搜档网
当前位置:搜档网 › 电磁感应中的图象问题

电磁感应中的图象问题

电磁感应中的图象问题
电磁感应中的图象问题

补充作业(8)电磁感应中的图象问题

[方法点拨](1)产生电动势的那部分导体相当于电源,电源内部电流由负极流向正极,电源两端电压为路端电压.(2)Φ-t图象、B-t图象的斜率对应电动势大小及电流方向,其斜率不变或平行,感应电动势大小不变,电流方向不变.

1.(多选)矩形导线框abcd固定在匀强磁场中,磁场的方向与导线框所在的平面垂直,磁感应强度B随时间变化的规律如图1所示,规定垂直纸面向里为磁场正方向,顺时针方向为感应电流正方向,水平向右为ad边所受安培力F的正方向.下列图象正确的是()

图1

2.纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直于纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω.t=0时,OA恰好位于两圆的公切线上,如图2所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是()

图2

3.(多选)如图3所示,一个“日”字形金属框架竖直放置,AB、CD、EF边水平且间距均为L,阻值均为R,框架其余部分电阻不计.水平虚线下方有一宽度为L的垂直纸面向里的匀强磁场.释放框架,当AB边刚进入磁场时框架恰好匀速,从AB边到达虚线至线框穿出磁场的过程中,AB两端的电势差U AB、AB边中的电流I(设从A到B为正)随位移x变化的图象正确的是()

图3

4.如图4所示,等离子气流(由高温高压的等电荷量的正、负离子组成)由左方连续不断地以速度v0射入P1和P2两极板间的匀强磁场中,由于线圈A中加入变化的磁场,导线ab和导线cd在0~2 s内相互排斥,2~4 s内相互吸引,规定向左为磁感应强度B的正方向,线圈A内磁感应强度B随时间t变化的图象可能是下列图中的()

图4

5.(多选)如图5甲所示,abcd是匝数为100、边长为10 cm、总电阻为0.1 Ω的正方形闭合导线圈,放在与线圈平面垂直的如图所示的匀强磁场中,磁感应强度B随时间t的变化关系如图乙所示,则以下说法正确的是()

图5

A.导线圈中产生的是交变电流

B.在t=2.5 s时导线圈产生的感应电动势为1 V

C.在0~2 s内通过导线横截面的电荷量为20 C

D.在t=1 s时,导线圈内电流的瞬时功率为10 W

6.将一均匀导线围成一圆心角为90°的扇形导线框OMN,其中OM=ON=R,圆弧MN的圆心为O点,将导线框的O点置于如图6所示的直角坐标系的原点,其中第二和第四象限存在垂直于纸面向里的匀强磁场,其磁感应强度大小为B,第三象限存在垂直于纸面向外的匀强磁场,磁感应强度大小为2B.从t=0时刻开始让导线框以O点为圆心,以恒定的角速度ω沿逆时针方向做匀速圆周运动,假定沿ONM方向的电流为正,则导线框中的电流i随时间t的变化规律正确的是()

图6

7.如图7甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一电阻为R的定值电阻,电阻为r的金属棒ab垂直导轨放置且棒两端始终与导轨接触良好,其他部分电阻不计.整个装置处在磁感应强度大小为B、方向垂直导轨平面向上的匀强磁场中.t =0时对金属棒施加一平行于导轨向上的外力F,使金属棒由静止开始沿导轨向上运动,通过定值电阻R的电荷量q随时间的平方t2变化的关系如图乙所示.下列关于穿过回路abPMa 的磁通量Φ、金属棒的加速度a、外力F、通过电阻R的电流I随时间t变化的图象中正确的是()

图7

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

高中物理电磁感应综合问题讲课教案

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化 →……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图, 抓住 a =0时,速度v 达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径. 【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin( l x B B 20π=。一光滑导体棒AB 与短边平行且与长边接触良好,电 阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))() ( sin v l t R l vt v l B F 203222220≤≤= π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,

电磁感应中的图象问题

1.在竖直方向的匀强磁场中,水平放置一圆形导体环.规定导体环中电流的正方向如图甲所示, 磁场向上为正.当磁感应强度B 随时间t 按图乙变化时,下列能正确表示导体环中感应电流 变化情况的是( ) 答案 C 解析 根据法拉第电磁感应定律有:E =n ΔΦΔt =nS ΔB Δt ,因此在面积、匝数不变的情况下,感应电动势与磁场的变化率成正比,即与B -t 图象中的斜率成正比,由图象可知:0~2 s ,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向顺时针即为正值,2 s ~4 s 斜率不变,电流方向为逆时针,整个过程中的斜率大小不变,所以感应电流大小不变,故A 、B 、D 错误,C 正确. 2.匀强磁场的磁感应强度B =0.2 T ,磁场宽度l =4 m ,一正方形金属框边长ad =l ′=1 m , 每边的电阻r =0.2 Ω,金属框以v =10 m/s 的速度匀速穿过磁场区,其平面始终保持与磁感 线方向垂直,如图所示.求: (1)画出金属框穿过磁场区的过程中,各阶段的等效电路图. (2)画出金属框穿过磁场区的过程中,金属框内感应电流的i -t 图线;(要求写出作图依据) (3)画出ab 两端电压的U -t 图线.(要求写出作图依据) 解析 如图a 所示,线框的运动过程分为三个阶段:第Ⅰ阶段cd 相当于电源;第Ⅱ阶段cd 和ab 相当于开路时两并联的电源;第Ⅲ阶段ab 相当于电源,分别如图b 、c 、d 所示.

在第Ⅰ阶段,有I 1=E r +3r =Bl ′v 4r =2.5 A. 感应电流方向沿逆时针方向,持续时间为t 1=l ′v =110 s =0.1 s. ab 两端的电压为U 1=I 1·r =2.5×0.2 V =0.5 V 在第Ⅱ阶段,有I 2=0,ab 两端的电压U 2=E =Bl ′v =2 V t 2=l -l ′v =4-110 s =0.3 s 在第Ⅲ阶段,有I 3=E 4r =2.5 A 感应电流方向为顺时针方向ab 两端的电压U 3=I 3·3r =1.5 V ,t 3=0.1 s 规定逆时针方向为电流正方向,故i -t 图象和ab 两端U -t 图象分别如图甲、乙所示. 答案 见解析

电磁感应综合练习题

电磁感应综合练习 1.关于电磁感应,下列说法中正确的是( ) A.穿过线圈的磁通量越大,感应电动势越大; B.穿过线圈的磁通量为零,感应电动势一定为零; C.穿过线圈的磁通量变化越大,感应电动势越大; D.穿过线圈的磁通量变化越快,感应电动势越大 2.对楞次定律的理解下面说法中不正确的是( ) A.应用楞次定律本身只能确定感应电流的磁场方向 B.应用楞次定律确定感应电流的磁场方向后,再由安培定则确定感应电流的方向 C.楞次定律所说的“阻碍”是指阻碍原磁场的变化,因而感应电流的磁场方向也可能与原磁场方向相同 D.楞次定律中“阻碍”二字的含义是指感应电流的磁场与原磁场的方向相反 3.在电磁感应现象中,以下说法正确的是( ) A.当回路不闭合时,若有磁场穿过,一定不产生感应电流,但一定有感应电动势 B.闭会回路无感应电流时,此回路可能有感应电动势 C.闭会回路无感应电流时,此回路一定没有感应电动势,但局部可能存在电势 D.若将回路闭合就有感应电流,则没闭合时一定有感应电动势 4.与x 轴夹角为30°的匀强磁场磁感强度为B(图1),一根长L 的金属棒在此磁场中运动时始终与z 轴平行,以下哪些情况可在棒中得到方向相同、大小为BLv 的电动势( ) A.以2v 速率向+x 轴方向运动 B.以速率v 垂直磁场方向运动 C.以速率32v/3沿+y 轴方向运动 D. .以速率32v/3沿-y 轴方向运动 5.如图5所示,导线框abcd 与导线在同一平面内,直导线通有恒定电流I,当线框由左向右匀速通过直导线时,线框中感应电流的方向是( ) A.先abcd,后dcba,再abcd B.先abcd,后dcba C.始终dcba D.先dcba,后abcd,再dcba 6.如图所示,用力将线圈abcd 匀速拉出匀强磁场,下列说法正确的是( ) A.拉力所做的功等于线圈所产生的热量 B.当速度一定时,线圈电阻越大,所需拉力越小 C.对同一线圈,消耗的功率与运动速度成正比 D.在拉出全过程中,导线横截面积所通过的电量与快拉、慢拉无关 7.如图6所示,RQRS 为一正方形导线框,它以恒定速度向右进入以MN 为边界的匀强磁场,磁场方向垂直线框平面,MN 线与线框的边成45°角,E 、F 分别为PS 和PQ 的中点,关于线框中的感应电流( ) A.当E 点经过边界MN 时,感应电流最大 B.当P 点经过边界MN 时,感应电流最大

电磁感应中的图象问题

电磁感应中的图象问题 例1 (多选)(2017·河南六市一模)边长为a 的闭合金属正三角形轻质框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面向里的匀强磁场中,现把框架匀速水平向右拉出磁场,如图1所示,则下列图象与这一拉出过程相符合的是( ) 图1 答案 BC 解析 设正三角形轻质框架开始出磁场的时刻t =0,则其切割磁感线的有效长度L =2x tan 30°=233x ,则感应电动势E 电动势=BL v =233 B v x ,则 C 项正确, D 项错误.框架匀速运动,故F 外力=F 安=B 2L 2v R =4B 2x 2v 3R ∝x 2,A 项错误.P 外力功率=F 外力v ∝F 外力∝x 2,B 项正确. 变式1 (2017·江西南昌三校四联)如图2所示,有一个矩形边界的匀强磁场区域,磁场方向垂直纸面向里.一个三角形闭合导线框,由位置1(左)沿纸面匀速到位置2(右).取线框刚到达磁场边界的时刻为计时起点(t =0),规定逆时针方向为电流的正方向,则图中能正确反映线框中电流与时间关系的是( ) 图2

答案 A 解析 线框进入磁场的过程,磁通量向里增加,根据楞次定律得知感应电流的磁场向外,由安培定则可知感应电流方向为逆时针,电流方向应为正方向,故B 、C 错误;线框进入磁场的过程,线框切割磁感线的有效长度先均匀增大后均匀减小,由E =BL v ,可知感应电动势先均匀增大后均匀减小;线框完全进入磁场后,磁通量不变,没有感应电流产生;线框穿出磁场的过程,磁通量向里减小,根据楞次定律得知感应电流的磁场向里,由安培定则可知感应电流方向为顺时针,电流方向应为负方向,线框切割磁感线的有效长度先均匀增大后均匀减小,由E =BL v ,可知感应电动势先均匀增大后均匀减小,故A 正确,D 错误. 变式2 (2017·河北唐山一模)如图3所示,在水平光滑的平行金属导轨左端接一定值电阻R ,导体棒ab 垂直导轨放置,整个装置处于竖直向下的匀强磁场中.现给导体棒一向右的初速度,不考虑导体棒和导轨电阻,下列图线中,导体棒速度随时间的变化和通过电阻R 的电荷量q 随导体棒位移的变化描述正确的是( ) 图3 答案 B 解析 导体棒运动过程中受向左的安培力F =B 2L 2v R ,安培力阻碍棒的运动,速度减小,由

电磁感应中的综合问题

电磁感应中的综合问题 1.电磁感应中的力学问题 电磁感应中通过导体的感应电①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; 流,在磁场中将受到安培力的作用.②求回路中电流; ;电磁感应问题往往和力学问题联系在③分析导体受力情况 一起,解决这类问题的基本方法是:④列出动力学方程或平衡方程并求解. 电磁感应中的力学问题,常常以导体棒在滑轨上运动的形式出现一种是滑轨上仅一个导体棒的运 动.这种情况有两种类型:①“电一动一电”类型 如图所示,水平放置的光滑平行导轨MN、PQ放有长为l、电阻为R、质量为m的金属棒ab.导轨左端接内电阻不计、电动势为E的电源形成回路,整个装置放在竖直向上的匀强磁场B之中.导轨电阻不计且足够长,并与开关S串接.当刚闭合开关时,棒ab因电而动,其受安培力FBlab有最大加速度amaxE,方向向右,此时ab具RBlabE.然而,ab 一旦具有了速度,则因动而电,立即产生了电动势.因为速度决mR定感应电动势,而感应电动势与电池的电动势反接

又导致电流减小,从而使安培力变小,故加速度减小,不难分析ab导体的运动是一种复杂的变加速运动.当FA=0,ab 速度将达最大值,故ab运动的收尾状态为匀速运动,且达到的最大速度为vmax= E. Bl ②“动一电一动”类型. 如图所示,型平行滑轨PQ、MN与水平方向成α角.长度l、质量m,电阻为R的导体ab紧贴在滑轨并与PM平行、滑轨电阻不计.整个装置处于 与滑轨平面正交、磁感应强度为B的匀强磁场中,滑轨足够长.导体ab静止 释放后,于重力作用下滑,此时具有最大加速度amax=gsinα.ab一旦运动。 则因动而生电,产生感应电动势,在PMba回路中产生电流,磁场对此电流作用力刚好与下滑力方向反向,随着a 棒下滑速度不断增大. E=Blv,IE,则电路 R中电流随之变大,安培阻力 B2l2F变大,直到与下 R滑力的合力为零,即加速度为零,以vmax= mgRsin的 22Bl最大速度收尾.此过程中,重力势能转化为ab棒的动能与回路中电阻 2耗散的热能之和.电磁感应中的力学问题,另一种是滑轨上有两个导体棒的运动情况,这种情况下两棒的运动特点可用右表进行

电磁感应中的电路和图象问题汇总.doc

第三节 电磁感应中的电路和图象问题 一、电磁感应中的电路问题 1.内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻 ,其余部分是外电阻. 2.电源电动势和路端电压 (1)电动势:E =Bl v 或E =n ΔΦ Δt . (2)路端电压:U =IR =E R +r ·R . 1.(单选)如图所示 ,一个半径为L 的半圆形硬导体AB 以速度v 在水平U 形 框架上向右匀速滑动 ,匀强磁场的磁感应强度为B ,回路电阻为R 0 ,半圆形硬导体AB 的电阻为r ,其余电阻不计 ,则半圆形导体AB 切割磁感线产生的感应电动势大小及AB 之间的电势差分别为( ) A .BL v BL v R 0 R 0+r B .2BL v BL v C .2BL v 2BL v R 0 R 0+r D .BL v 2BL v 答案:C 二、电磁感应中的图象问题 1.图象类型 (1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型 (1)由给定的电磁感应过程判断或画出正确的图象. (2)由给定的有关图象分析电磁感应过程 ,求解相应的物理量. (3)利用给出的图象判断或画出新的图象. 2.(单选)(2015·泉州模拟)如图甲所示 ,光滑导轨水平放置在与水平方向夹 角为60°的斜向下的匀强磁场中 ,匀强磁场的磁感应强度B 随时间t 的变化规律如图乙所示

(规定斜向下为正方向) ,导体棒ab 垂直导轨放置 ,除电阻R 的阻值外 ,其余电阻不计 ,导体棒ab 在水平外力F 作用下始终处于静止状态.规定a →b 的方向为电流的正方向 ,水平向右的方向为外力F 的正方向 ,则在0~t 1时间内 ,选项图中能正确反映流过导体棒ab 的电流i 和导体棒ab 所受水平外力F 随时间t 变化的图象是( ) 答案:D 考点一 电磁感应中的电路问题 1.对电源的理解:在电磁感应现象中 ,产生感应电动势的那部分导体就是电源 ,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈 ,外电路由电阻、电容等电学元件组成. 3.解决电磁感应中电路问题的一般思路: (1)确定等效电源 ,利用E =n ΔΦ Δt 或E =Bl v sin θ求感应电动势的大小 ,利用右手定则或楞 次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系) ,画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. (2015·石家庄质检)如图甲所示 ,两根足够长的平行光滑金属导轨MN 、PQ 被 固定在水平面上 ,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻为r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2 ,已知R 1=2 Ω ,R 2=1 Ω ,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场 ,CE =0.2 m ,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数 ,当电压表示数变为零后 ,对金属棒施加一水平向右的恒力F ,使金属棒刚进入磁场区域时电压表的示数又变为原来的值 ,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求: (1)t =0.1 s 时电压表的示数; (2)恒力F 的大小; (3)从t =0时刻到金属棒运动出磁场的过程中整个电路产生的热量. [思路点拨] (1)在0~0.2 s 内 ,R 1、R 2和金属棒是如何连接的?电压表示数等于感应电动势吗? (2)电压表示数始终保持不变 ,说明金属棒做什么运动? [解析] (1)设磁场宽度为d =CE ,在0~0.2 s 的时间内 ,有E =ΔΦΔt =ΔB Δt ld =0.6 V 此时 ,R 1与金属棒并联后再与R 2串联 R =R 并+R 2=1 Ω+1 Ω=2 Ω

电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型 一.电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等 1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。(1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 3. “双杆”中两杆都做同方向上的加速运动。:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 [例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少? 4.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

电磁感应图象专题

电磁感应图象专题训练 孙志华 1.(08全国卷一20)矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是() A B C D 2.(08上海卷10)如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像( )

3.(2009宁夏19)如图所示,一导体圆环位于纸面内,O为圆心。环内两个圆心角为90o的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直。导体杆OM可绕O转动,M端通过滑动触点与圆环良好接触。在圆心和圆环间连有电阻R。杆OM以匀角速度ω逆时针转动,t=0时恰好在图示位置。规定从a到b流经电阻R的电流方向为正方向,圆环和导体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流ⅰ随ωt变化的图象是( ) A.B.C.D.4.(07全国一21) 如图所示,LOO′T为一折线,它所形成的两个角∠LOO′和 ∠OO′L′均为45°。折线的右边有一匀强磁场.其方向垂直于纸面向里.一边长为l的正方形导线框沿垂直于OO′的方向以速度υ作匀速直线运动,在t=0的刻恰好位于图中所示位置。以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流-时间(I-t)关系的是(时间以I/υ为单位)( ) 5.(07全国二21)如图所示,在PO、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场、磁场方向均垂直于纸面。一导线框abcdefa位于纸面内,框的邻边都相互垂直,bc边与磁场的边界P重合,导线框与磁场区域的尺寸如图所示。从t=0时刻开始,线框匀速横穿两个磁场区域。以a→b→c→d→e→f为线框中的电动势ε的正方向,以下四个ε-t关系示意图中正确的是( ) ωt i ωt π 2 π 2 π 2 3 π O i ωt π 2 π 2 π 2 3 π O π 2 π i π 2 π 2 3 O π i ωt π 2 π 2 π 2 3 O b M ω O R

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

电磁感应现象中的几种常见图象

电磁感应现象中的几种常见图象 江西省都昌县第一中学李一新 高考《考试说明》中关于能力要求中,要考核的能力的第4点是“应用数学处理物理问题的能力”中,指出“能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图象进行表达、分析。”因此在每年高考中,关于图象的考查备受高考命题专家的青睐,而电磁感应现象的中图象更是高考的热点。在电磁感应现象中,涉及磁感应强度B.磁通量Φ、感应电动势E和感应电流I随时间t变化的图象,即B—t图象、Φ—t图象、E—t图象I—t图象。对于导体切割磁感线产生感应电动势和感应电流的情况,还涉及感应电动势E和感应电流I随位移x变化的图象即E—x和I—x图象。由于感应电流的产生,导体受到安培力作用,其运动情况又会发生动态变化,又有v—t、v—x和a—x等图象。 一、E—t图象 例1(2007全国卷Ⅱ)如图1所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场、磁场方向均垂直于纸面。一导线框abcdef位于纸面内,框的邻边都相互垂直,bc边与磁场的边界P重合,导线框与磁场区域的尺寸如图所示。从t=0时刻开始,线框匀速横穿两个磁场区域。以a→b→c →d→e→f为线框中的电动势E的正方向,以下四个E-t关系示意图中正确的是() 解析:bc边进入PQ区域的磁场时,切割磁感线的导线有效长度为l,感应电动势方向为负;bc边进入QR区域的磁场时,de边同时也进入PQ区域磁场中,它们切割磁感线的导线产生的感应电动势大小相等、方向相反,总电动势为零;bc边离开磁场时,de边进入QR区域磁场中,af边同时也进入PQ区域磁场中,它们切割磁感线产生的感应电动势方向均为正,总感应电动势相加;以后便只有af边在QR区域切割磁感线,产生的感应电动势方向为负,故正确的选项为C。

电磁感应中的综合问题

电磁感应中的综合问题 教学目标 通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力. 教学重点、难点分析 1.电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系.但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点. 2.楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,“物理”的思维更突出,对学生提高理解能力有较大帮助,因而应成为复习的重点. 教学过程设计 一、力、电、磁综合题分析 〈投影片一〉 [例1] 如图3-9-1所示,AB、CD是两根足够长的固定平行金属导 轨,两导轨间的距离为l,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B,在导轨的A、D端连接一个阻值为R 的电阻.一根垂直于导轨放置的金属棒ab,其质量为m,从静止开始沿导轨下滑.求:ab棒下滑的最大速度.(要求画出ab棒的受力图,已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计) 教师:(让学生审题,随后请一位学生说题.)题目中表达的是什么物理现象?ab棒将经历什么运动过程?——动态分析.

含答案电磁感应中图象问题..

电磁感应中的图象问题 一、基础知识 1、图象类型 (1)随时间变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象. (2)随位移x变化的图象如E-x图象和i-x图象. 2、问题类型 (1)由给定的电磁感应过程判断或画出正确的图象. (2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象. 理解 1、题型特点 一般可把图象问题分为三类: (1)由给定的电磁感应过程选出或画出正确的图象; (2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2、解题关键 弄清初始条件,正负方向的对应,变化围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键. 3、解决图象问题的一般步骤 (1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等; (2)分析电磁感应的具体过程; (3)用右手定则或楞次定律确定方向对应关系; (4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画出图象或判断图象. 4、对图象的认识,应注意以下几方面 (1)明确图象所描述的物理意义; (2)必须明确各种“+”、“-”的含义; (3)必须明确斜率的含义; (4)必须建立图象和电磁感应过程之间的对应关系;

(5)注意三个相似关系及其各自的物理意义: v ~Δv ~Δv Δt ,B ~ΔB ~ΔB Δt ,Φ~ΔΦ~ΔΦΔt Δv Δt 、ΔB Δt 、ΔΦΔt 分别反映了v 、B 、Φ变化的快慢. 5、电磁感应中图象类选择题的两个常见解法 (1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项. (2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法. 二、练习 1、如图所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸 面,磁感应强度的大小均为B ,以磁场区左边界为y 轴建立坐 标系,磁场区域在y 轴方向足够长,在x 轴方向宽度均为a .矩 形导线框ABCD 的CD 边与y 轴重合,AD 边长为a .线框从图示 位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,线框中感应电流i 与线框移动距离x 的关系图象正确的是(以逆时针方向为电流的正方向) () 答案 C 解析 由楞次定律可知,刚进入磁场时电流沿逆时针方向,线框在磁场中时电流沿顺时针方向,出磁场时沿逆时针方向,进入磁场和穿出磁场等效为一条边切割磁感线,在磁

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习 1.(2016武汉模拟)如图(甲)所示,矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图(乙)所示.若规定顺时针方向为感应电流i的正方向,图中正确的是( ) 2.(2016山西康杰中学高二月考)如图所示,两条平行虚线之间存在 匀强磁场,磁场方向垂直纸面向里,虚线间的距离为L.金属圆环的直径也是L.自圆环从左边界进入磁场开始计时,以垂直于磁场边界的 恒定速度v穿过磁场区域.规定逆时针方向为感应电流i的正方向,则圆环中感应电流i随其移动距离x的变化的i x图像最接近( )

3.如图(甲)所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图(乙)所示(规定向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F的作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t0时间内,能正确反映流过导体棒ab的电流与时间或外力与时间关系的图线是( ) 4.如图所示,有一个等腰直角三角形的匀强磁场区域其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R 的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿abcda的感应电流方向为正,则表示线框中电流i 随bc边的位置坐标x变化的图像正确的是( )

5.如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF,OO′为∠EOF的角平分线,OO′间的距离为l,磁场方向垂直于纸面向里,一边长为l的正方形导线框ABCD 沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则在图中感应电流i与时间t的关系图线可能正确的是( ) 6.如图所示,用导线制成的矩形框长2L,以速度v穿过有理想界面的宽为L的匀强磁场,那么,线框中感应电流和时间的关系可用下图中的哪个图表示( )

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

经典总结电磁感应:专题1:电磁感应图像问题

专题一:电磁感应图像问题 电磁感应中经常涉及磁感应强度、磁通量、感应电动势、感应电流等随时间(或位移)变化的图像,解答的基本方法是:根据题述的电磁感应物理过程或磁通量(磁感应强度)的变化情况,运用法拉第电磁感应定律和楞次定律(或右手定则)判断出感应电动势和感应电流随时间或位移的变化情况得出图像。高考关于电磁感应与图象的试题难度中等偏难,图象问题是高考热点。 【知识要点】 电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 等随时间变化的图线,即B -t 图线、Φ-t 图线、E -t 图线和I -t 图线。 对于切割产生的感应电动势和感应电流的情况,有时还常涉及感应电动势和感应电流I 等随位移x 变化的图线,即E -x 图线和I -x 图线等。 还有一些与电磁感应相结合涉及的其他量的图象,例如P -R 、F -t 和电流变化率 t t I -??等图象。 这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。 1、定性或定量地表示出所研究问题的函数关系; 2、在图象中E 、I 、B 等物理量的方向是通过正负值来反映; 3、画图象时要注意横、纵坐标的单位长度定义或表达。 【方法技巧】 电磁感应中的图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定,用楞次定律或右手定则判断出感应电动势(感应电流)的方向,从而确定其正负,以及在坐标中范围。分析回路中的感应电动势或感应电流的大小,要利用法拉第电磁感应定律来分析,有些图像还需要画出等效电路图来辅助分析。 不管是哪种类型的图像,都要注意图像与解析式(物理规律)和物理过程的对应关系,都要用图线的斜率、截距的物理意义去分析问题。 熟练使用“观察+分析+排除法”。 一、图像选择问题 【例1】如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab ba 的延长线平分导线框。在t= 0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。以i 表示导线框中感应电流的强度, 取逆时针方向为正。下列表示i -t 关系的选项中,可能正确的是() 【解析】:从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐拉增大,A 项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B 项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D 项错,故正确选项为C . 求解物理图像的选择类问题可用“排除法”,即排除与题目要求相违背的图像,留下正确图像;

电磁感应中导体棒类问题归类剖析

电磁感应中导体棒类问题归类剖析 电磁感应中的导轨上的导体棒问题是历年高考的热点。其频考的原因,是因为该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。 一、滑轨上只有一个导体棒的问题 滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。 (一)含电源闭合电路的导体棒问题 例1 如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、 质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路, 整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S 串联。当闭合电键后,求金属棒可达到的最大速度。 图1 解析闭合电键后,金属棒在安培力的作用下向右运动。当金属棒的速度为 v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。 金属板速度最大时,有 解得

点评本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等) (二)闭合电路中的导体棒在安培力之外的力作用下的问题 1. 导体棒在外力作用下从静止运动问题 例2(全国高考题)如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。一质量为m 且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。若用恒力F向上拉ef,则当ef匀速上升时,速度多大? 图2 解析本题有两种解法。方法一:力的观点。当棒向上运动时,棒ef受力如图3所示。当ef棒向上运动的速度变大时,ef棒产生的感应电动势变大,感应 =BIL变大,因拉力F和重力mg都电流I=E/R变大,它受到的向下的安培力F 安 不变,故加速度变小。因此,棒ef做加速度越来越小的变加速运动。当a=0时(稳定条件),棒达到最大速度,此后棒做匀速运动(达到稳定状态)。当棒匀速运动时(设速度为),由物体的平衡条件有 图3

经典总结电磁感应:专题1:电磁感应图像问题

经典总结电磁感应:专题1:电磁感应图像问题

专题一:电磁感应图像问题 电磁感应中经常涉及磁感应强度、磁通量、感应电动势、感应电流等随时间(或位移)变化的图像,解答的基本方法是:根据题述的电磁感应物理过程或磁通量(磁感应强度)的变化情况,运用法拉第电磁感应定律和楞次定律(或右手定则)判断出感应电动势和感应电流随时间或位移的变化情况得出图像。高考关于电磁感应与图象的试题难度中等偏难,图象问题是高考热点。 【知识要点】 电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 等随时间变化的图线,即B -t 图线、Φ-t 图线、E -t 图线和I -t 图线。 对于切割产生的感应电动势和感应电流的情况,有时还常涉及感应电动势和感应电流I 等随位移x 变化的图线,即E -x 图线和I -x 图线等。 还有一些与电磁感应相结合涉及的其他量的图象, 例如P -R 、F -t 和电流变化率t t I -?? 等图象。 这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。

磁场方向垂直;虚线框对角线ab与导线框的一条边垂直,ba的延长线平分导线框。在t=0时,使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域。以i表示导线框中感应电流的强度,取逆时针方向为正。下列表示i-t关系的选项中,可能正确的是() 【解析】:从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐拉增大,A项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D项错,故正确选项为C. 求解物理图像的选择类问题可用“排除法”,即排除与题目要求相违背的图像,留下正确图像;也可

相关主题