高等数学微分中值定理应用举例

微分中值定理应用举例 单调性与极值 1.函数)(x f 在[]0,1上//()0f x >,比较//(1),(0),(1)(0)f f f f -的大小. 解:)(x f 在[]0,1上满足拉氏中值定理条件,存在()0,1ξ∈,使得/(1)(0)()f f f ξ-=.由于//()0f x >,所以/()f x 单调增加,而01ξ<<,所以///(0)()(1)f f f ξ<<, 即//(0)(1)(0)(1)f f f f <-<. 2.函数)(x f 在[]0,1上/////()0,(0)0f x f >=,比较//(1),(0),(1)(0)f f f f -的大小. 解:由于///()0f x >,所以//()f x 单调增加,而//(0)0f =,所以在[]0,1上//()0f x >,同上题讨论有//(0)(1)(0)(1)f f f f <-< 3.()()f x f x =--在()0,+∞内///()0,()0f x f x >>,判断在(),0-∞内///(),()f x f x 的符号. 解:()()f x f x =--,所以)(x f 在(),-∞+∞内为奇函数,/()f x 为偶函数,//()f x 为奇函数,在()0,+∞内///()0,()0f x f x >>,所以在(),0-∞内///()0,()0f x f x ><. 4.已知函数)(x f 在区间()1,1δδ-+内具有二阶导数,且/()f x 严格递增, /(1)(1)1f f ==,则:A.在()1,1δδ-+内均有()f x x <;B.在()()1,1,1,1δδ-+内均有()f x x >;C. 在()1,1δ-内均有()f x x <,在()1,1δ+内均有()f x x >; D. 在()1,1δ-内均有()f x x >,在()1,1δ+内均有()f x x <. 解:令()()F x f x x =-,则(1)(1)10F f =-=,//()()1F x f x =- 选择B.

高等数学第三章微分中值定理及导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 3、的凸区间是 x e y x -=( ) 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=. 3、的凸区间为曲线 x 3 e y x += _____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= .

热力学一般关系(热学-高等数学-偏微分)

第二部分 工质的热力性质 六 热力学函数的一般关系式 由热力学基本定律引出的一些基本热力学状态函数(如内能U 、熵S )及其为某一研究方便而设的组合函数(如焓H 、自由能F 、自由焓G 等)许多都是不可测量,必须将它们与可测量(如压力p 、体积V 、温度T 等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。 这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。 热力学函数一般关系式←全微分性质+基本热力学关系式 6.1 状态函数的数学特性 对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的一些基本定理。 设函数),(y x f z =具有全微分性质 dy y z dx x z dz x y ???? ????+??? ????= (6-1) 则必然有

(1) 互易关系 令式(6-1)中 ),(y x M x z y =???? ????, ),(y x N y z x =???? ???? 则y x x N y M ???? ????=???? ????(6-2) 互易关系与?=0dz 等价。它不仅是全微分的必要条件,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。 (2) 循环关系 当保持z 不变,即0=dz 时,由式(6-1),得 0=???? ????+??? ????z x z y dy y z dx x z 则 x y z y z x z x y ???? ???????? ????-=???? ???? 故有1-=???? ???????? ???????? ????y z x z x x y y z (6-3) 此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。 (3) 变换关系

高等数学中值定理的题型与解题方法

高等数学中值定理的题型与解题方法 高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间. 全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。 题型一:证明:()0n f ξ= 基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。 例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()( )02 a b f a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=. 分析:由()()0f a f b >>,()( )02 a b f a f +<,容易想到零点定理。 证明:()()02a b f a f +<,∴存在1(,)2 a b x a +∈,使得1()0f x =, 又()()0f a f b >>,∴(),()f a f b 同号,∴()()02 a b f b f +<, ∴存在2(,)2 a b x b +∈,使得2()0f x =, ∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=. 例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1) ()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m , ∴根据介值性定理(0)(1)(2) 3 f f f m M ++≤ ≤,即1m M ≤≤ ∴存在[0,3]c ∈,使得()1f c =, (2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈?, 使得'()0f ξ=. 例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x =

全微分和热力学

2014届本科毕业论文 全微分与热力学 姓名:高盼 系别:物理与电气信息学院 专业:物理学 学号:100314015 指导教师:王保玉 2014年2月9日

目录 摘要与关键字................................................................ II 0 引言...................................................... 错误!未定义书签。 1 全微分函数的基本性质...................................... 错误!未定义书签。 2 热力学基本方程及辅助热力学方程 (3) 2.1 物态方程 (3) 2.2 态函数内能U和熵S (4) 2.3 热力学基本微分方程 (5) 3 内能、焓、自由能及吉布斯函数的全微分和麦克斯韦关系 (5) 4 麦克斯韦关系的简单应用 (7) 4.1 熵的一般关系式 (7) 4.2 内能的一般关系式 (9) 4.3 焓的一般关系式 (10) 4.4 定压比热与定容比热的关系 (13) 摘要............................................................................................................................................................ II 关键词............................................................................................................................................................ II 参考文献. (14) 致谢 (15)

热力学与统计物理第二章知识归纳

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 ?焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分

(4) 从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2)H(S,P)

同(2)式相比有 由得(8) (3)F(T,V) 同(3)式相比 (9) (4)G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

高等数学第三章微分中值定理与导数的应用试题库(附带答案)

> 第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ , 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4 , 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, & 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x)π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (- -- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 、 二、填空题 2 x -

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

配分函数与热力学函数的关系

第七章统计热力学基础 教学目的与要求: 通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。 重点与难点: 统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。 §7.1 概论 统计热力学的研究任务和目的 统计力学的研究对象是大量微观粒子所构成的宏观系统。从这一点来说,统计热力学和热力学的研究对象都是一样的。但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。 统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。统计力学建立了体系的微观性质和宏观性质之间的联系。从这个意义上,统计力学又可称为统计热力学。 相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。同时模型本身也有近似性,所以由此得到的结论也有近似性。从历史的发展来看,最早是由玻兹曼(Boltzmann)以经典力学为基础建立的统计方法,称为经典统计热力学。1900 年普朗克(Planck)提出了量子论,麦克斯韦(Maxwell)将能量量子

考研数学高数习题—微分中值定理

一份好的考研复习资料,会让你的复习力上加力。中公考研辅导老师为考生准备了【高等数学-微分中值定理知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。 模块六 微分中值定理 1、 在区间[]1,1-上,判断下列函数是否满足罗尔定理及拉格朗日中值定理的条件,并说明理由。 (1)()f x x = (2),11()1,1x x f x x -≤

相关主题