搜档网
当前位置:搜档网 › 碳化硅增强铝基复合材料界面改善对力学性能的影响

碳化硅增强铝基复合材料界面改善对力学性能的影响

碳化硅增强铝基复合材料界面改善对力学性能的影响
碳化硅增强铝基复合材料界面改善对力学性能的影响

碳化硅增强铝基复合材料界面改善对力学性能的影响3

徐金城1,邓小燕1,2,张成良1,田亮亮1

(1 兰州大学物理科学与技术学院,兰州730000;2 西北民族大学电气工程学院电子材料实验室,兰州730030)

摘要 用粉末冶金法制备了致密度较好的镀铜碳化硅增强铝基复合材料,并对碳化硅的表面化学镀工艺进行了分析。通过化学镀前后复合材料力学性能的对比研究表明,碳化硅表面镀铜较好地解决了碳化硅与基体的相容性问题,使复合材料的力学性能得到明显提高。

关键词 粉末冶金法 碳化硅 复合材料 化学镀

E ffect of Improved Interface on Mechanic Properties of SiC Particles R einforced

Aluminum Matrix Composites

XU Jincheng 1,D EN G Xiaoyan 1,2,ZHAN G Chengliang 1,TIAN Liangliang 1

(1 School of Physical Science and Technology ,Lanzhou University ,Lanzhou 730000;2 Key Laboratory for Electronic Materials ,

College of Electrical Engineering ,Northwest University for Nationality ,Lanzhou 730030)

Abstract The SiC particles reinforced aluminum matrix composite is prepared by powder metallurgy.And the technology of electroless plating copper on SiC surfaces is investigated.The comparison of mechanic properties of com 2posites reinforced by coated and uncoated SiC particles indicates that the copper coating on SiC particles preferably im 2proves the compatibility between SiC particles and aluminum matrix and improves the mechanic properties of the com 2posite.

K ey w ords powder metallurgy ,SiC particles ,composite ,electroless plating

 3甘肃省自然科学基金资助项目(3ZS0512A252048)

 徐金城:男,1945年生,教授,目前主要从事金属材料、金属基复合材料及环境材料方面的研究 邓小燕:女,通讯作者,博士生,讲师,研究方向为金属材料、金属基复合材料 E 2mail :dengxy02@https://www.sodocs.net/doc/8e3582216.html,

0 引言

碳化硅颗粒增强铝基复合材料是金属基复合材料

(MMC )中最具应用前景的一种新型高技术材料。由于其具

有优异的高温强度、高耐磨性、高比刚度等力学性能和良好的可加工性等优点[1-3],已在航空航天、汽车和其它制造业作为结构材料得到了应用。

由于碳化硅陶瓷颗粒与金属基体界面的结合强度低而恶化复合材料的性能,如果在陶瓷表面涂覆金属镀层,不仅可以促进陶瓷粒子在基体金属中的均匀分布,还能改善基体与增强体的界面结合强度,而且这种方法的成本低廉、工艺简单易行,因而成为增强颗粒表面处理中的一种常用方法[4,5]。目前,国内外研究得比较成熟的包裹工艺有沉淀法、溶胶2凝胶法、溶胶法、醇盐水解法、非均相凝固法等[6],其中,化学镀法制备的包裹粉体包裹层与粉体基体结合比较紧密,包裹层厚度容易控制,采用的设备比较简单。

本文用传统粉末冶金方法和化学镀处理粉末的方法制备了SiC 颗粒增强Al 2Cu 2Mg 基复合材料,并研究了化学镀过程中粉末的形貌微观结构和性能的变化,以及它对复合材料力学性能的影响。

1 实验

1.1 原材料

实验中使用纯度为99.5%的Al 粉、Cu 粉和Mg 粉,粒

度均为200目,SiC 粉末为3~5

μm ,纯度为98.5%。1.2 样品的制备

实验先将碳化硅进行化学镀铜处理,化学镀实验中HF

作为净化剂,氯化亚锡作为敏化剂,硝酸银作为活化剂,硫酸铜作为主盐,酒石酸钾钠作为络合剂,甲醛作为还原剂,用氢氧化钠调节镀液的p H 值进行化学镀铜[7]。由于碳化硅镀铜后干燥时间过长,铜膜易氧化,须在200℃下氢气还原3h 。化学镀后SiC 与Cu 质量比为4∶1。

再将原始碳化硅和化学镀铜后的碳化硅分别与铝基合金粉料在研体中混合均匀,然后加入到模具中,制备出SiCp/Al 24%Cu 21.2%Mg (质量分数)复合材料。碳化硅的体积分数依次取0%、3%、6%、9%、12%,同时,SiC 颗粒表面涂覆的Cu 质量计入合金元素百分比。而后用Q Y L50250吨油压千斤顶加压到250MPa ,保压15min ,再将压力加到400MPa 保压30min ,卸载后得到条状试样60mm ×10mm ×3.5mm 。

在氩气保护下,先在400℃预烧60min ,然后升温到560℃进行烧结,保温1.5h ,炉冷得到试样。将烧结试样在氩

?

52?碳化硅增强铝基复合材料界面改善对力学性能的影响/徐金城等

气气氛下500℃保温0.5h ,蒸馏水进行淬火,自然时效96h 。

1.3 材料的测试

采用阿基米德排水法测量其密度;采用HX021000TM

数字式显微硬度计测量硬度;采用CSS 244100型万能试验机测试试样强度。

用J SM 25600L V 型扫描电子显微镜观察SiC 镀铜前后的形貌和拉伸断口形貌,并对元素作出分析。

2 结果与分析

2.1 SiC 镀铜前后分析

SiC 颗粒化学镀铜后,

为确定包裹实验是否能够在SiC

表面上得到Cu ,用扫描电镜进行形貌观察并进行EDS 能谱

分析。图1为镀铜前后的形貌。从图中可以看出,SiC 颗粒在化学镀处理前表面光滑,处理后大部分颗粒表面有白色小颗粒分布,但也还有部分颗粒表面较为光滑。

图2(a )为SiC 处理前图1(a )的能谱分析结果。图2(b )为对图1(b )中颗粒光滑部分进行EDS 能谱分析的结果,目的是确定化学镀后SiC 颗粒表面是否涂覆了铜。从图中可

以看出,图1(b )中无明显小颗粒的碳化硅光滑表面上也存在着一定厚度的铜膜。这层铜膜可以使陶瓷颗粒与合金基体之间的浸润性得到一定的改善。

2.2 材料的物理性能与力学性能

表1为复合材料的密度、硬度和拉伸试验结果。其中,拉伸速率为1mm/min 。

表1 材料的密度、硬度、抗拉强度和延伸率Table 1 Densities ,hardness ,tensile strengt h and

elongation of material

SiC 体积分数/%

致密度/%镀前镀后硬度/HV

镀前镀后抗拉强度σb /MPa

镀前镀后延伸率/%

镀前镀后

098.3

97.1

26714.2397.898.010511030334312.512.3697.297.51211323363718.48.5995.395.6112

119

285311 5.7 5.612

92.793.299.7103

257

287

3.2

3.0

从表1中可以明显看出,随着SiC 颗粒含量的增加试样

的致密度和延伸率下降,而硬度和强度呈先增加后降低的趋势,在SiC 颗粒含量为6%左右达到最大,与基体相比提高了26%。原因可能是在体积分数不大于6%时,SiC 颗粒充当基体金属不均匀形核的位置,形核位置增多可以得到细小的基体晶粒,而在晶界上的SiC 颗粒降低了晶界的可动性,也起到了强化作用,使合金强度增加;SiC 颗粒含量进一步增加时,SiC 颗粒发生团聚现象,在基体中分布不均匀,或者SiC 颗粒之间由于相互接触而发生架桥现象而不可避免地造成材料中空洞,加上SiC 颗粒自身存在裂纹部分抵消了SiC 颗粒的增强效果,从而使合金强度的增加趋势变缓。

硬度和强度在SiC 颗粒含量为6%左右时达到最大,与基体相比提高了26%。而后,继续增加SiC 颗粒含量,硬度反而下降。这是因为当SiC 颗粒加入过少时,增强效果甚微,但是当SiC 颗粒加入过多时,其陶瓷颗粒可能出现偏析[8],从而引起试样致密度下降,孔洞增多,试样变得疏松,硬度和强度自然下降。SiC 镀铜以后材料的拉伸强度提高较为明显,比未处理的SiC 直接加入基体合金提高了11%,其他各项力学指标也有适当的提高。

2.3 SiC 的分散性和拉伸断口

SiC 的分散性对材料的性能影响至关重要,直接影响复

合材料的性能。如果SiC 偏聚明显,颗粒之间由于相互接触而发生架桥现象,就会不可避免地造成材料中的空洞,SiC 颗粒自身存在的裂纹部分抵消了SiC 的增强效果,从而使材料的强度受到影响。实验中采用工艺简单的手工研磨,从微观上看,所用的200目铝粉远大于SiC 粉末,如果铝粒子间隙中几颗SiC 颗粒聚集在一起,同时粒子间填充并不紧密,将有大量的孔隙存在,分布的不均匀会严重影响复合材料的性能。

图3为SiC 含量为6%时样品的表面形貌。从图中看出,在较高放大倍数下样品表面看不出有明显的气孔等缺陷存在,说明镀铜SiC 与基体结合良好,SiC 分布均匀。图4为

?62?材料导报:研究篇 2009年1月(下)第23卷第1期

200倍下对试样表面随机区域进行Si 元素面扫描,可以看

出,SiC 镀铜后能较均匀地分布于金属基体中,无大面积的Si

元素聚集区域。

对试样拉伸断口进行的分析如图5所示。从图5(a )中

可以看出,未化学镀铜的试样断口存在二次裂纹。这是由于SiC 的分散性较差,特别是SiC 的尖角在试样断裂过程会起破坏作用。试样的延伸率随着SiC 体积分数的增加而减少。SiC 含量越多,下降得越明显。因为SiC 颗粒与基体不能形成共格界面,在变形时不会随基体变形,所以导致延伸率下降。SiC 粒子增强铝基复合材料的断裂过程为:在试样缺口根部高应力应变作用下,SiC 颗粒与基体界面发生脱粘开裂及沿基体晶界析出的脆性相与基体界面开裂或自身开裂形成的微裂纹扩展进入基体材料,并相互连通形成较大尺寸的裂纹,在外加应力的作用下失稳扩展,导致脆性断裂[9]。由于SiC 硬且脆,可以认为SiC 颗粒在拉应力作用下不发生塑性变形,理论上应该在外加拉伸应力达到SiC 颗粒的拉伸强度时颗粒断裂,而有一定塑性的合金基体在SiC 断裂之前要发生一定的塑性变形。SiC 镀铜后改善了与金属基体的浸润性,使结合强度增强,但材料断裂时SiC 与周围基体间发生了相互作用力,

使断口更加显示为脆性。

图5 未化学镀(a)和化学镀后(b)试样的断口Fig.5 Appearance of fracture before electroless plating(a)

and after electroless plating(b)

3 结论

(1)在碱性条件下化学镀可以使SiC 表面镀上一定厚度

的铜膜。

(2)随着SiC 颗粒体积分数的增加,复合材料的致密度下降,硬度和抗拉强度呈现先增大后减小的规律。

(3)SiC 镀铜后能明显改善陶瓷颗粒与金属基体之间的浸润性,提高界面的结合强度,使复合材料的强度明显增加。

参考文献

1 Contreras A ,Angeles 2Ch ávez C ,Flores O ,et al.Structural ,

morphological and interfacial characterization of Al 2Mg/TiC composites.Mater Character ,2007,(58):685

2 Maruyama B ,Hunt W H.Discontinuously reinforced alumi 2

num :current status and f uture direction [J ].J OM ,1999,(11):59261

3 郝斌,段先进,崔华,等.金属基复合材料的发展现状及展

望[J ].材料导报,2005,19(7):64

4 Weller M.The minimum volume f raction of SiC reinforce 2

ment required for strength improvement of Al 2Cu based composite[J ].J Mater Sci ,1995,30(3):834

5 Kalogeropoulou S.Relationship between wettability and re 2activity in SiCp Fe system [J ].Acta Metal Mater ,1995,43(3):907

6 Zhang Rui ,et al.Influence of Cu 2O on interface behavior of

copper/SiCp composite prepared by spark plasma sintering [J ].J Am Ceram Soc ,2004,87(2):302

7 李宁.化学镀实用技术[M ].北京:化学工业出版社,20048 赵伟,罗兵辉,柏振海.6066PSiCp 复合材料最佳SiCp 体积

含量计算[J ].轻合金加工技术,2007,35(5):38

9 王国珍,丁雨田,陈剑虹,等.SiC 粒子增强铝基复合材料的

断裂行为[J ].甘肃工业大学学报,1998,24(1):1

(责任编辑 何 欣)

?

72?碳化硅增强铝基复合材料界面改善对力学性能的影响/徐金城等

铝基碳化硅增强材料_Al_SiC_和低温共烧陶瓷_LTCC_的钎焊

文章编号:100520299(1999)增刊20153204 铝基碳化硅增强材料(Al/SiC)和 低温共烧陶瓷(LTCC)的钎焊 郭明华,王听岳 (南京电子技术研究所,江苏南京210000) 摘 要:铝基碳化硅增强材料(Al/S iC)和低温共烧陶瓷(LT CC)适合高性能微波电路的高密度组 装.对这两种材料进行焊接时,温度和气氛对基材的焊接性能影响很大.铝基碳化硅增强材料的镀 层在焊接温度时容易发生氧化,低温共烧陶瓷的厚膜导体在真空加热和高温还原性气体的条件下 焊接性劣化.采用金基钎料中温钎焊时,优质的焊料和合理的焊接工艺是获得优质焊缝的关键. 关键词:铝基碳化硅增强材料;低温共烧陶瓷;焊接性 中图分类号:TG454 文献标识码:A Soldering of SiC particulate2reinforced aluminum(Al/SiC)and low temperature co2fired ceramic(L TCC)materials G UO Ming2hua,W ANG T ing2yue (Nan Jing Research Institute of E lectronics T echnology,Nanjing210000,China) Abstract:SiC particulate2rein forced aluminum(Al/SiC)and low tem perature cofired ceramic(LT CC)material are very suitable for high performance microwave circuit packages.S olderability of tw o materials is greatly influenced by tem perature and atm osphere.The plate layer of Al/SiC is easily oxidized when the material is atm osphere treatment. The film conductor′s s olderability of LT CC will become weak when heated in vacuum or heated in reduced atm o2 sphere.Proper s oldering process and using high quality s oldering material are the essential factor to gain g ood joint when middle2tem perature s oldering where g old bases s older is used. K ey w ords:Al/SiC;LT CC;s olderability 军用和航天电子系统电路要求组装密度高,封装体积小,结构重量轻,性能可靠性高.为适应这种需求,MC M技术应运而生[1].MC M-C技术是MC M技术的重要分支.为满足机载相控阵雷达和航天电子高频微波电路的组装要求,采用新型金属复合材料Al/SiC和LT CC.它们优良的性能为MC M-C技术提供了理想的封装和基板材料[2,3].图1为采用MC M-C技术,以这两种材料为组装基材的机载相控阵雷达T/R组件. 微波有 图1 采用Al/S iC和LT CC材料的T/R组件Fig.1 T/R m odule based on Al/S iC and LT CC materials  第7卷 增刊材 料 科 学 与 工 艺 V ol.7 Sup 1999年 MATERI A L SCIE NCE&TECH NO LOGY 1999

颗粒增强铝基复合材料的制备方法及其存在的问题20091311

颗粒增强铝基复合材料的制备方法及其存在的问题 冶金0901班 张莹 20091311

近年来,随着不断追求轻量化、高性能化、长寿命、高效能的发展目标带动牵引了轻质高强多功能颗粒增强铝基复合材料的持续发展。提出的低密度、高比强度、高比模量、低膨胀、高导热、高可靠等优异以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等综合性能要求,传统轻质材料已很难全面满足要求,如铝合金模量低、线胀系数较大; 钛合金密度较大、热导率极低; 纤维增强树脂基复合材料在空间环境下使用易老化等,颗粒增强铝基复合材料经过30 多年的发展,已在国外航空航天领域得到了规模应用,这充分验证了与铝合金、钛合金、纤维树脂基复合材料等传统材料相比具有的显著性能优势,奠定了颗粒增强铝基复合材料在材料体系中的地位和竞争态势。而且更重要的是,在世界范围内有丰富的铝资源,加之易于进行工艺加工成型和处理,因而制各和生产铝基复合材料比其他金属基复合材料更为经济,易于推广,可广泛应用于航空航天、军事、汽车、电子、体育运动等领域,因此,这种材料在国内外受到普遍重视。 颗粒增强铝基复合材料已成为当下世界金属基复合材料研究领域中的一个最为重要的热点,各国已经相继进入了颗粒增强铝基复台材料的应用开发阶段,在美国和欧洲发达国家,该类复台材料的工业应用已开始,并且被列为二十一世纪新材料应用开发的重要方向并日益向工业规模化生产和应用的方向发展。本文旨在探讨颗粒增强铝基复合材料的制备方法及在亟待解决的各方面的问题,推进其应用发展的进程。 主要制备方法介绍: 增强体颗粒的分布均匀性和界面结合状况是影响复合材料性能的重要因素。因此,如何使增强体颗粒均匀分布于铝基体井与铝基体形成良好的界面结台是颗粒增强铝基复台材料制备过程中必须解决的两个最关键问题。以下是制备颗粒增强铝基复合材料的一些方法: 1、原位法 原位法的原理是通过元素间或元素与化合物之间反应制备陶瓷增强金属基复合材料,是近年来迅速发展的一种新的复合工艺方法,目前已成功地在铝基中实现了硼化物、碳化物、氮化物等的原位反应。由于这些增强相引入的特殊性,不仅它的尺寸非常细小,而且与基体具有良好的界面相容性,使得这种复合材料较传统外加增强相复合材料具有更高的强度和模量,以及良好的高温性能和抗疲劳、耐磨损性能。 原位自生铝基复合材料的制备方法较多,下面进行简略介绍。 (1)自蔓延高温合成法:该技术是利用热脉冲使放热反应起始于反应剂粉末压坯的一端,其生成热使邻近的粉末温度骤然升高.发生化学反应并以燃烧波的形式蔓延通过整个反应物,当燃烧波推行前移时反应物转变成产物。该技术的特点是在无需外加热源的情况下,利用高放热化学反应放出的热量使其在引发后自身延续合成材料,节能,粉末纯度高,粒径细小,活性高,易于烧结并能获得高性能的材料。 (2)原位热压放热反应合成法:该技术是在原位热压技术的基础上发展起来的一种新下艺。在制备过程中将反应物的物料混合或与某种基体原料混合后通过热压工艺制备,组成物相在热压过程中原位生成。该技术的突出优点是利用燃烧合成过程的放热反应,在产物处于反应高温时,施加一定的压力。使材料的致密与反应合成同时完成。获得了事半功倍的效果。 (3)放热弥散技术:这种方法法是美国一个实验室在自蔓延法的基础上改进而来的。

铝碳化硅

铝碳化硅(Al/SiCp)系第三代电子封装材料,这种SiC颗粒增强铝基复合材料具有的高比强度、高比模量、耐磨损及抗腐蚀性等优良的性能使得其在航空、航天、医疗、汽车等领域获得了广泛的应用前景,也使得其制备、加工以及应用成为当今世界科技发展的一个研究热点。 增强体颗粒SiC比常用的刀具如高速钢刀具和硬质合金钢刀具的硬度高, 在机械加工过程中能引起剧烈的刀具磨损, 因此,复合材料的难加工性和昂贵的加工成本限制了铝基碳化硅复合材料的广泛应用。目前, 在进一步扩大铝基碳化硅复合材料的应用方面, 材料的切削加工是最重要的研究课题之一。随着SiCp/Al复合材料在航空、航天等领域应用的不断增加,出现了越来越多的带有直线、曲线形状的深窄沟槽、小尺寸孔、螺纹且需要对它们进行精密加工的零件。如何突破这种难加工材料的加工工艺方法,有效的降低其加工成本,使其得到广泛的应用,对我国国防事业有着重要意义。 基于当前世界的机械制造水平,我国有部分科研院所针对这个课题作了部分研究,人们尝试了多种加工方法:有金刚石刀具高速加工、金刚石砂轮进行高效磨削、电火花加工、激光加工、超声振动切削加工等等。这么多的方法总而言之,各有利弊,铝碳化硅材料的加工工艺方法还处于摸索总结阶段。 我公司于2009年启动该项目,经过不断地摸索实验与总结,已经取得了一系列研究成果,促进了SiCp/Al复合材料加工技术的发展和应用。我们认为采用金刚石刀具高速切削和采用金刚石砂轮进行高效磨削以及结合电火花加工能有效的保证设计尺寸精度要求。但是,要有效的降低其加工成本还有很多的路要走。其加工制造的瓶颈主要有三点: 1.高精度、高转速、高效率的切削机床。这是实现铝碳化硅复合材料高效加工的根 本,是金刚石刀具高速加工及金刚石砂轮高效磨削的前提条件。 2.金刚石刀具及金刚石砂轮的制造。如何提高金刚石刀具及金刚石砂轮的使用寿 命,降低其制造成本,实际上也就决定了铝碳化硅复合材料的加工成本。 3.切削参数。合理的切削参数能有效的保护机床和刀具,提高加工效率。 针对以上三点,在十二五期间,我们计划再用2年时间解决。首先机床在资金允许的前提下,购买国内外满足使用性能的机床;进一步加大对金刚石刀具的制造和再次刃磨研究;进一步改进电镀金刚石砂轮和钎焊金刚石砂轮的研究;加强对切削参数的优化与总结。同时也进一步展开对其他工艺方法的研究。

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

颗粒增强铝基复合材料研究与应用进展

颗粒增强铝基复合材料研究与应用进展摘要:综述了颗粒增强铝基复合材料的研究现状,从基体、增强体的选择,铝基复合材料的制备方法,影响复合材料性能的因素和改善措施等方面进行阐述,并介绍了该复合材料的广泛应用。 关键词:颗粒;铝基复合材料;制备方法; 应用 Abstract :The research progress of particle reinforced aluminum matrix composite was summarized. The research status of the composite was reviewed in detail from the choice of the reinforcement and the matrix, the preparation technique of aluminum matrix composite, the factors which can affect the performance of the composite. Key words :particle; aluminum matrix composite; preparation methods; application 1.前言 铝基复合材料是以金属铝及其合金为基体 , 以金属或非金颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同 , 铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。由于颗粒增强铝基复合材料具有高的比强度、比刚度,优良的高温力学性能和耐磨性,并且价格便宜,适于批量生产,良好的耐磨性和导热性能等优点,在航天、航空、汽车、电子、光学等工业领域具有相当广泛的应用前景。 颗粒增强复合材料是指弥散的硬质增强相的体积超过 20%的复合材料,而不包括那些弥散质点体积比很低的弥散强化金属的金属基复合材料[1] 。此外,这种复合材料的颗粒直径和颗粒间距很大,一般大于1μm。在这种复合材料中,增强相是主要的承载相,而基体的作用则在于传递载荷和便于加工。这种材料虽然其增强效应远不及连续纤维,但它主要是可以弥补某些材料性能的不足,如增加刚度、耐磨性、耐热性、抗蠕变等。在这种复合材料中,硬质增强相造成的对基体的束缚作用能阻止基体屈服。颗粒复合材料的强度通常取决于颗粒的直径、间距和体积比,但基体很重要。除此之外,这种材料的性能还对界面性能及颗粒排列的几何形状十分敏感[2]。 2.铝基复合材料的选择

铝合金 特性

纯铝的强度低,不宜用来制作承受载荷的结构零件。向铝中加入适量的硅、铜、镁、锰等合金元素,可制成强度较高的铝合金,若在经冷变形强化或热处理,可进一步提高强度。 根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和 特殊铝等五种. 铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 铝合金基本常识 一、分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。 1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。兹举 例说明如下:1070-H14(纯铝)

2017-T4(热处理合金) 3004-H32(非热处理合金) 2.1第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁 7:主要添加合金元素为锌与镁 8:不属於上列合金系的新合金 2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。 0:表原合金 1:表原合金经第一次修改 2:表原合金经第二次修改 2.3第三及四位数: 纯铝:表示原合金 合金:表示个别合金的代号 "-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号-Hn :表示非热处理合金的鍊度符号 -Tn :表示热处理合金的鍊度符号 2 铝及铝合金的热处理 一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

铝合金的典型机械性能

铝合金的典型机械性能(Typical Mechanical Properties) 铝合金牌号 及状态拉伸强度(25°C MPa)屈服强度(25°C MPa)硬度500kg力10mm球延伸率 1.6mm(1/16in)厚度 5052-H112 175 195 60 12 5083-H112 180 211 65 14 6061-T651 310 276 95 12 7050-T7451 510 455 135 10 7075-T651 572 503 150 11 2024-T351 470 325 120 20 铝合金的典型物理性能(Typical Physical Properties) 铝合金牌号及状态热膨胀系数 (20-100℃) μm/m?k熔点范围 (℃)电导率20℃(68℉) (%IACS) 电阻率20℃(68℉) Ωmm2/m 密度(20℃)(g/cm3) 2024-T351 23.2 500-635 30 0.058 2.82 5052-H112 23.8 607-650 35 0.050 2.72 5083-H112 23.4 570-640 29 0.059 2.72 6061-T651 23.6 580-650 43 0.040 2.73 7050-T7451 23.5 490-630 41 0.0415 2.82 7075-T651 23.6 475-635 33 0.0515 2.82 铝合金的化学成份(Chemical Composition Limit Of Aluminum ) 合金 牌号硅Si 铁Fe 铜Cu 锰Mn 镁Mg 铬Cr 锌Zn 钛Ti 其它铝 每个合计最小值 2024 23.2 0.5 3.8-4.9 0.3-0.9 1.2-1.8 0.1 0.25 0.15 0.05 0.15 余量5052 25 0.4 0.1 0.1 2.2-2.8 0.15-0.35 0.1 -- 0.05 0.15 余量5083 23.8 0.4 0.1 0.3-1.0 4.0-4.9 0.05-0.25 0.25 0.15 0.05 0.15 余量6061 23.6 0.7 0.15-0.4 0.15 0.8-1.2 0.04-0.35 0.25 0.15 0.05 0.15 余 量 7050 23.5 0.15 20.-2.6 0.1 1.9-2.6 0.04 5.7-6.7 0.06 0.05 0.15 余量7075 23.6 0.5 1.2-2.0 0.3 2.1-2.9 0.18-0.28 5.1-6.1 0.2 0.05 0.15 余 量 美铝典型应用领域 用途 2024 5052 5083 6061 7050 7075 农业 -- ● -- ● -- -- 航空器● -- -- ●●● 模具 -- ● -- ● -- ● 机械设备●● -- ●●● 五金零件 -- -- -- ● -- -- 建筑 -- ● -- ● -- --

碳化硅增强铝基复合材料界面改善对力学性能的影响

碳化硅增强铝基复合材料界面改善对力学性能的影响3 徐金城1,邓小燕1,2,张成良1,田亮亮1 (1 兰州大学物理科学与技术学院,兰州730000;2 西北民族大学电气工程学院电子材料实验室,兰州730030) 摘要 用粉末冶金法制备了致密度较好的镀铜碳化硅增强铝基复合材料,并对碳化硅的表面化学镀工艺进行了分析。通过化学镀前后复合材料力学性能的对比研究表明,碳化硅表面镀铜较好地解决了碳化硅与基体的相容性问题,使复合材料的力学性能得到明显提高。 关键词 粉末冶金法 碳化硅 复合材料 化学镀 E ffect of Improved Interface on Mechanic Properties of SiC Particles R einforced Aluminum Matrix Composites XU Jincheng 1,D EN G Xiaoyan 1,2,ZHAN G Chengliang 1,TIAN Liangliang 1 (1 School of Physical Science and Technology ,Lanzhou University ,Lanzhou 730000;2 Key Laboratory for Electronic Materials , College of Electrical Engineering ,Northwest University for Nationality ,Lanzhou 730030) Abstract The SiC particles reinforced aluminum matrix composite is prepared by powder metallurgy.And the technology of electroless plating copper on SiC surfaces is investigated.The comparison of mechanic properties of com 2posites reinforced by coated and uncoated SiC particles indicates that the copper coating on SiC particles preferably im 2proves the compatibility between SiC particles and aluminum matrix and improves the mechanic properties of the com 2posite. K ey w ords powder metallurgy ,SiC particles ,composite ,electroless plating  3甘肃省自然科学基金资助项目(3ZS0512A252048)  徐金城:男,1945年生,教授,目前主要从事金属材料、金属基复合材料及环境材料方面的研究 邓小燕:女,通讯作者,博士生,讲师,研究方向为金属材料、金属基复合材料 E 2mail :dengxy02@https://www.sodocs.net/doc/8e3582216.html, 0 引言 碳化硅颗粒增强铝基复合材料是金属基复合材料 (MMC )中最具应用前景的一种新型高技术材料。由于其具 有优异的高温强度、高耐磨性、高比刚度等力学性能和良好的可加工性等优点[1-3],已在航空航天、汽车和其它制造业作为结构材料得到了应用。 由于碳化硅陶瓷颗粒与金属基体界面的结合强度低而恶化复合材料的性能,如果在陶瓷表面涂覆金属镀层,不仅可以促进陶瓷粒子在基体金属中的均匀分布,还能改善基体与增强体的界面结合强度,而且这种方法的成本低廉、工艺简单易行,因而成为增强颗粒表面处理中的一种常用方法[4,5]。目前,国内外研究得比较成熟的包裹工艺有沉淀法、溶胶2凝胶法、溶胶法、醇盐水解法、非均相凝固法等[6],其中,化学镀法制备的包裹粉体包裹层与粉体基体结合比较紧密,包裹层厚度容易控制,采用的设备比较简单。 本文用传统粉末冶金方法和化学镀处理粉末的方法制备了SiC 颗粒增强Al 2Cu 2Mg 基复合材料,并研究了化学镀过程中粉末的形貌微观结构和性能的变化,以及它对复合材料力学性能的影响。 1 实验 1.1 原材料 实验中使用纯度为99.5%的Al 粉、Cu 粉和Mg 粉,粒 度均为200目,SiC 粉末为3~5 μm ,纯度为98.5%。1.2 样品的制备 实验先将碳化硅进行化学镀铜处理,化学镀实验中HF 作为净化剂,氯化亚锡作为敏化剂,硝酸银作为活化剂,硫酸铜作为主盐,酒石酸钾钠作为络合剂,甲醛作为还原剂,用氢氧化钠调节镀液的p H 值进行化学镀铜[7]。由于碳化硅镀铜后干燥时间过长,铜膜易氧化,须在200℃下氢气还原3h 。化学镀后SiC 与Cu 质量比为4∶1。 再将原始碳化硅和化学镀铜后的碳化硅分别与铝基合金粉料在研体中混合均匀,然后加入到模具中,制备出SiCp/Al 24%Cu 21.2%Mg (质量分数)复合材料。碳化硅的体积分数依次取0%、3%、6%、9%、12%,同时,SiC 颗粒表面涂覆的Cu 质量计入合金元素百分比。而后用Q Y L50250吨油压千斤顶加压到250MPa ,保压15min ,再将压力加到400MPa 保压30min ,卸载后得到条状试样60mm ×10mm ×3.5mm 。 在氩气保护下,先在400℃预烧60min ,然后升温到560℃进行烧结,保温1.5h ,炉冷得到试样。将烧结试样在氩 ? 52?碳化硅增强铝基复合材料界面改善对力学性能的影响/徐金城等

结构用铝合金材料力学性能

附录A 结构用铝合金材料力学性能 常见结构用铝合金板、带材力学性能(标准值)可按表A-1采用,结构用铝合金棒、管、型材力学性能(标准值)可按表A-2采用。结构用铝合金板、带、棒、管、型材的化学成分可按表A-3采用。 表A-1 结构用铝合金板、带材力学性能标准值

注:1. 伸长率标准值中,A适用于厚度不大于12.5mm的板材,A适用于厚度大于12.5mm的板材。502. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d(6XXX系列)或30d(7XXX系列)的情况。 3. 表中焊接折减系数的数值适用于厚度不超过15mm的MIG焊,以及3xxx系列、5xxx系列合金和8011A合金厚度不超

过6mm的TIG焊。对于6xxx系列和7xxx系列合金厚度不超过6mm的TIG焊,焊接折减系数的数值必须乘以0.8。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx系列合金和8011A合金焊接折减系数的数值必须乘以0.9,6xxx系列和7xxx系列合金焊接折减系数的数值必须乘状态不需进行上述折减。O焊)。对于TIG(0.64焊)或MIG(0.8以. 表A-2 结构用铝合金棒、管、型材力学性能标准值

适用于厚度(或直的板(或棒)材,A注:1. 伸长率标准值中,A适用于厚度(或直径)不大于12.5mm50 12.5mm的板(或棒)材。径)大于系6XXX(2. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d 系列)的情况。列)或30d(7XXX8011A系列合金和MIG焊,以及3xxx系列、5xxx3. 表中焊接折减系数的数值适用于厚度不超过15mm的焊接折减系数的7xxx系列合金厚度不超过6mmTIG焊,合金厚度不超过6mm的TIG焊。对于6xxx系列和系列合。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx的数值必须乘以0.8系列合金焊接折减系数的数值必须乘0.9,6xxx系列和7xxx金和8011A合金焊接折减系数的数值必须乘以TIG焊)。对于O状态不需进行上述折减。以0.8(MIG焊)或0.64(

碳化硅增强铝基复合材料显微组织分析中期报告

中期报告 题目:碳化硅增强铝基复合材料显微组织的 分析

1.设计(论文)进展状况 1.1实验材料 本实验采用的碳化硅增强铝基复合材料各元素含量见表1,表2 表1:本实验用碳化硅增强铝基复合材料试样1化学成分(wt%)元素SiC Al Mg 含量/ wt% 10 87 3 表2:本实验用碳化硅增强铝基复合材料试样2化学成分(wt%)元素SiC Al Mg 含量/ wt% 15 80 5 本实验考虑球磨比1:4配料所得的各成分加入量见表3,表4 表3:配料计算(g) 元素SiC Al Mg 加入量/g 24 208.8 7.2 表4:配料计算(g) 元素SiC Al Mg 加入量/g 36 192 12 1.2实验设计 为使实验具有对比性,首先金相分析其显微组织,其次对SiCp/Al的表面硬度、孔隙率的测量。本实验采用的试棒使用的是粉末冶金工艺,先用球磨机球球磨处理高温处理后结块的碳化硅,时间为45min。目的是把结块的碳化硅打碎。用烘干箱烘干SiC粉末和Al粉末、Mg粉末,目的是确保原材料干燥,混料是不形成结块,易于冷压成型。然后在WE-30型万能材料试验机上进行冷压,压力:600MP,时间:3min。最后将冷压好的试棒放入西安工业大学自制热压机进行热压。 1.3试样制备 1.3.1金相试样的制备 将热压后的试棒进行表面处理。金相试样制备流程如下: (1)取样:选择合适的、有代表性的试样是进行金相显微分析的极其重要的一步,包括选择取样部位、检验面及确定截取方法、试样尺寸等。 (2)磨制:分粗磨和细磨两步。粗磨目的是将切割后试样的切痕等粗略磨掉,为细磨做准备;细磨目的是将已露金属表面上的划痕逐一磨掉,依次使用240#、600#、800#、1000#和1200#水砂纸研磨。

颗粒增强铝基复合材料的研究

颗粒增强铝基复合材料的研究 姓名:陈云班级:10161201 学号:1016120118 【摘要】本文简要介绍了常见的几种颗粒增强铝基复合材料的增强颗粒和性质,以及颗粒增强铝基复合材料的制备方法和应用。 【关键词】颗粒增强铝基复合材料碳化硅氧化铝碳化钛石墨粉末冶金原位反应合成 0 前言 金属基复合材料是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。铝基复合材料是金属基复合材料的一种,按照增强体形式不同可以分为长纤维增强铝基复合材料,短纤维增强铝基复合材料,晶须增强铝基复合材料及颗粒增强铝基复合材料。 颗粒增强铝基复合材料的增强颗粒克服了制备过程中出现的纤维损伤,微观组织不均匀,纤维与纤维相互接触,反应带过大等影响材料性能的缺点。同时,颗粒增强铝基复合材料制备成本低廉,回收性和再利用性好,使其在各个领域都具有广泛应用。因此,本文将简要介绍颗粒增强铝基复合材料的部分相关内容。 1 颗粒增强铝基复合材料 颗粒增强铝基复合材料具有密度小,比强度、比刚度高,剪切强度高,热膨胀系数低,热稳定性和导热、导电性能良好,以及抗磨耐磨性能和耐有机液体和溶剂侵蚀优良等一系列优点。颗粒的增强主要是弥散强化,颗粒越小,弥散强化的效果越好,材料的性能也就越佳。 颗粒增强铝基复合材料增强体的选择要求颗粒在基体中高度弥散均匀分散,尺寸大小要适度,与基体间要有一定粘结作用,而且它们之间各方面都要相匹配。常见的增强颗粒有:碳化硅、碳化钛、氧化铝和石墨颗粒。 1.1 碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基(SiC p/Al)复合材料是一种陶瓷颗粒增强金属基复合材料,它是用碳化硅颗粒作为增强体,采用铝或铝合金作基体,按设计要求,以一定形式、比例和分布状态,构成有明显界面的多组相复合材料。通过改变碳化硅颗粒在复合材料中的含量,可以对材料的性能进行调整。一般随碳化硅体积含量的增

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

铝碳化硅散热材料及散热解决方案

铝碳化硅介绍及产品设计 西安创正新材料公司是一家集研发、生产和销售为一体的高科技企业。主要致力于第三代电子封装材料——铝碳化硅的研发、生产与销售,根据用户需求,开发了多种AlSiC产品,为微波器件、大功率器件、微电子器件等制造商提供专业的热管理材料及技术方案。 公司产品广泛应用于轨道交通、新能源汽车、航空航天、军事等领域,是新一代大功率电子器件最佳选择。 公司将持续加强与用户的交流与合作,不断满足国内外用户的市场需求,力争以先进的工艺技术、严格的质量管控、一流的性能水平、最高的性价比优势服务用户、持续为客户创造价值。 铝碳化硅介绍 铝碳化硅AlSiC(Al/SiC,SiC/Al)是一种颗粒增强铝基复合材料,采用铝合金作为基体,SiC作为增强体,充分结合了陶瓷和金属铝的不同优势,实现了封装了轻便化、高密度化等要求。 AlSiC密度在2.95~3.1g/cm3之间,热膨胀系数(CTE)6.5~9ppm/℃,具有可调的体积分数,提高碳化硅体积分数可以使材料的热膨胀系数显著降低。同时,铝碳化硅还具有高的热导率和比刚度,表面能够镀镍、金、银、铜,具有良好的镀覆性能。 铝碳化硅复合材料的比刚度是所有电子材料中最高的:是铝的3倍,W-Cu 和Kovar的5倍,铜的25倍,另外铝碳化硅的抗震性好,因此是恶劣环境(震动较大,如航天、汽车等领域)下的首选材料。铝碳化硅复合材料已成为航空航

天、国防、功率模块和其他电子元器件所需求的新型封装材料。用于航空航天微波、功率放大模块等电子器件及模块的封装壳体或底座。 与其他材料性能对比:

铝碳化硅产品设计 ◆板类产品 用AlSiC制成各种板类的产品,用于各类电路的热沉、基板、封盖、过渡片等,可替代目前在使用的氧化铍、氮化铝、钼片、钨铜合金及其它金属材料。 板类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度厚度外形加工内部加工 最大24524510可加工各种 形状可打孔、攻丝、台阶 孔等 最小330.5 在特殊要求下,可以制造最大245*350*80mm的材料,但制造成本将会很高。过厚的材料内部致密度会受到影响。 最大尺寸可以是裸材或表面覆铝,也可在裸材或表面铝上加工各种形状(拱面,伞面等);最小尺寸一般为裸材,在特殊条件下,厚度可加工到0.3mm;而 最小尺寸表面覆铝厚度应不小于0.8mm和外形10mm。 可在某些部位镶嵌其他材料(钛合金、不锈钢、可伐合金等或其他难熔的非 金属)。 孔、台阶孔等处为铝合金材料,可以满足螺丝固定设计,孔、台阶孔可以在 铝碳化硅材料上直接加工,但成本比在铝合金上加工成本高。而螺纹孔需在铝合 金上做成,能过保证螺纹牙的完整性。 倒角、倒边、圆角以及各种设计的加工轮廓,均可在材料上加工。 ◇产品加工精度 一般要求可以做到平面度0.01mm/cm、尺寸精度±0.1mm的要求; 关键尺寸精度可以做在0.05mm以内。 ◇产品表面处理 表面可按设计覆盖各种镀层,如:镍、金、银等; ◆管壳类产品 用AlSiC制造的各类封装管壳产品,用于各种电路的外壳、底座、管件等,可替代目前在使用的可伐合金、铝、钼及其它金属材料外壳。 管壳类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度高度壁厚外形加工内部加工 最大24524512010 可加工各种形 状可打孔、攻丝、台阶 孔等 最小8831 在特殊要求下,可以制造最大245*350*80*10mm的材料,但制造成本会比较

2016-2020年碳化硅增强铝基复合材料市场深度调研及投资战略咨询报告

碳化硅增强铝基复合材料市场深度调研及投资战略咨询报告 2016-2020

核心内容提要 产业链(Industry Chain) 狭义产业链是指从原材料一直到终端产品制造的各生产部门的完整链条,主要面向具体生产制造环节; 广义产业链则是在面向生产的狭义产业链基础上尽可能地向上下游拓展延伸。产业链向上游延伸一般使得产业链进入到基础产业环节和技术研发环节,向下游拓展则进入到市场拓展环节。产业链的实质就是不同产业的企业之间的关联,而这种产业关联的实质则是各产业中的企业之间的供给与需求的关系。 市场规模(Market Size) 市场规模(Market Size),即市场容量,本报告里,指的是目标产品或行业的整体规模,通常用产值、产量、消费量、消费额等指标来体现市场规模。千讯咨询对市场规模的研究,不仅要对过去五年的市场规模进行调研摸底,同时还要对未来五年行业市场规模进行预测分析,市场规模大小可能直接决定企业对新产品设计开发的投资规模;此外,市场规模的同比增长速度,能够充分反应行业的成长性,如果一个产品或行业处在高速成长期,是非常值得企业关注和投资的。本报告的第三章对手工工具行业的市场规模和同比增速有非常详细数据和文字描述。 消费结构(consumption structure) 消费结构是指被消费的产品或服务的构成成份,本报告主要从三个角度来研究消费结构,即:产品结构、用户结构、区域结构。1、产品结构,主要研究各类细分产品或服务的消费情况,以及细分产品或服务的规模在整个市场规模中的占比;2、用户结构,主要研究产品或服务都销售给哪些用户群体了,以及各类用户群体的消费规模在整个市场规模中的占比;3、区域结构,主要研究产品或服务都销售到哪些重点地区了,以及某些重点区域市场的消费规模在整个市场规模中的占比。对消费结构的研究,有助于企业更为精准的把握目标客户和细分市场,从而调整产品结构,更好地服务客户和应对市场竞争。

颗粒增强铝基复合材料

颗粒增强铝基复合材料 1.复合材料 1.1复合材料的概述 材料是社会进步的物质基础和先导,是人类进步的里程碑。在许多方面,传统的单一材料已不能满足实际需要,这些都促进人们对材料的研究逐步摆脱过去单纯靠经验的摸索方法,向预定性能设计新材料的研究方展发展。复合材料(Composite Materials)一词大约出现在20世纪50年代,随之也出现复合材料较为严格的定义。复合材料是由两种或两种以上物理和纯学性质不固的物质组合两成的一种多相固体材料[1]。复合材料的组分材料虽然保持其相对的独立性,但复合材料的性能却不是组分材料的简单加和,两是有着重要的改进。复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。分散相是以独立的形态分布在整个连续相中,两相之间存在着相界面。分教相可以是增强纤维,也可以是颗粒状或弥散的填料。 自上世界40年代美国诞生了玻璃纤维增强塑料(俗称玻璃钢)以来,新型增强材料不断出现,到目前为止,聚合物基、金属基、陶瓷基、混凝土基复合材料和碳,碳复合材料正以前所未有的速度发展。随着航天航空技术的发展,对结构材料的比强度、比模量、韧性、耐热、抗环境能力和加工提出了新的要求。高强度、高模量的耐热纤维和颗粒与金属复合,特别是轻金属复合焉成的金属基复合材料,克服了树脂基复合材料耐热性差和不导电、导热性能低等不足,加上增强体不仅提高了材料的强度,还可以保持密度变纯不大甚至降低。此外,这种材料还具有耐疲劳、耐磨耗、高阻尼、不吸潮放气等特点,已经广泛应用予尖端技术领域,是理想的结构材料。2l世纪我们面临筋将是复合材料迅猛发展和更广泛应用的时代[2-4]。 1.2颗粒增强铝基复合材料 金属基复合材料(Metal Matrix Composite,简称MMC)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等,也可以用金属丝。在结构材料方面,

相关主题