搜档网
当前位置:搜档网 › 水库工程大坝安全监测方案

水库工程大坝安全监测方案

水库工程大坝安全监测方案
水库工程大坝安全监测方案

X省X县X水库

大坝安全监测工程

工程名称: X省X县X水库工程

合同编号:

承包人: XX建设工程有限公司

X县X水库工程项目部

项目经理:

日期: X 年 12 月 15 日

工程名称:X省X县X水库安全监测工程

审查:

校核:

编写:

目录

1、工程概况 (1)

2、监测工作内容 (1)

3、编制依据 (1)

4、仪器设备采购、检验、及保管 (2)

4.1 主要仪器设备选型 (2)

4.2 仪器设备采购 (2)

4.3电缆连接 (2)

5、监测仪器程序和埋设方案 (3)

5.1 施工程序 (3)

5.2监测仪器埋设方案 (3)

6、观测 (10)

6.1 总则 (10)

6.2施工期观测及成果提交........................错误!未定义书签。

7、监测资料整理分析和反馈 (13)

7.1 资料搜集 (13)

7.2 资料整理分析 (14)

7.3监测资料反馈 (14)

8、资源配置........................................错误!未定义书签。

8.1 主要施工机械设备计划表....................错误!未定义书签。

8.2 主要施工人员配置计划表....................错误!未定义书签。

9、施工质量控制措施 (16)

10、安全、文明施工管理 (17)

11、环境保护措施 (18)

12、施工进度计划 (18)

附件及附表1~9 ................................................ 19~29

1、工程概况

X水库位于X江流域红水河水系北盘江的一级支流X河上,隶属X县X乡马路、大元村。水库坝址距水域县城约75KM,距X乡驻地约lOKM乡村公路通往库区左岸炭山小学附近,交通较为方便。

X水库工程任务是灌溉、乡镇供水,可向发耳乡提供灌溉水量205万m3,乡镇供水量185万m3。

X水库正常蓄水位1575m,总库容为313万m3,正常蓄水位以下库容为252万m3,兴利库容221万m3,年可供灌溉水量205万m3(P=80%)、乡镇供水185万m3(P=95%)。工程规模为小(Ⅰ)型,工程等别为Ⅳ等。

本工程主要建筑物有X水库土坝(坝高41.1m,坝长95.64m)、岸边开敞式溢洪道、右岸导流洞(洞型为城门洞型,洞长227m)兼环境生态放水管及放空管、罗家坝重力坝(坝高10.5m,坝长20m)、炭山取水隧洞(洞型为城门洞型,洞长1559m)及从X水库引水至马场水库的东瓜林输水隧洞(洞型为城门洞型,洞长4787m)。

2、监测工作内容

X水库大坝安全监测项目主要包括:大坝变形观测、坝基渗压计、测压管内渗压计渗透压力观测等。

本监测工程主要工程量详见表1-1。

表1-1 大坝监测项目工程量汇总表

主要工作内容有:监测仪器设备的采购、检验、安装埋设、调试、电缆牵引、看护保管、

施工期观测、观测资料整理分析,以及完成仪器设备安装埋设及保护相应的土建工程(主要有钻孔、孔口保护等),完工移交等工作。

3、编制依据

①设计图纸;

②招、投标文件中相关技术部分;

③《水利水电工程岩石试验规程》SL264;

④《土石坝安全监测技术规范》SL60-94;

⑤《混凝土坝安全监测技术规范》DL/T5178-2003;

⑥《土石坝安全监测资料整编规程》SL169-96;

⑦《水利水电工程施工测量规程》SL52-93;

⑧《水利水电工程测量规范》SL197;

⑨《国家一、二等水准测量规范》GB12897-91。

注:以上所列标准、规范,在合同执行过程中如有新的版本时,则按施工期新颁发的版本执行。

4、仪器设备采购、检验、及保管

4.1 主要仪器设备选型

根据规范要求,选用的仪器设备要耐久、可靠、实用、有效,力求先进和便于实现自动化监测。

用于大坝的渗压计是选用南京蓉水水电自动化技术研究所有限责任公司。

4.2 仪器设备采购

①为保证仪器设备的性能和质量,严格按施工设计的技术标准、性能、型号进行采购;

②仪器设备采购时考虑配备必要的附件及备品备件;

③采购的仪器设备及其所有附件均为合格产品;

④所有仪器设备均在其安装埋设到位前10天必须采购并运到施工现场。

4.3电缆连接

①仪器电缆采用专用观测电缆,在使用前作芯线有无折断,外皮有无破损;

②水工专用电缆连接采用热缩管接头。连接时将待接电缆护套与接头的搭接部分打毛处理,在连接时采用半搭接的方式层层包裹热缩管;

③焊接前后应测量、记录仪器电阻、电阻比;

④应在仪器端、电缆中部和测量端标识仪器编号。

5、监测仪器埋设程序和埋设方案

5.1施工程序

大坝原形监测仪器埋设程序如下框图所示。

5.2 监测仪器埋设方案

5.2.1仪器安装埋设总则

①按施工图纸和仪器制造厂家使用说明书的要求,进行仪器设备的安装和埋设;

②仪器安装埋设过程中对各种仪器设备、电缆、观测仪器部位、控制坐标(或高程、桩号)等进行统一编号,每支仪器均建立档案卡;

③按批准的安装埋设措施计划和厂家使用说明书规定的程序和方法,进行仪器设备的安装和埋设,并提供有关质量记录;

④在埋设安装过程中,所有的仪器设备与设施均做好保护装置,有必要时在仪器设备附近设置警示标志、路障等安全防护措施。由于我方施工不慎造成观测仪器设备的损坏,及时告知监理人并负责进行修复或更换,且作详细记录;

⑤如遇仪器埋入后因土建施工造成损坏,及时向发包人、设计、监理单位通报,找

出事故原因,采取修复等相关措施;

⑥协调好建筑物施工和观测仪器安装埋设的相互干扰,确保监测设施安装埋设工作的顺利进行。

5.2.2大坝安全监测实施计划

大坝安全监测项目包括变形、坝基渗压计、坝体及大坝下游测压管监测等项目。

5.2.3渗压计安装埋设

坝基渗压计共12支(P1~P12),位于大坝基础坝纵0+000.000m(坝体最大横剖面)、坝纵0-015.000m及坝纵0+015.000m,分别交坝横0-012.000m、坝横0+012.000m及坝横0+042.000m。

坝基渗压计埋设在大坝垫座混凝土浇筑完成后坝体填筑前进行,为不影响坝体填筑施工进度,在坝基填筑前一天做好仪器埋设安装准备工作。在坝体填筑至设计渗压计埋设高程时进行安装埋设,坝体填筑过程中,现场牵引仪器电缆及设置必要的保护措施;坝体渗压计随坝体主体工程进度进行安装。

5.2.3.1基面渗压计安装埋设

①当粘土填筑第一层(0.59m)后时,人工清理好渗压计埋设点处的基础面后,采用人工用铁锹开挖埋设坑。坑底尺寸为30×40cm,深度40cm。

②取下仪器端部的透水石,在钢膜片上涂一层黄油或凡士林以防生锈,但要避免堵孔。

③安装前需将仪器在水中浸泡2h以上,使其达到饱和状态,在测头上包上装有干净的饱和细砂的沙袋,使仪器进水口通畅,并防止水泥浆进入渗压计内部。

④将包有沙袋的仪器埋入预先完成的坑内,周围回填砾石,上部用干硬水泥砂浆覆盖。

5.2.3.2钻孔渗压计安装埋设

大坝河床段上、下游P1、P3渗压计安装高程在1537.0m,河床段基面高程为1542.0m,故采用钻孔的方式进行埋设。采用GPS仪器按照设计布置的高程和桩号进行布置孔位,钻孔设备采用1台导轨式钻机按照设计布置的位置进行钻孔至设计深度,孔径为Φ76mm,渗压计具体埋设方法如下:

①渗压计安装前,先将渗压计的透水石卸下浸水使其饱和,在钢膜片上涂一层黄油或凡士林以防生锈。

②在渗压计的前盖空腔内灌满无气水,然后装上透水石。在测头上包上装有干净的饱和细砂的沙袋,放入水内浸水使其饱和。

③在孔底先倒入细砂(厚度约5cm),再倒入细粒卵石或粗砂(厚度约5cm)。

④将包有砂袋的仪器放入孔内,周围回填砾石或粗砂,填筑厚度约20cm,再向孔内灌水使反滤料饱和。

⑤上部注入水泥浆或水泥膨润土球,并采用水泥砂浆回填钻孔。

渗压计埋设程序程序框图

渗压计埋设示意图

5.2.4

测压管内渗压计共6支,其中3支位于大坝基础坝纵0+000.000m(坝体最大横剖面),分别分别交坝横0+010.000m、坝横0+040.000m及坝横0+070.000m,UP13、PU14及UP15埋设高程为1530.00m;3支位于大坝下游坝横0+102.000m,UP16、PU17及UP18埋设高程为分别为1533.786m、1533.074m;1536.662m。

测压管制作安装埋设方法如下:

①测量放样

按照设计图纸要求,进行孔位放样,采用打木桩的方式进行孔位标示。

②钻孔

a、测压管施工在大坝主体工程完工,并经检查合格后进行。

b、在监测设计图纸指定的位置造孔,孔径与孔深根据设计要求确定,采用导轨式钻

大坝安全监测的内涵及扩展参考文本

大坝安全监测的内涵及扩 展参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大坝安全监测的内涵及扩展参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 众所周知,大坝是一种特殊建筑物,其特殊性主要表 现在如下3个方面:①投资及效益的巨大和失事后造成灾 难的严重性;②结构、边界条件及运行环境的复杂性;③ 设计、施工、运行维护的经验性、不确定性和涉及内容的 广泛性。以上特殊性说明了要准确了解大坝工作性态,只 能通过大坝安全监测来实现,同时也说明了大坝安全监测 的重要性。事实上,大坝安全监测已受到人们的广泛重 视,我国已先后颁布了差阻式仪器标准及监测仪器系列型 谱、《水电站大坝安全检查实施细则》、《混凝大坝安全 监测技术规范》、《水库大坝安全管理条例》、《土石坝 安全监测技术规范》等,同时,国际大坝会议也多次讨论 过大坝安全问题[1]。

大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 1 影响大坝安全的因素 影响大坝安全的因素很多,据国际大坝会议“关于水坝和水库恶化”小组委员会记录的1100座大坝失事实例,从1950年至1975年大坝失事的概率和成因分析中得出大坝失事的频率和成因分别为:30%是由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;27%是由于地质条件复杂,基础失稳和意外结构事故;20%是由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;11%是由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施

水库大坝安全评价技术现状与发展

水库大坝安全评价技术现状与发展 袁坤傅蜀燕欧正峰王之博 摘要:随着水资源开发与利用的发展,以及极端气候的变化,大坝安全性问题日益突显,大坝安全性评价技术就显得尤为重要。主要从国内外水库大坝安全监测和风险分析的研究现状,分析水库大坝安全评价存在的问题,及对未来水库大坝安全评价发展指定方向。 关键词:大坝;安全评价;安全监测;风险分析 中图分类号: TV64 文献标识码: A 文章编号: 1001-9235( 2013) 06-0063-05 中国水库大多建于20 世纪50—70 年代,由于当时的经济社会条件制约,普遍存在工程质量问题,加上长期维修管理不够,其中约50%左右水库为病险水库。病险水库不仅不能正常发挥效益,而且存在较高的溃坝风险,严重威胁人们安全与社会的可持续发展。因此,要定期对水库大坝进行安全评价,了解大坝安全状况,以便有针对性地采取措施,对确保大坝安全和公共安全具有十分重要的意义。水库大坝安全评价就是利用系统工程原理和方法,对拟建或已有水库大坝工程及系统可能存在的危险性及其可能产生的后果进行综合评价和预测,并根据可能导致的事故风险的大小,提出相应的安全对策措施,以达到工程及系统安全的过程。主要从大坝安全监测和风险分析两个测度来分析大坝的安全评价。 1 水库大坝安全评价技术发展现状 1.1 国外水库大坝安全评价技术的发展 早在19 世纪末期,人们就开始关注大坝安全,由于当时科学技术不发达,人们只对大坝进行感性的分析。到20 世纪初—中期,随着水利行业的发展,大坝的工程技术得到较

快的发展,大坝数量迅速增加,失事事故也逐渐增多,大坝的安全性引起国际大坝委员会的高度重视。1948 年第3 届国际大坝会议安排了防止管涌的最新措施会议,以提高对大坝的安全性认识; 1951 年第4 届大会提出了从大坝和库岸角度看大坝安全性的议题; 1970 年第10 届大会安排了大坝和建筑物监测的议题; 1979 年第13 届大会提出了大坝老化和失事的议题; 1982年第14 届大会安排了运行中大坝安全的议题; 2002 年第70 届年会提出了大坝安全与风险评价的议题;2003 年第71 届年会安排了水库大坝抗震安全评价影响研究的议题; 2005 年国际大坝委员会第73 届年会安排了大坝工程的不确定性评估的议题; 2006 年国际大坝委员会第22 届大坝会议提出了土坝和堆石坝的大坝安全、洪水和干旱的评估及管理等议题; 2012 年国际大坝委员会第80 届年会成立了大坝安全、大坝监测等专委会。同时世界各国也以此为契机,着重研究水库大坝的安全评价,并从风险分析和大坝安全监测两个方面来对大坝进行安全性评价。 a) 监测技术的发展现状。国外大坝安全监控资料分析工作起步较早,在20 世纪50 年代以前,人们主要通过感观认识来观测大坝表面,并对变形观测值作定性分析。1955年,意大利的Faneli 和葡萄牙的Rocha 等首次应用统计回归方法定量分析了大坝的变形观测资料。Rocha 等人采用大坝横断面各层平均温度和温度梯度作为温度因子,并以函数式来表示水位因子,使模型表达式进一步完善。1963 年中村庆一等采用回归分析法分析大坝实测资料,并筛选出显著因子,以建立最优的回归方程。1980 年Bonaldi 等提出了混凝土大坝变形的确定性模型和混合模型,将运用有限元理论计算值与实测数据有机地结合起来。1985 年Ouedes 应用多元线性回归( 高斯-马尔柯夫概率函数模型) 来拟合原因量与效应量的关系,这种方法能分离各个分量,并且能确定原因量和效应量的最佳经验公式。1996 年Lue E.chouinard 等采用主成份回归分析了dukki 拱坝的监测资料,这种回归分析方法能分离各个分量,并且能确定原因量和效应量的最佳经验公式[5]。其他许多学者在大

【大坝方案】水库工程大坝安全监测方案

XXX水库 大坝安全监测工程 施 工 方 案 工程名称: XXXXXXXXXXXXXXXX水库工程 合同编号: 承包人: XX建设工程有限公司 XX水库工程项目部 项目经理: 日期: 20XX 年 XX 月 XX 日

目录 1、工程概况 (1) 2、监测工作内容 (1) 3、编制依据 (1) 4、仪器设备采购、检验、及保管 (2) 4.1 主要仪器设备选型 (2) 4.2 仪器设备采购 (2) 4.3电缆连接 (2) 5、监测仪器程序和埋设方案 (3) 5.1 施工程序 (3) 5.2监测仪器埋设方案 (3) 6、观测 (10) 6.1 总则 (10) 6.2施工期观测及成果提交.........................错误!未定义书签。 7、监测资料整理分析和反馈 (13) 7.1 资料搜集 (13) 7.2 资料整理分析 (14) 7.3监测资料反馈 (14) 8、资源配置.........................................错误!未定义书签。 8.1 主要施工机械设备计划表.....................错误!未定义书签。 8.2 主要施工人员配置计划表.....................错误!未定义书签。 9、施工质量控制措施 (16) 10、安全、文明施工管理 (17) 11、环境保护措施 (18) 12、施工进度计划 (18) 附件及附表1~9 ................................................ 19~29

1、工程概况 万营水库位于珠江流域红水河水系北盘江的一级支流万营河上,隶属水城县新街乡马路、大元村。水库坝址距水域县城约75KM,距新街乡驻地约lOKM乡村公路通往库区左岸炭山小学附近,交通较为方便。 万营水库工程任务是灌溉、乡镇供水,可向发耳乡提供灌溉水量205万m3,乡镇供水量185万m3。 万营水库正常蓄水位1575m,总库容为313万m3,正常蓄水位以下库容为252万m3,兴利库容221万m3,年可供灌溉水量205万m3(P=80%)、乡镇供水185万m3(P=95%)。工程规模为小(Ⅰ)型,工程等别为Ⅳ等。 本工程主要建筑物有万营水库土坝(坝高41.1m,坝长95.64m)、岸边开敞式溢洪道、右岸导流洞(洞型为城门洞型,洞长227m)兼环境生态放水管及放空管、罗家坝重力坝(坝高10.5m,坝长20m)、炭山取水隧洞(洞型为城门洞型,洞长1559m)及从万营水库引水至马场水库的东瓜林输水隧洞(洞型为城门洞型,洞长4787m)。 2、监测工作内容 万营水库大坝安全监测项目主要包括:大坝变形观测、坝基渗压计、测压管内渗压计渗透压力观测等。 本监测工程主要工程量详见表1-1。 表1-1 大坝监测项目工程量汇总表 主要工作内容有:监测仪器设备的采购、检验、安装埋设、调试、电缆牵引、看护保管、

大坝安全监测系统解决方案

大坝安全监测系统解决方案(此文档为word格式,下载后您可任意修改编辑!)

目录 第1章概论 (2) 1.1系统概览 (2) 1.2历史回望 (2) 1.3现状分析 (3) 1.4目标阐述 (3) 第2章总体设计 (4) 2.1设计原则及依据 (4) 2.2系统体系结构 (5) 2.3信息流程 (8) 2.4系统组成 (9) 2.5系统功能 (10) 第3章信息采集系统 (11) 3.1需求分析 (11) 3.2技术解决方案 (12) 第4章通信网络系统 (17) 4.1测控单元和监测中心之间的通信 (17) 4.2监测中心和监测分中心之间的网络.......................................................... 错误!未定义书签。第5章软件系统. (22) 5.1建设原则 (22) 5.2技术解决方案 (24)

第1章概论 1.1系统概览 大坝作为特殊的建筑,其安全性质与房屋等建筑物完全不同,大坝安全出现问题,将会引发大坝下游一定范围的人员和财产、环境损失。在加强水利建设的大环境下,提高水工建筑物的安全,特别是提高大坝安全监测水平,保证水库大坝的安全,是关系到国家利益和社会稳定的头等大事。大坝安全监测系统主要由观测传感器、遥测数据采集模块、工业控制网络和自动监测管理软件系统组成,通过计算机的工作,能够实现大坝观测数据自动采集、处理和分析计算,对大坝的性态正常与否作出初步判断和分级报警为监测对象提供早期安全预警报告的自动化系统。建立大坝安全自动监测系统,可以缩短数据采集周期,提高大坝观测的工作效率,减轻劳动强度;并能充分利用水库调蓄能力,使其在防洪和供水两方面发挥最大的效益,同时可提高水库管理水平,及时发现大坝隐患,为水库的安全运行提供有力的保障。 1.2历史回望 大坝安全监测系统在西方发达国家已有30多年的历史。如法国要求对高于20 m的大坝和库容超过1500万m3的水库,均需设置报警系统,并提出垮坝后库水的淹没范围、冲击波到达时间、淹没持续时间和相应的居民疏散计划等。而葡萄牙大坝安全条例(1990)也要求大坝业主提交有关溃坝所引起洪水波传播的研究报告,编制下游预警系统、应急计划和疏散计划。美国的《联邦大坝安全导则》和加拿大的《大坝安全导则》都强调要求采取险情预计、报警系统、撤退计划等应急措施,以便万一发生不测时,将损失减少到最小程度。1976年美国92.96 m高的堤堂坝(Teton)失事前,大坝管理机构根据大坝安全监测系统监测到的事故的发展状况及时通过下游的行政司法当局向可能被淹的群众发出警报,有组织地进行人员疏散,尽管大坝失事后堤堂河和斯内克河下游130km,约780 km2的地区遭洪水肆虐,造成25000人无家可归、损失牲畜约2万头的巨大物质损失,但人员死亡只有11人,初步体现了大坝安全监测系统的重要意义。

中小型水库大坝安全监测系统实践

中小型水库大坝安全监测系统实践 摘要:近年来,随着我国经济的飞速发展,中小型水库大坝工程逐步增多,使得人们对其提出了更高的要求,水库大坝安全问题也日益受到人们的关注。从而各种各样的安全监测系统被应用到中小型水库大坝中来,因为,水库大坝安全监测系统适应了当今大坝安全检监测发展要求,现有监测自动化,克服了传统人工观测精度低、强度大的缺点,确保中小型水库大坝的安全运作。本文主要是对我国中小型大坝安全监测系统进行探讨分析,并提出自己的相应观点。 关键字:中小型水库;大坝安全监测;监测系统;实践 一、中小型水库大坝安全监测系统的现状分析 1、技术问题 随着中小型水库工程不断增多,其建设质量逐步受到人们的关注,水库质量安全直接与当地人们的生命财产安全息息相关。然而,目前我国中小型水库大坝建设大多是技术落后,仍然沿用传统的落后技术。科学技术是水库大坝安全监测的前提,只有采用先进的科学技术,才能保证水库大坝的质量过关,若水利工程监测技术不先进,则很难及时发现大坝结构存在的问题,从而埋下安全隐患。例如,工程管理人员多数依赖于肉眼观察,坝体渗流是内部结构遭受水流冲击引起的渗漏,施工建设中没有按照相关施工建设要求进行施工,从而最终影响水库工程大坝建设质量。 2、制度问题 中小型水库的安全在很大程度上依靠完善的安全监测制度,高效的监测制度是水库的安全性规范,同时也是在中小水库施工中的基础和前提,在中小型水库的施工建设过程中,针对大坝的施工质量和标准所建立的制度,是施工现场负责人在施工现场所制定的,然而在一定程度上忽略了安全监测工作的内容,设置在安全制度的实施上安全防范意识不足,为后期的管理运行带来了障碍。 3、方法问题 中小型水库的安全监测在很大程度上是面向实践的,而不仅仅是纯粹的理论分析和研究。由此,中小型水库的安全监测系统还应在实际的施工过程中进行检验和实践。然而当前,多数中小型水库的施工单位在实际的监测过程中施工方式并不科学合理。并且进入了一个认识的误区,例如认为,水库的安全管理和监测必须依靠强制性的管理才能完成,由此在很大程度上没有考虑到先进设备、先进监测技术以及先进的监测系统的引进等多方面的因素。 二、中小型水库大坝安全监测系统建设策略 随着科学技术的不断发展,人们对中小型水库大坝建设提出了更高的要求与

水库大坝安全智能监测系统

水库大坝安全智能监测系统 1.建设目标 建立对大坝安全监测各项指标的评价标准,并在此基础上对大坝进行综合评价,回答大坝安全与否这一关键问题。其次,实现对各类监测数据自动采集和实时处理,根据监测数据和评价结果对大坝安全状态进行实时预警。将牵涉到大坝安全的各类数据通过构建统一的数据库进行存储,并通过统一的系统进行调用和管理。 基于此,针对水库砌石拱坝这一特定坝型,在大坝安全智能监测系统中,应用前沿分析技术和经典方法相结合对大坝安全进行综合诊断,通过实施先进的监测手段和设备,提升对大坝安全状态的感知能力,并将系统高度集成,采用独立编码开发,通过对最新算法进行编程,实现核心技术的领先目标,建立一套适合本工程的大坝安全监测预警和实时安全评估系统,争创全国领先水平。同时,通过监测设备标准化拟定、底层数据库规范和技术指标构建、预留开放式系统接口等措施,实现本项目的可推广性,为福建省推广应用该类系统提供引领示范。 2.建设任务 建设大坝安全监测系统监测设备 补充完善水库大坝坝前水温、坝体位移、大坝应变等监测设施,实现数据实时采集处理,并能进行实时分析,实时评价水库大坝。实现水库大坝安全监测信息化、智能化的要求。 建立大坝综合评价系统

现有大坝安全监测项缺乏对监测值的评价标准和综合判断。针对砌石拱坝这一特定坝型的大坝完全监测问题,综合拟定坝体监测项的监控指标,对大坝实时运行情况进行动态评估,评价内容包括位移测值、趋势判断、裂缝计开度变化等控制指标,通过对异常项数的统计给出整体大坝安全度评价标准,并可按时、按需输出系统监测报告,建立一套适合本工程的大坝安全综合评价系统。 大坝安全监测信息集成系统建设 基于分布式数据库、时序数据库、空间数据库、数据仓库等数据库领域与构建技术,建立监测数据、业务数据、基础数据、空间数据、标准库、模型库等大数据方案的主题数据库。实现大坝安全数据的存储、快速访问、计算与分析挖掘,最终在此基础数据库层面上,建立一套大坝安全管理规范框架结构和技术标准解决方案,实现多元数据融合应用,切实提高水库数据运行效率。 建设基础支撑系统 建设大坝数据中心库、视频监控与大坝巡检、大坝安全信息化三维模块展示系统以及配套的相应的软硬件配套设施,调度中心、机房及会商视频环境改造等。 水库防雷接地升级改造 对水库、启闭机房、调度大楼防雷接地进行升级改造,包括电源线路电涌保护、信号线路电涌保护、监控线路电涌保护、智能电涌(雷电)防护监测管理系统和等电位接地改造等。

水库大坝安全监测系统

水库大坝安全监测系统 1. 监测内容、方法及仪器 a. 大坝区降雨强度和雨量监测 采用翻斗式雨量计测量降雨量和降雨强度。 b. 大坝浸润线及坝基渗压监测 通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗 流压力分布情况。 c. 大坝上下游水位监测 通过安装浮子式、振弦式水位计观测大坝的上下游的水位。 d. 大坝坝体位移监测 采用全站仪自动极坐标测量系统监测大坝变形,内外业一体化的工程测量系统可实现无人值守及自动监测。 e. 大坝渗流量监测 在大坝下游设置量水堰,安装量水堰计以监测大坝渗流量。 2. 传感器 可根据实际需求,在监测范围内安装各种传感器。一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒等。 3. 自动监测系统 a. 系统简介 随着计算机技术和电测技术的发展,使得以电测传感器技术为基础的监测项目能实现全天候自动监测。同样,监测系统也具备人工观测条件,通过观测人员携带读数仪或笔记本电脑到各监测站读取数据,并可由人工输入计算机,进入相关数据库。 连续的自动监测可以记录下监测对象完整的数据变化过程,并且实时得到数据,借助于计算机网络系统,还可以将数据传送到网络覆盖范围内的任何需要这些数据的部门。 b. 系统组成 本系统由三部分组成: 1)现场量测部分 2)远程终端采集单元MCU 3)管理中心数据处理部分 c. 系统网络结构 水库大坝安全监测数据采集系统采用分层分布开放式结构,运行方式为分散控制方式,可命令各个现地监测单元按设定时间自动进行巡测、存储数据,并向安全监测中心报送数据。系统MCU之间以及MCU与监控计算机之间的网络通信采用光缆。 安全监测数据采集系统可通过光缆将位于本工程各个监测站内的监测数据 采集上来,然后通过光缆传送到位于管理所的监测中心内的监控主机内。

水库大坝安全评价

水库大坝安全评价 1.工程质量评价 (1)工程质量评价目的和任务是: 1)评价工程地质及水文地质条件; 2)复查工程的实际施工质量(含基础处理结构形体和材料等)是否符合国家现行规范要求; 3)检查工程投入运用以来在质量方面的实际情况和变化,能否确保工程的安全运行; 4)为大坝安全鉴定的有关复核或评价提供符合工程实际的参数; 5)为大坝除险加固提供指导性意见。 (2)工程质量评价需要的基本资料包括: 1)工程地质及水文地质资料; 2)关于基础(含岸坡)开挖、基础处理等工程的设计、施工、监理及验收的有关图件和文字报告等; 3)关于建筑物施工的质量控制、质量检测(查)、监理以及验收报告等资料; 4)工程在施工期及运行期出现的质量事故及其处理情况的有关资料; 5)竣工后历次质量检查及参数测试等资料。 (3)工程质量评价的基本方法有: 1)现场巡视检查法 通过直观检查或辅以简单测量、测试,复核建筑物的形体尺寸、外部质量以及运行情况等是否达到了原设计的要求和功能; 2)历史资料分析法 对有资料的大、中型水库主要是通过工程施工期的质量控制、质量检测(查)、监理以及验收报告等档案资料进行复查和统计分析;对缺乏资料的水库需与原设计、施工人员进行座谈收集资料,并与有关规范相对照,以评价工程的施工质量; 3)勘探试验检查法 当上述两种方法尚不能对工程质量作出评价,或者工程投入运用6~10年以上或运行中出现异常时,可根据需要对建筑物或坝基岩层进行补充勘探、试验或原位测试检查,取得原体参数,并据此进行评价。 (4)水库大坝应复查以下项目的施工质量是否达到了该工程设计施工的技术要求 1)坝基及岸坡的清理; 2)防渗体基础及岸坡的开挖; 3)坝基及岸坡防渗固结及对地质构造的处理;

水库大坝安全监测自动化系统初步设计

甘峪水库大坝安全监测自动化系统初步设计 西安理工大学水利水电土木建筑研究设计院 二O一四年十月

2设计原则与依据 2.1设计原则 (1)监测项目选择、仪器埋设、观测读数、资料整编与分析等符合《土石坝安全监测技术规范》的要求。 (2)密切结合甘峪水库目前的实际情况和1999年11月大坝安全鉴定结论,在监测仪器的布置上突出重点、兼顾全面。 (3)在仪器设备的造型上,遵循可靠、耐久、经济、实用的原则,力求少而精,且利于自动化系统的实施。 (4)在监测仪器、监测技术以及监测方法上力求先进。 (5)重要的监测项目除了自动化采集外,还要有人工手段进行对比测量,以检验自动化测量的正确性和准确性。 (6)系统结构简单、维护方便。 2.2设计依据 本系统设计主要依据的文件有: (1)《水库大坝安全管理条例》国务院颁发1991.3.23 (2)《土石坝安全监测技术规范》SL 551-2012 (3)《大坝安全自动监测系统设备基本技术条件》SL-268-2001 (4)《建筑物防雷设计规范》GB-50027-2010 (5)《甘峪水库大坝工程地质勘察报告》 (6)《甘峪水库大坝安全鉴定报告书》 (7)《户县甘峪水库除险加固工程初步设计报告》西安市水利建筑勘测设计院

3项目总体设计 3.1监测项目 2008年户县甘峪水库除险加固工程对水库增设了大坝的外部监测项目,包括外部变形检测和岸边滑坡体位移监测,在大坝内部未埋设观测仪器,本次设计增设内观项目,依据《土石坝安全监测技术规范》(SL551-2012),结合水库大坝的实际情况,拟确定以下几方面作为大坝安全监测的主要项目: 一、变形观测(已设) 1.垂直、水平位移 2.坝肩滑坡体变形 二、渗流监测 1.坝体渗流压力 2.渗流量 3.绕坝渗流 三、环境量监测 1.库水位 2.气温、水温 四、入库站水位监测 五、放水洞水位监测 3.2系统结构 甘峪水库大坝安全监测自动化系统选用分布式数据采集系统,分布式数据采集系统主要具有较好的可靠性,通用性强,组态灵活,安装简便,抗干扰性能强等优点,能保证监测数据的连续性,同时具有一定的扩展性。 大坝安全监测自动化系统由传感器、自动测控单元、水库调度中心等组成。具体可参照图3.1。

大坝安全监测设计(推荐方案)

1 设计条件 1.1 工程概况 1、地理位置 马槽河水库工程位于巴东县水布垭镇,为桥河流域水电开发的龙头水库,为充分利用水库形成的水头发电,在坝后设置马槽河电站。桥河又名磨刀河,系清江中游左岸支流、长江二级支流。桥河流域位于恩施自治州巴东县南部,地处巫山山脉南麓的鄂西南山区。流域地理位置为:东径110°12′~110°23′,北纬30°24′~30°40′。坝址位于已建成的桥河一级电站坝区上游,距巴鹤公路、野三关镇的距离分别为16km、26km。工地从左岸经八字岩新建公路到野三关15km。 2、工程特性 马槽河水库工程为流域龙头水库,主要任务是调节流域水量分布,向下游两级电站供水发电。桥河流域流域总面积209.4km2,干流河道全长37.50km,总落差1150m,河道加权平均坡降32.78‰。坝址位于巴东县水布垭镇桥河尹家坪河段,马槽河水库坝址控制流域面积139.9km2,干流河道长22.2km,加权平均坡降21.66‰。坝址处多年平均流量3.11m3/s,多年平均年径流量9821万m3。P=2%洪峰流量:693.0m3/s;P=0.33%洪峰流量:914.5m3/s。 本工程属Ⅳ等小(1)型工程,工程由挡水建筑物、泄洪建筑物、放水(放空)建筑物等组成。挡水建筑物为混凝土面板堆石坝,最大坝高56.80m,泄水建筑物为左岸岸边开敞式正槽溢洪道。 1.2 枢纽布置 枢纽主要由大坝、溢洪道、放空洞(由导流洞改建)、发电引水隧洞、电站厂房、开关站、输变电系统、管理设施等建筑物组成。 马槽河水库工程挡水建筑物为混凝土面板堆石坝,本工程坝顶无特殊交通要求,坝顶宽取5.5m,为减少坝体回填工程量,在坝顶上游侧设“L”形防浪墙,坝顶高程832.30,坝轴线长110.14m,防浪墙墙顶高程833.50m。防浪墙墙高5.0m,埋入堆石3.8m,高出坝顶1.2m,墙顶宽0.30m,墙底高程为828.50m,高出正常蓄水位1.00m。河床趾板建基面高程775.50m,最大坝高56.80m。上游坝坡1:1.4,下游坝坡1:1.3,坝体总填筑方量25.02

大坝安全监测的意义和方法

大坝安全监测的意义与方法 【论文提要】:从分析影响大坝安全的各种因素入手,拓宽了大坝安全监测的概念,即大坝安全监测应在时空上将影响大坝安全的因素考虑在内。提出:(1)大坝安全监测要有明显的针对性;(2)重视对溃坝的分析;(3)大坝安全监测应和设计及大坝安全定检结合起来,以方便资料分析和相互校核;(4)加强对大坝安全监测(包括监测系统),特别是自动化系统的效益评估,要求大坝安全监测系统成为水库运行调度的依据,真正为提高水库效益服务;(5)通过网络技术,实现大坝安全监测的网络化,以方便经验交流,提高监测技术。 【关键字】大坝安全检测意义方法 大坝是一种特殊建筑物,其特殊性主要表现在如下3个方面:①投资及效益的巨大和失事后造成灾难的严重性;②结构、边界条件及运行环境的复杂性;③设计、施工、运行维护的经验性、不确定性和涉及内容的广泛性。以上特殊性说明了要准确了解大坝工作性态,只能

通过大坝安全监测来实现,同时也说明了大坝安全监测的重要性。事实上,大坝安全监测已受到人们的广泛重视,我国已先后颁布了《水电站大坝安全检查实施细则》、《混凝大坝安全监测技术规范》、《水库大坝安全管理条例》、《土石坝安全监测技术规范》等。同时,国际大坝会议也多次讨论过大坝安全问题。 大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 一、影响大坝安全的因素 影响大坝安全的因素很多,由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;由于地质条件复杂,基础失稳和意外结构事故;由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施工质量等原因。 大坝失事的原因很多、涉及范围也很广,但大致可以分成3类。第一类是由设计、施工和自然因素引起,

水库大坝安全监测

水库大坝安全监测系统 1.概述 大坝是进行水资源管理的一个 重要和不可或缺的建筑。大坝形状 各异,从小规模的水坝到大型混凝 土大坝,大坝的安全监测对于大坝 校核设计、改进施工和性能评价都 有重大意义。同时,连续长期的大 坝安全监测系统,能够提供溃坝通 知预警,对于保护下游人民生命财 产安全具有重大意义。所有大坝均需要某种形式的监测,北京七维航测公司提出了实施有效的大坝监测解决方案。 2.大坝安全监测内容、方法及仪器 监测内容:水库水位,水压,渗流,流量, 电导率,风力,相对湿度,空气和水的温度以及 大坝坝体地表位移监测。 项目组成:数据记录仪,水压计,水位计、 钢筋计、测缝计、沉降仪、倾斜仪,水质探测器, GPS定位系统,数据库工具,数传系统,预警系 统等。 3.大坝安全监测系统介绍 大坝安全监测系统能实现全天候远程自动监测,本项目中使用的各种传感器使用监测站数据记录仪实现自动监测,并且进入相关数据库。同样,监测系统也具备人工观测条件,观测人员可携带读数仪或笔记本电脑到各监测站读取数据。 大坝远程监测系统可以记录下监测对象完整的数据变化过程,并且借助于光纤网络数传系统实时得到数据,同时将数据传送到网络覆盖范围内的任何需要这些数据的部门,非网络覆盖范围内可通过无线基站、GSM(GPRS)、CDMA等实现远程数据无线传输。

某项目中大坝安全监测传感器位置分布图1)为了解坝体和坝基的渗流压力,通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗流压力分布情况。 2)为了解大坝上下游水位情况,分别设置水位计来观测大坝的上下游的水位。 3)大坝坝体地表位移监测是为了了解大坝地表水平变形和垂直变形情况。监测仪器采用了GPS-RTK测量系统,这一新技术下的工程测量系统取代传统的测距仪,可以实现无人值守及自动监测报警。 4. 大坝安全监测系统组成 本系统由三部分组成: 1)现场量测部分; 2)远程终端采集单元MCU; 3)管理中心数据处理部分; 大坝安全监测数据采集系统 采用分层分布开放式结构,运行 方式为分散控制方式,可命令各 个现地监测单元按设定时间自动 进行巡测、存储数据,并向安全 监测中心报送数据。系统监测站 的MCU与监控中心之间的网络通 信采用光缆。数据采集系统将各 个监测站内的监测数据采集上来,然后在数据处理工作站和数据分析工作站进行数据的处理与分析,并将原始数据和处理结果存入主数据库和备份数据库中。 5. 大坝安全监测系统硬件设计 1)智能数据采集器A/D转换达到16位,可以保证高精度;可同时连接系统

大坝安全监测系统

大坝安全监测系统 一、系统概述 近年来,随着工业的快速发展,自然环境遭到破坏,每年都有不少大坝事故爆发,造成无法预估的损失。我国共有3000多座水库垮坝。七十年代平均每年垮200多座,其中1973年高达554座。1975年的板桥水库垮坝事故,造成约万余人死亡。大坝的安全关系到百姓的生命财产,任重而道远,所以展开现代化的大坝安全监测是很有必要的。 为了实现无人值守的大坝实时监测自动化,我司推出大坝安全远程监测系统。该系统通过采集大坝沉降、倾斜、水压以及大坝形状特征。通过各种信息的获取、整理和分析,做出大坝安全评价,控制大坝安全运行校核计算参数的准确性、计算方法的实用性和反馈施工方法的正确性,帮助管理人员做出准确、快速灾情预警预报,保证百姓的生命财产安全。 二、系统解决方案(构成+拓扑图) 该系统由监测中心、通信网络、现场监测设备、现场采集设备组成,根据不同地区的通信、经济条件,设立大坝安全监测站点。采用有人看管,无人值守的管理模式,配置相应的传感器,以及遥测终端及通信终端设备,实现大坝安全信息的自动采集、传输。监测站采用定时自报、阀值加报和召测的工作模式;人工置数信息应有反馈确认的功能。

三、系统功能、特点 实时监测: 尾矿库在线监测系统可实现对尾矿库坝体浸润线及坝体内孔隙水压力、库内水位、降雨量、干滩指标(高程和长度)、坝体位移(内部水平位移和顶部垂直位移)的实时监测。 视频监控: 对坝体和溢水塔等重点部位的影像监控,从微观到宏观,构成一个立体监测网,确保尾矿坝运行安全。 及时报警:

系统自动根据该预警数据发布不同级别的报警信息。系统登录提示、声光报警器、短信通知等多种方式传达至相关领导和责任人。 数据分析预判: 对大坝浸润线、库水位、实时雨量、大坝渗流量及坝体位移历史数据等相关数据进行综合比较分析,推算出各类坝体运行数据的时间和空间的相关性,综合判断坝体健康状况。 GIS模拟建模 在适用前提下将大坝安全管理过程中的新思想、新方法融入到系统开发,做到数据和图形相融合、GIS与数学模型相结合,把科学计算的结果通过三维情景表现和动态的形式直观表现。 操作便捷: 具备LCD液晶显示屏以及多功能输入键盘,用于现场参数设置、人工置数、安装调试、状态显示等功能,以及串口配置方式。 低功耗设计: 支持多种工作模式(包括自报式、查询式、兼容式等),最大限度降低功耗。 多种通信方式: 至少可向5个中心站分发数据和主备信道自动切换,GPRS/CDMA/3G/4G为主传输通道、短信为备份传输通道;可选北斗、卫星、PSTN、超短波、微波、ZigBee 等通信方式。 文章来源:四信物联网

水库大坝安全监测管理系统建设方案

水库大坝安全监测管理系统 建设方案

目录 1.项目概述 (1) 1.1.项目名称 (1) 1.2.项目背景 (1) 1.3.建设依据 (2) 2.总体设计 (4) 2.1.总体目标 (4) 2.2.设计原则 (5) 2.2.1.标准化原则 (5) 2.2.2.稳定性原则 (5) 2.2.3.安全性原则 (5) 2.2.4.先进性原则 (6) 2.2.5.易用性原则 (7) 2.2.6.可扩展性原则 (7) 2.2.7.可维护性原则 (8) 2.3.总体架构 (9) 2.3.1.采集层 (10) 2.3.2.通信层 (11) 2.3.3.网络层 (12) 2.3.4.数据层 (12) 2.3.5.应用层 (12) 2.4.应用架构 (13) 2.5.技术路线 (14) 2.5.1.技术方法 (14) 2.5.2.技术路线 (17) 2.6.数据库设计 (19) 2.6.1.历史数据库设计 (19) 2.6.2.历史数据 (20) 2.6.3.统计数据 (22) 2.6.4.临时表 (22) 2.6.5.数据冗余处理 (23) 2.6.6.数据库安全 (24) 2.6.7.数据库管理设计方案 (25) 2.7.标准化体系设计 (29) 3.系统设计 (31) 3.1.信息流程 (31) 3.2.系统结构 (33) 3.2.1.传感器 (34) 3.2.2.测控单元 (34) 3.2.3.通信系统 (35) 3.3.信息采集系统 (35) 3.3.1.测控单元 (36) 3.3.2.变形监测 (38)

3.3.3.渗流监测 (39) 3.3.4.应力(压力)、应变及温度监测 (40) 3.3.5.环境量(水文气象)监测 (40) 3.4.业务应用系统 (41) 3.4.1.技术架构 (41) 3.4.2.数据模型 (42) 3.4.3.系统功能 (42) 4.基础工程 (46) 4.1.测压管钻造 (46) 4.1.1.钻孔 (46) 4.1.2.埋设测压管 (46) 4.1.3.注水试验 (47) 4.1.4.埋设渗压传感器 (48) 4.2.量水堰建设 (49) 4.3.变形观测设施建设 (50) 4.4.接地系统设计 (52) 5.硬件清单 (52) 6.项目实施保障 (56) 6.1.系统进度计划 (56) 6.2.质量保证措施 (57) 6.2.1.软件开发各阶段需要提交的文档 (57) 6.2.2.过程管理 (58) 6.2.3.需求管理 (58) 6.2.4.项目计划 (58) 6.2.5.项目跟踪与监控 (59) 6.2.6.软件质量保证 (60) 6.2.7.集成软件管理 (61) 6.2.8.软件产品工程 (62) 6.2.9.组间协调 (63) 6.2.10.评审 (63) 6.2.11.培训 (64) 6.3.软件开发过程 (64) 6.3.1.采用基于里程碑的生命周期模型 (64) 6.3.2.采用迭代化的开发模式 (66) 6.3.3.迭代过程与传统的瀑布模型相比较 (67) 6.4.质量管理 (68) 6.4.1.测试 (68) 6.4.2.评审 (69) 6.4.3.SQA(软件质量保证) (69) 6.5.软件品质保证 (70) 6.5.1.需求阶段 (70) 6.5.2.设计阶段 (70) 6.5.3.编码阶段 (71) 6.5.4.测试阶段 (71)

浅析水库大坝安全监测工作

浅析水库大坝安全监测工作 摘要:本文阐述了水库大坝安全监测的意义,分析了水库大坝目前存在的一些问题,提出了水库大坝安全检测存在问题的对策。 关键词:水库大坝;安全监测工作 1 水库大坝安全监测的意义 水库大坝安全检测工作至关重要,安全检测工作不仅有利于保证水库大坝的正常运行,还可以为大坝的建设、设计以及未来发展提高可靠的依据。具体意义可以概括为以下三个方面: 1.1 对于水库大坝的设计、施工问题,可以提供指导,帮助设计者分析大坝安全问题,解决易出现的问题; 1.2 对于水库大坝的新的运行变化情况可以及时做出统计和分析,之后根据统计数据做出有效的判断,采取措施,及时解决隐患问题,这样可以确保水库大坝的安全运行; 1.3 大幅度提高水库大坝的综合效益,良好的安全检测工作,有利于水库大坝的正常操作、运行,而持久进行安全检测工作可以预防潜在危险发生,这样可以有力的减少经济损失,延长水库的使用寿命,从而提高水库大坝的总合效益。 2 水库大坝目前存在的一些问题 随着社会的发展,人口的增多,越来越多的人居住在水库大坝的下游位置。同时,水库大坝一般选择农业面积较大的地方,因此,如果水库大坝出现安全问题,将直接对水库大坝下游的人们造成生命危险,造成大量的经济损失。大坝是水库很重要的水利建设设备,它的安全效益直接关系到水库的发展问题,更关心到人们的安全。针对于此,对于水库安全问题,一定需要认真重视。为了确保水库大坝安全运行,需要对水库大坝进行安全检测,安全检测通过分析当前大坝的运行情况,采集数据,根据数据分析,可以检测出水库大坝的运行情况,大大提高水库大坝的安全性。因此,为了更好的发展水库大坝,需要确保水库大坝安全检测工作顺利进行,只有这样,才可以保障水库大坝的安全,进而发挥出水库大坝真正效益,为农业发展、人们生活提供切实有效的水源保障。 2.1 安全检测设施不合理 对于我国水库大坝安全检测工作,很多中小型的水库做的非常不到位。没有设置安全检测设施,没有根据国家规定建立安全检测设施,比如说坝前检测水位尺、坝址雨量筒以及坝后测量水堰。对于安全检测设施,大多数水库采用人工检测,这样不仅导致效率极低,还容易由于人为因素的影响导致检测精度不够。有的水库站建立安全检测自动化系统,不过设施落后,精度很低,可靠性能不好,并且工作能力很差,比如说有的大坝对于渗流检测方面,仪器质量不足,仅仅只有一道机械密封,这样就使得自动化系统无法在恶劣环境下工作。因此,安全检测设施需要亟待改善。 2.2 综合型人才稀缺

水库大坝安全自动化监测解决方案

1大坝观测的重要性 水库大坝的安全与否关乎国家与百姓利益和安全,水库大坝出现安全隐患将造成人民财产的巨大损失,为确保水库大坝能够更好的发挥社会效益与经济效益,水库大坝的安全管理工作非常重要,必须对大坝的安全进行实时监测,随时掌控大坝的实时动态,同时也为大坝的维护提供有效依据,保障水库大坝的安全运行,就是保障国家与人民的安全。 2大坝安全监测系统 3大坝观测仪器设备 VWS型振弦式应变计(智能)VWP型振弦式渗压计(智能)

VWP-G型投入式水位计(智能)VWM型振弦式多点位移计(智能) VWD-J型振弦式测缝计(智能)RT-1Q型气温计(智能) RH-1型湿度计(智能)BT-1型气压计(智能)

GN-1B型固定式测斜仪(智能)ELT-15X型斜坡倾斜仪(智能) ELT-30B埋入式倾斜仪JL-1型静力水准仪 南京葛南实业有限公司创建于1998年,是专业从事岩土工程安全监测仪器及系统的研发、生产、销售、服务的高科技型企业。公司智能振弦式传感器及自动化采集系统在国内处于领先水准,产品出口16个国家和地区,应用在2000多个水电站、大型桥梁及军事工程。公司始终注重新技术的研发投入和应用转化,致力于向客户提供承载最新技术、精准优质的仪器设备。公司现有产品十五大类二百多个品种:应变、应力、水位、压力、位移、温度、倾斜、沉降、标定设备、电缆及附件、测量仪表、自动测量单元、单点采集模块、水雨情监测、软件及云平台。未来,公司仍将以创新投入为方向、用户需求为核心,执持“智能化、物联化、互联化”的科技趋势,用智能传感器、智能故障诊断、智能接入采集、云平台手机

客户端无缝对接等先进技术为水利水电、铁路桥梁、矿山隧道、海洋边坡、基坑建筑等业界提供整体解决方案。

大坝安全监测自动化系统的运行与维护

大坝安全监测自动化系统的运行与维护概况: 大坝安全监测是通过仪器观测和巡视检查对水利水电工程主体结构、地基基础、两岸边坡、相关设施以及周围环境所作的测量及观察;"监测"既包括对建筑物固定测点按一定频次进行的仪器观测,也包括对建筑物外表及内部大范围对象的定期或不定期的直观检查和仪器探查。 一、大坝安全自动监测系统 系统由三部分组成: ●现场量测部分(传感器) ●数据采集模块(CCU) ●远程终端采集单元(MCU) 系统监测内容、方法及仪器 ●大坝区降雨强度和雨量监测:采用翻斗式雨量计测量降雨量和降雨强度。 ●大坝浸润及坝顶基渗压监测:通过埋设渗压计来观测坝体的渗流压力分布情 况和浸润线位置及坝基渗流压力分布情况。 ●大坝渗流量监测:在大坝下游设置水堰,安装量水堰计以监测大坝渗流量。 二、大坝安全监测自动化系统的运行操作 ●传感器 可根据实际需求,在监测范围内安装各种传感器。 一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒、风速计、风向仪、蒸发仪等遥测设备。 ●数据采集模块(CCU)控制运行操作 1.每周二次自动化监测系统巡测,可采取中央控制方式,也可采用自动控制方式运行。每周施测时间如无特殊情况应固定不变,规定在每周二、周五上班后半小时内进行。 2.在汛期高水位,低温高水位,以及某些部位出现异常等情况下,可根据有关领导决定加密测次并采取自动控制方式运行。

3.正常情况下,数据采集模块处于工作状态,显示器可以关掉运行。 4.数据采集模块控制测量步骤: 1)数据采集模块向各远程终端采集单元提供的系统工作电源(220VAC50Hz)和系统加热电源(220VAC50Hz)应可靠工作。 2)MCU的RS-422通讯总线接入数据采集模块(CCU)的RS-485通讯卡的1口。 3)数据采集模块在WindowsXP环境下运行“大坝安全监测数据采集系统软件”。 4)首先数据采集模块进行系统自检,自检完毕后查阅自检结果。若系统正常,进行正常自动化测量。若系统不正常,根据系统维护规程进行维修,若维修不了即和厂方联系。 5)读取各远程终端采集单元自报数据入库。 6)进行系统巡测。 7)对本次系统巡测的所有数据进行浏览,检查数据采集情况和数据可靠性。 ●中心站主机远程控制数据采集模块运行操作 1、远程终端采集单元的RS-422通讯总线接入CCU的RS-485通讯卡的1口。 2、数据采集模块的RS-422通讯总线一端接入数据采集模块的RS-485通讯卡的2口,另一端接入主机的RS-485通讯卡的1口。 3、在主机上即可进行远控自动化数据采集。 4、测量完毕后,逐级退出系统,再关机。 ●主机直接远程控制各MCU测量的操作 1、数据采集模块的RS-422通讯总线一端通过总线驱动器接入MCU的RS-422通讯总线的另一端,另一端接入主机的RS--485通讯卡的1口。 2、数据采集模块向各远程终端采集单元提供正常的系统工作电源(220VAC50HZ)和系统加热电源(220VAC50HZ)。 3、主机在WindowsXP环境下运行“大坝安全监测数据采集系统软件”。 4、进行远控自动化数据采集。 5、测量完毕后,逐级退出系统,再关机。 三、大坝安全监测自动化系统维护 ●巡视维护周期确定 每一个月进行一次系统巡视维护。正式运行的第三年到第七年,每个季度巡

相关主题