搜档网
当前位置:搜档网 › matlab短路故障分析

matlab短路故障分析

matlab短路故障分析
matlab短路故障分析

(此文档为word格式,下载后您可任意编辑修改!)

目录

课程设计(论文)任务书

引言

随着电力工业的发展,电力系统的规模越来越大,在这种情况下,许多大型的电力科研实验很难进行,尤其是电力系统中对设备和人员等危害最大的事故故障,尤其是短路故障,而在分析解决事故故障时要不断的实验,在现实设备中很难实现,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。考虑这两种情况,寻求一种最接近于电力系统实际运行状况的数字仿真工具十分重要,而MATLAB软件中的SIMULINK是用来对动态系统进行建模、仿真和分析的集成开发环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具,为解决具体的工程问题提供了更为快速、准确和简洁的途径。电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路,动力系统、电力系统和电力网简单示意如图1-1。

图1-1 动力系统、电力系统和电力网示意图

电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。所以我们应对单相短路引起足够的重视,对单相短路的研究是有其重要意义的,所以本章重点就是研究单相短路故障在MATLAB中的运用和分析。

第一章.电力系统短路故障分析

1.短路产生的原因有很多,主要有以下几个方面:

(1).元件损坏例如绝缘材料的自然老化,设计,安装维护不良所带来的设备缺陷发展成短路等,

(2).气象条件恶化例如雷击造成的闪络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌

(3). 违规操作,例如运行人员带负荷拉刀闸,线路或设备检修后未拆除接地线就加上电压等;

(4). 其他,例如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。

2.短路的危害

随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下的几个方面:

(1).短路故障使短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生很大的机械应力,可能使导体和它们的支架遭到破坏。

(2).短路电流使设备发热增加,短路持续时间较长时,设备可能过热以致损坏。

(3). 短路时系统电压大幅度下降,对用户影响很大。系统中最主要的电力负荷是异步电动机,它的电磁转矩同端电压的平方成正比,电压下降时,电动机

的电磁转矩显著减小,转速随之下降。当电压大幅度下降时,电动机甚至可能停转,造成产品报废,设备损坏等严重后果。

(4).当短路发生地点离电源不远而持续时间又较长时,并列运行的发电厂可能失去同步,破坏系统稳定,造成大片地区停电。这是短路故障的最严重后果。

(5).发生不对称短路时,不平衡电流能产生足够的磁通在邻近的电路内感应出很大的电动势,这对于架设在高压电力线路附近的通讯线路或铁道讯号系统等会产生严重的影响。

3.短路故障分析的内容和目的

短路故障分析的主要内容包括故障后电流的计算、短路容量的计算、故障后系统中各点电压的计算以及其他的一些分析和计算,如故障时线路电流与电压之间的相位关系等。短路电流计算与分析的主要目的在于应用这些计算结果进行继电保护设计和整定值计算,开关电器、串联电抗器、母线、绝缘子等电气设备的设计,制定限制短路电流的措施和稳定性分析等。

二、电力系统单相短路计算

2.1简单不对称故障的分析计算

在电力系统的故障中,仅在一处发生不对称短路或断线的故障称为简单不对称故障。它通常分为两类,一类叫横向不对称故障,包括两相短路,单相接地短路以及两相接地短路三种类型。这种故障发生在系统中某一点的一些相之间或相与地之间,是处于网络三相支路的横向,故称为横向不对称故障,其特点是由电力系统网络中的某一点(节点)和公共参考点(地接点)之间构成故障端口。该端口一个是高电位点,另一个是零电位点。另一类故障时发生在网络沿三相支路的纵向,叫纵向不对称故障,它包括一相断相和两相断相两种基本类型,其特点是由电力系统网络中的两个高电位之间构成故障端口。

分析计算不对称故障的方法很多,如对称分量法、分量法以及在abc坐标系统中直接进行计算等。目前实际中用的最多的和最基本的方法仍是对称分量法,现在就重点介绍这种方法,其他方法只做简略的介绍。

应用对称分量法分析计算简单不对称故障时,对于各序分量的求解一般有两种方法:一种是直接联立求解三序的电动势方程和三个边界条件方程;另一种是

借助于复合序网进行求解,即根据不同故障类型所确定的边界条件,将三个序网络进行适当的链接,组成一个复合序网,通过对复合序网的计算,求出电流、电压的各序对称分量。由于这种方法比较简单,又容易记忆,因此应用较广。

在所讨论的各种不对称故障的分析计算中,求出的各序电流、电压对称分量及各相电流、电压值,一般都是指起始时或稳态时的基频分量。

在工程计算中都假定发电机转子是对称的,也就是忽略了不对称短路时的高次谐波分量。这种假定对稳极发电机和d轴及q轴都装有阻尼绕组的凸极发电机是比较切合实际的。

2.2 单相接地短路

2.2.1.正序等效定则

由前述分析可知,在求解各种不对称故障时,故障支路的正序电流分量

可用如下同式表示。

(4-32)

式中 ------故前故障点基准相的运行相电压;

------与短路故障类型有关的阻抗(三相短路时,;两相短路时,;两相接

地短路时,;单相接地短路时,)。

由式(4-32)可见,不对称短路故障时故障支路的正序分量电流,等

于故障点每相加上一个附加阻抗后发生三相短路的电流。这就是正序等效定则。

故障点故障相电流的绝对值与故障支路的正序分量电流成正比,可表示为

(4-33)

式中为与短路类型有关的比例系数,其值见表4-1。

表4-1 不同短路故障类型的

故障类型三相短路两相短路两相接地短路单相接地短路

1 3

2.2.2.关于复合序网

电力系统某一故障点的正序网络、负序网络及零序网络,属于基本序网,与故障类型、故障相别无关;但由各序网络组合成的复合序网与短路故障的类型、相别有关。如前述,对同一类型的短路故障,不论发生在哪些相上,以特殊相位

基准相所表示的边界条件是不变的,因而复合序网的形式是一样的,也是最为简

单的。换言之,当不对称支路中有两相阻抗相同时,以特殊相为对称分量的基准

相作出的复合序网图,在各序网之间可以不用互感器而直接连接起来。

由以上所讨论的三种短路时复合序网图可以看出:单相接地短路时的复合序

网是按三个序电压之和等于零和三个序电流相等的边界条件,由三个独立的序网

络相串联而成的,所以常称这种故障为串联型故障;两相接地短路(或两相短路)

时复合序网是按三个(或两个)序电流之和等于零和三个(或两个)序电压相等

的边界条件,由各独立序网络并联而成的,所以称这种故障为并联型故障。

2.2.3 单相接地短路分析

单相接地短路时的系统接线图如图4-6所示。假定a 相接地短路,短路处以

相量表示的边界条件方程为

; (4-14)

转换为对称分量关系

??

???===+-==++=ka ka0ka2ka1ka0ka2ka1ka0ka2ka1ka I 31I I I )U U (U 0U U U U 或 (4-15) 可见,单相接地短路时有零序电压,同时也存在零序电流(在中性点直接接地的

系统中)。由式(4-15)可知,A 相接地短路时选基准相为a 相,故障点b 相和c

相的序电压、序电流就没有式(4-15)的简单关系。同样,b 相接地时选基准相

位b 相,c 相接地时选基准相位c 相,基准相的序电压、序电流具有式(4-15)

的关系。

故障处以序分量表示的边界条件指明了三序网络在故障端K 处的联接方式。

分析式(4-15),由于,所以正序网、负序网、零序网应串联;同时因,故三个

序网串联后应短接,画出复合序网如图4-7所示。由复合序网可求出故障处的各

序电流和电压

0ka 2ka 0211a 1ka I I Z Z Z E I ==++=∑

∑∑∑ (4-16)

图4-6单相接地短路时系统接线图 图4-7单相接地短路时的复合序网图

???

????-=+-=+-=-=-=-=-=∑∑∑∑∑∑∑∑1ka1al 02ka10ka 2ka 1ka 0ka100ka 0

ka 2ka122ka 2

ka Z I E Z Z I U U U Z I Z I U Z I Z I U )()( (4-17) 短路处的各序功率为

(s=1,2,0) (4-18)

根据对称分量的合成公式,可得各相电流、电压为

??

???==++====++=0I I )1I I 3I 3I 3I I I I kc ka12kb ka0ka2ka1ka0ka2ka1ka a a ( (4-19) ??

???-+-=++=-+-=++==++=∑∑∑∑]Z )1(Z )[(I U U U U ]Z )1(Z )[(I U U U U 0U U U U 022ka1ka0ka22ka1kc 0222ka1ka0ka2ka12kb 0ka 2ka 1ka ka a a a a a a a a a a (4-20)

由式(4-20)可得

u M Z Z a a a Z Z a a a θ∠=-+--+-=∑∑∑∑2022022kc kb )1()()

1()(U U (4-21) 式(4-21)说明,两个非故障相电压的幅值比M 与其间的相位差与的比值有

关。

因,作出电流相量关系如图4-8(b )所示。

假定和得阻抗角相等(或为纯电抗),由,

可知,滞后的相位角为,滞后的相角为,又,作出故障点电压相量图如图4-8

(a)所示。图中示出的电压相量关系对应的是的情况,根据式(4-21),此时。

图4-8 单相接地短路处的电压电流相量图

从以上的分析计算可知,单相接地短路有以下一些基本特点:

(1)短路处故障中的各序电流大小相等,方向相同,故障相中的电=

3=3=3,而两个非故障相中的电流均为零。

(2)短路处正序电流的大小与在短路点原正序网络上增加一个附加阻抗

而发生三相短路时的电流相等。

(3)短路点故障相的电压等于零。

(4)在假定和的阻抗角相等的情况下,两个非故障相电压的幅值总等,相位差角的大小决定于的比值,当比值在范围内变化时,

的变化范围为,对应比值为的情况,对应比值接近于零的情况。

第三章.电力系统单相短路时域分析

3.1仿真模型的设计与实现

3.1.1 实例分析

恒定电压源电路模型如图3-1所示。使用理想三相电压源作为电路的供电电源;使用分布参数输电线路作为输电线路,输电线line1的长度为100km,输电线路line2的长度为100km;使用三相电路短路故障发生器进行不同类型的短路。电压源为Y接类型,输电线路line2端为中性点接地。拟定仿真的电力系统如图所示,使用理想三相电压源作为电路的电源,电压源为Y型连接,中性点不接地;使用分布参数输电线作为输电线路,两条输电线路的参数设置相同,Line1 末端为中性点接地; 使用三相短路故障发生器使电路发生A相接地短路。

图2 仿真模型的设计与实现

3.1.2 仿真参数设置

当电路图设计完成后,对其进行仿真,达到观察短路接地电路中暂态变化情况。

(1)在设置的三相电路短路故障发生器,将接地短路时间设置为[0.01 0.04]之间。根据接地短路发生时间设置仿真参数。

(2)在电路图的菜单选项中,选择仿真菜单,激活仿真参数命令,弹出参数对话框。

根据对暂态过程时间估算,对仿真参数进行如下设置:

三相电源:电压初始相位为0,频率为默认50Hz不变,Y型接法

输电线路:线路长度100Km,其余参数保持为默认值不变。

三相短路故障发生器:A相接地短路,0.01s发生短路,0.04s排除故障

仿真参数的设置:起始时间为0s,终止时间为0.1s,变步长,MATLAB 针对刚性系统提供了ode15 s,ode23 s,ode23 t 与ode23 tb 等算法。本文采用ode15算法。

3.2 仿真结果分析

将三相电路短路故障发生器中的故障相选择为A相故障,并选择故障相接地选项。

设置完电路图和仿真参数后,下面进行电路仿真。激活仿真按钮,查看仿真波形图。

(1)故障点电流波形图。在万用元件M1中选择故障点A相电流,作为测量电气量。激活仿真按钮,则故障点A相电流波形图如图6-33所示。在稳态时,故障点A相电流由于三相电路短路故障发生器处于断开状态,因而电流为0A。在0.01s时,三相电路短路故障发生器闭合,此时电路发生A相接地短路,故障点A相电流发生变化,由于闭合时由初始输入量和初始状态量,因而故障点A相电

流波形上移。在0.04s时,三相电路短路故障发生器打开,相当于排除故障,此时故障点A相电流迅速下降为0A。

选择故障点B相和C相电流,作为测量电气量。激活仿真按钮,则故障点B 和C相电流波形如图6-34所示。由图形可以得出以下结论:在A相发生单相短路时,故障点B相和C相电流没有变化,始终为0。

图6-33 单相故障点A相电流波形图图6-34 单相故障点B相电流波形图

图6-35 单相故障点C相电流波形图图6-36 单相故障点A、B、C相电流波形图(2)故障点电压波形图。在万用元件M1中选择故障点A相电压,作为测量电气量。激活仿真按钮,则故障点A相电压波形图如图6-37所示。由图形可以得出以下结论:在稳态时,故障点A相电压由于三相电路短路故障发生器处于断开状态,因而电压为正弦波形。在0.01s时,三相电路短路故障发生器闭合,此时电路发生A相接地短路,故障点A相电压发生变化,突变为0。在0.04s时,三相电

路短路故障发生器打开,相当于排除故障,此时故障点A相电压波动恢复正弦波形。

在万用元件M1中选择故障点B和C相电压,作为测量电气量。激活仿真按钮,则故障点B相和C相电压波形如图6-38和6-39所示。由图形可以得出以下结论:由图形可以得出以下结论:在A相短路,其B、C两相的电压波形应为一对称波形使得B、C两相的电压波形叠加在一起时成一角度。

图6-37 单相故障点A相电压波形图图6-38 单相故障点B相电压波形图

图6-39 单相故障点C相电压波形图

(3)电源端电压、电流波形图。在电源端输出的电压信号,分别选择A、B、C三相电压、电流作为测量电气量。激活仿真按钮,则电压、电流波形图如图6-40所示。由图形可以得出以下结论:在三相短路过程中,电源端的三相电压、电流只有一些波动,但是没有发生显著的变化。

图6-40 单相接地电源端电压、电流波形图

(4)故障点A相电流序分量波形图。在万用元件M2中选择故障点A相电流、故障点B相电流、故障点C相电流作为电气测量量,激活仿真按钮,则故障点A 相电流正序、负序、零序分量波形如图6-41所示。由图形可以得出,故障时,A 相电流正序、负序和零序的幅值和相角是相同的。在稳态时,故障点A相电流正序、负序和零序分量由于三相电路短路故障发生器处于断开状态,因而幅值为0,相角为0。在0.01s时,三相电路短路故障发生器闭合,此时电路发生A相单相接地故障,故障点A相电流正序、负序和零序幅值缓慢波动上升,相角突变后,在大约90deg时稳定。在0.04s时,三相电路短路故障发生器打开,此时电路排除故障,故障点A相电流正序、负序和零序分量的幅值缓慢波动下降,在0.06s 时稳定在0,相角至0.06s时突变为大约-180deg,然后波动稳定到0。

(4)故障点A相电压序分量波形图。在万用元件M2中选择故障点A相电压、故障点B相电压、故障点C相电压作为电气测量量,激活仿真按钮,则故障点A 相电压正序分量波形如图6-42所示。由图形可以得出以下结论:在稳态时故障点A相电压正序分量由于三相电路短路故障发生器处于断开状态,因而幅值为0,相角为0。在0.01s时,三相电路短路故障发生器闭合,此时电路发生A相单相接地故障,故障点A相电压正序分量发生变化,幅值突变后稳定在45000V左右,相角在0deg左右缓慢波动。在0.04s三相电路短路故障发生打开,相当于排除故障,

此时故障点A相电压正序分量的幅值继续稳定在45000V;故障点A相电压正序

分量的相角继续缓慢波动,最后稳定到0。

图6-42故障点A相电流正序分量图故障点A相电流负序分量图

故障点 A 相电流零序分量图故障点A相电流正序、负序和零序分量波

形图

图6-40 故障点A相电压正序分量波形图

在万用元件M2中选择故障点A相电压、故障点B相电压、故障点C相电压作为电气测量量,激活仿真按钮,则故障点A相电压负序分量波形如图6-41所示。由图形可以得出以下结论:在稳态时故障点A相电压负序分量由于三相电路短路故障发生器处于断开状态,因而幅值为0,相角为0。在0.01s时,三相电路短路故障发生器闭合,此时电路发生A相单相接地故障,故障点A相电压负序分量发生变化,故障点A相电压突变后缓慢波动变化,相角在0deg左右波动变化,在0.04s时,三相短路故障发生器打开。相当于排除故障。此时故障点A相电压负序分量的幅值迅速下降,至0.06s时缓慢波动到0;故障点A相电压负序分量

的相角继续缓慢波动,最后在0.06s后突变。

图6-41 故障点A相电压负序分量波形图

在万用元件M2中选择故障点A相电压、故障点B相电压、故障点C相电压作为电气测量量,激活仿真按钮,则故障点A相电压零序分量波形如图6-42所示。由图形可以得出以下结论:在稳态时故障点A相电压零序分量由于三相电路短路故障发生器处于断开状态,因而幅值为0,相角为0。在0.01s时,三相电路短路故障发生器闭合,此时电路发生A相单相接地故障,故障点A相电压零序分量发生变化,幅值迅速上升,稳定至大约45000V左右,相角大致在180deg和-180deg之间波动变化。在0.04s时,三相短路故障发生器打开。相当于排除故障。此时,A相电压零序分量的幅值下降,至0.06s时幅值为0;故障点A相电压零序分量相角继续在180deg至-180deg之间波动变化,至0.06s时缓慢波动到0。

在万用元件M2中选择故障点A相电压、故障点B相电压、故障点C相电压作为电气测量量,激活仿真按钮,则故障点A相电压正序、负序、零序分量波形

如图6-43所示。

图6-42 故障点A相电压零序分量波形图

图6-43 故障点A相电压正序、负序、零序分量波形图

结束语

上学期我进行了《电力系统分析》、《MATLAB在电气工程中的应用》等专业

课程的学习,对运用MATLAB对电力系统故障分析部分的内容有了一定的了解。

通过此次课程设计,让我对单相短路故障的分析方面的知识掌握,又进一步得到巩固。其次,在这次课程设计中,本小组成员充分发挥了团队合作的精神,一起完成了整个课程设计的过程,大家在设计的过程中一起讨论,分析,各施其责。也学到了很多课内学不到的东西,比如独立思考解决问题,出现差错的随机应变,和与人合作共同提高,都受益非浅,今后的制作应该更轻松,自己也都能扛的起并高质量的完成项目。

最后,通过此次课程设计,也锻炼了我们主动去发现问题、分析问题和解决问题的能力,使我收获颇多。

参考文献

主要参考资料:

[1] 何仰赞温增银.电力系统分析[M] 武汉:华中科技大学出版社 2002

[2] 熊信银张步涵.电力系统工程基础[M] 武汉:华中科技大学出版社2003

[3]李广凯,李庚银. 电力系统仿真软件综述[J]. 电气电子教学学报,2005(6):61-65.

[4]彭建飞,任岷,王树锦. MATLAB在电力系统仿真研究中的应用[J]. 计算

[5]李广凯,李庚银. 电力系统仿真软件综述[J]. 电气电子教学学报,2005(6):61-65.

[6]樊艳芳,蔺红. MATLAB_SIMULINK在电力系统仿真中的应用[J]. 新疆大

成绩:

评语:

评阅教师:

年月日

基于MATLAB的电力系统短路故障分析与仿真

· ……………………. ………………. ………………… 毕 业 论 文 基于MATLAB 的电力系统短路故障分析与仿真 院 部 机械与电子工程学院 专业班级 电气工程及其自动化 届 次 2015届 学生姓名 学 号 指导教师 装 订 线 ……………….……. …………. …………. ………

摘要.................................................................................................................................................. I Abstract .......................................................................................................................................... II 1 引言 (1) 1.1 课题研究的背景 (1) 1.2 课题研究的国内外现状 (1) 2 短路故障分析 (1) 2.1 近年来短路故障 (1) 2.2 短路的定义及其分类 (2) 2.3 短路故障产生的原因及危害 (4) 2.4 预防措施 (4) 2.5 短路故障的分析诊断方法 (5) 3 仿真与建模 (6) 3.1 仿真工具简介 (6) 3.1.1 MATLAB的特点 (6) 3.1.2 Simulink简介 (7) 3.1.3 SPS(SimPowerSystems) (8) 3.1.4 GUI(图形用户界面) (8) 3.2 模型的建立 (8) 3.2.1 无限大电源系统短路故障仿真模型 (8) 3.2.2 仿真参数的设置 (9) 4 仿真结果分析 (16) 4.1 三相短路分析 (16) 4.2 单相短路分析(以A相短路为例) (18) 4.3 两相短路(以A、B相短路为例) (22) 4.4 两相接地短路(以A、B相短路为例) (25) 5 结论 (28) 6 前景与展望 (28) 参考文献 (29) 致谢 (30)

用matlab实现寻找最短路

用matlab寻找赋权图中的最短路中的应用 1引言 图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。这些古老的难题,吸引了很多学者的注意。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。 最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。 2 最短路 2.1 最短路的定义(short-path problem) 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法ij 能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。后来海斯在Dijkstra算法的基础之上提出了海斯算法。但这两种算法都不能解决含有负权的图的最短路问题。因此由Ford提出了Ford算法,它能有效地解决含有负权的最短路问题。但在

现实生活中,我们所遇到的问题大都不含负权,所以我们在()0ij w≥的情况下选择Dijkstra算法。 若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源 节点和阱节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决 的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线 路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的 做优化问题。 定义1:若图G=G(V,E)中个边[v i ,v j]都赋有一个实数w ij ,则称这样的图G 为赋权图,w ij 称为边[v i ,v j]上的权。 定义2:给定一个赋权有向图,即给一个有向图D=(V,A),对每一个弧a=(v i ,v j),相应地有权w(a)=w ij,又给定D中的两个顶点v s ,v t 。设P是D中从v s 到v t 的一条路,定义路P的权是P中所有弧的权之和,记为w(P)。最短路问题就是要在所有从v s到v t 的路中,求一条权最小的路,即求一条从v s到v t 的路P0 ,使w(P0)= min w(P) P 式中对D中所有从v s到v t 的路P最小,称P0 是从v s到v t 的最短路。 2.2 最短路问题算法的基本思想及其基本步骤 在求解网络图上节点间最短路径的方法中,目前国内外一致公认的比较好的算法有Dijkstra和Floyd算法。这两种算法,网络被抽象为一个图论中定义的有向图或无向图,并利用图的节点邻接矩阵记录点的关联信息。在进行图的遍历搜索最短路径时,以该矩阵为基础不断进行目标值的最小性判别,知道获得最后的优化路径。鉴于课本使用Dijkstra算法,下面用Floyd算法进行计算: 设A=(a)n*n 为赋权图G=(V,E,F)的矩阵,当V i V j ∈E时,a ij =F(v i,v j),否则,取a ij =0,a ij =+∞(i≠j),d ij 表示从v i到v j 的点的距离,r ij 表示从v i到v j 的点的最短路中的一个点的编号。 ①赋初值。对所有i,j,d ij = a ij ,r ij =j,k=1,转向②; ②更新d ij ,r ij ,对所有i,j,若d ik + d kj < d ij ,则令d ij = d ik + d kj ,r ij =k,转向; ③终止判断。若d ij <0,则存在一条含有顶点v i的负回路,终止;或者k=n,终止;否则, 另k=k+1,转向②。 最短路线可由r ij得到。

matlab仿真电力系统短路故障分析

本科生毕业设计(论文) 题目:运用Matlab仿真分析短路故障 学生姓名: 系别:机电系 专业年级:电气工程及其自动化专业 指导教师: 2013年 6 月 20 日

摘要 本文先对电力系统的短路故障做了简要介绍,分析了线路运行的基本原理及其运行特点,并对短路故障的过程进行了理论分析。在深入分析三相短路故障的稳态和暂态电气量的基础上,总结论述了当今三相短路的的各种流行方案,分别阐述了其基本原理和存在的局限性。并运用派克变换及d.q.o坐标系统的发电机基本方程和拉氏运算等对其中的三相短路故障电流等做了详细的论述。并且利用Matlab中的simulink仿真软件包,建立了短路系统的统一模型,通过设置统一的线路参数、仿真参数。给出了仿真结果及线路各主要参数的波形图。最后根据仿真结果,分析目前自动选线法存在的主要问题及以后的发展方向。 关键词:短路故障;派克变换;拉氏运算;Matlab

ABSTRACT This paper first on the three-phase short circuit of electric power system is briefly introduced, analyzed the basic principle of operation of three-phase circuit and its operation characteristic, and the three-phase short circuit fault process undertook theoretical analysis. In depth analysis of three-phase short circuit fault of steady state and transient electrical quantities based on the summary, the three-phase short circuit of various popular programs, respectively, expounds its basic principles and limitations. And the use of Peck transform and d.q.o coordinate system of the generator basic equation and Laplace operator on the three-phase short-circuit current in detail. And the use of Matlab in the Simulink simulation software package, to establish a unified model of three-phase short-circuit system, by setting the unified circuit parameters, the simulation parameters. The simulation results are presented and the main parameters of the waveform of line. Finally, according to the simulation results, analysis of the current automatic line selection method the main existing problems and the future direction of development. Keywords:Short-circuit failure ;Peck transform;The Laplace operator;M atlab

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现 李志辉 刘争平 (西南交通大学土木工程学院 成都 610031) 摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。 关键词:最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短路径理论。其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。网络中,速度场分布在离散的节点上。相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点) 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置,则 )}(min :{qp q P t t t q r q +==Ω ∈ 根据Huygens 原理,q 只需遍历Q 的边界(即波前点),当所有波前邻点的最小走时都求出时,这些点又成为新的波前点。应用网络理论中的最短路径算法,可以同时求出从震源点传至所有节点之间的连线近似地震射线路径。 2 最短路径法射线追踪基本算法步骤 把网格上的所有节点分成集合p 和q ,p 为已知最小旅行时的结点总数集合,q 为未知最小旅行时的节点的集合。若节点总数为n ,经过n 次迭代后可为求出所有节点的最小旅行时。过程如下: 1) 初始时 q 集合包含所有节点,除震源s 的旅行时已知为ts =0外,其余所有节点的旅行时均为ti =(i 属于Q 但不 等于s )。P 集合为空集。 2) 在Q 中找一个旅行时最小的节点i ,它的旅行时为ti ; 3) 确定与节点i 相连的所有节点的集合V ; 4) 求节点j (j 属于V 且j 不属于P )与节点i 连线的旅行时dtij ; 5) 求节点j ()的新旅行时tj (取原有旅行时tj 与tj +dtij 的最小值); 6) 将i 点从Q 集合转到P 集合; 7) 若P 集合中的节点个数小于总节点数N ,转2,否则结束旅行时追踪; 8) 从接收点开始倒推出各道从源点道接收点的射线路径,只要每个节点记下使它形成最小旅行时的前一个节点号,

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLAB/Simulink电力系统短路故障分析与仿真 摘要: MATLAB有强大的运算绘图能力,给用户提供了各种领域的工具箱,而且编程语法简单易学。论文对电力系统的短路故障做了简要介绍并对短路故障的过程进行了理论分析和MATLAB软件在电力系统中的应用,介绍了Matlab/Simulink的基本特点及利用MATLAB进行电力系统仿真分析的基本方法和步骤。在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。 关键词:MATLAB、短路故障、仿真、电力系统 Abstract: MATLAB has powerful operation ability to draw, toolkit provides users with a variety of fields, and easy to learn programming grammar. Paper to give a brief introduction of fault of the power system and the process of fault are analyzed in theory and the application of MATLAB software in power system, this paper introduces the basic characteristics of MATLAB/Simulink and MATLAB power system simulation analysis of the basic methods and steps. On the simulation platform, with single - infinity system for modeling object, by selecting module, parameter Settings, as well as the attachment, a variety of fault simulation analysis of power system. Keyword:MATLAB;Fault analysis;Simulation;Power System;

基于MATLAB的单机无穷大系统短路故障分析

基于MATLAB的单机无穷大系统短路故障分析 【摘要】本文以MATLAB7.0软件为平台构建了一个单机无穷大系统的仿真模型,并以电力系统中最常见的单相短路故障为例,分析了短路中的电压电流波形,对研究电力系统的暂态过程打下基础。 【关键词】单机无穷大系统; MATLAB;暂态稳定 随着电系统规模逐渐扩大,对电力系统的稳定性要求越来越高,然而电力系统运行中的各种短路故障、负荷的突变现象时候发生,这些扰动会对电力系统的稳定造成很大的影响。 我国电力工业参数高、容量大,为了排除一些因素的干扰,尽可能的使仿真模型贴近实际,在对电力系统稳态分析中常采用单机对无穷大系统(SIMB),单机—无穷大系统认为电源的电压幅值和频率在系统发生故障时仍能保持恒定,通过这样近似处理得到的仿真结果更贴近生产实际。 1.单机大无穷系统的原理分析 图1是某单机无穷大系统的电路简化模型,左侧是模拟的无限个并联运行的发电机组经过变压器和双回路输电线路向无穷大母线VS供电。根据图1基础接下来用Simulink搭建上述电路模型并进行故障分析。 图1 单机一无穷大系统电路简化模型 2.单机无穷大系统的simulink建模 打开Simulink的扩展工具箱中电力系统模块(SimPowerSystems),选择合适的模块建模[1]。使用同步发电机(Synchronous Machine pu Standard),励磁系统(Excitation System)和水轮机调速器(Hydraulic Turbine and Governor)来组成发电机组,其中额定电压Vt=13.8KV,额定频率fn=50Hz,额定容量Pn=300E6V A,无穷大电源电压VS=220KV,转子类型(Rotor type):凸极(Salient—Pole)。三相变压器联结组为Yd11型,采输电线路采用分布参数模型(Distributed Parameter Line)模拟220(KM)的高压线。 图2 单机一大无穷系统simulink仿真图 图3 单机大无穷系统A相短路时A、B、C三相电压波形 具体Simulink仿真如图2所示,在三相短路故障模块选择A项和接地故障(Ground Fault),故障电阻和接地电阻都采用默认的0.001,在Transition times 栏设置故障开始和结束时间段为[0.15 0.26]。另外由于此系统是带发电机的非线性系统[2],所以算法可以采ode23tb,仿真总时间设为0.5秒。

用matlab寻找赋权图中的最短路

用matlab寻找赋权图中的最短路 专业: 小组:第22小组 小组成员: 课题:用matlab寻找赋权图中的最短路 采用形式:集体讨论,并到图书馆搜集相关资料,进行编程,运行。最后以论文的形式表现出来。 1引言 图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。这些古老的难题,吸引了很多学者的注意。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。 最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。 2 最短路 2.1 最短路的定义(short-path problem) 对最短路问题的研究早在上个世纪60年代以前就卓有成效了, 若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的做优化问题。 定义1:若图G=G(V,E)中个边[v i,v j]都赋有一个实数w ij ,则称这样的图G为赋权图,w ij 称为边[v i,v j]上的权。 定义2:给定一个赋权有向图,即给一个有向图D=(V,A),对每一个弧a=(v i,v j),相应地有权w(a)=w ij,又给定D中的两个顶点v s ,v t 。设P是D中从v s 到v t 的一条路,定义路P的权是P中所有弧的权之和,记为w(P)。最短路问题就是要在所有从v s到v t 的路中,求一条权最小的路,即求一条从v s min w(P)式中对D中所有从v s到v t 的路P最小,到v t 的路P0 ,使w(P0)= P 称P0 是从v s到v t 的最短路。 2.2最短路问题算法的基本思想及其基本步骤 在求解网络图上节点间最短路径的方法中,目前国内外一致公认的比较好的算法有Dijkstra和Floyd算法。这两种算法,网络被抽象为一个图论中定义的有向图或无向图,并利用图的节点邻接矩阵记录点的关联信息。在进行图的遍历搜

基于Matlab的电力系统故障研究仿真

基于Matlab的电力系统故障分析与仿真 摘要:本文介绍了MATLAB软件在电力系统中的应用,以及利用动态仿真工具Simulink和电力系统工具箱PSD进行仿真的基本方法。在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。同时,设计一个GUI图形界面,将仿真波形清晰地显示在界面上以便比较和分析。结果表明,仿真波形基本符合理论分析,说明了MATLAB是电力系统仿真研究的有力工具。 关键词:电力系统;仿真;故障;MATLAB;GUI Abstract:This paper introduces the applications of MATLAB in power system analysis, and the basic simulation method of taking use of Simulink and PSD. On MATLAB simulation platform, take a single machine-infinite-bus system as modeling objects, by selecting the module, parameter settings, and connectingmodules to simulate and analysevariousfault of power system. At the same time, in order to facilitate comparison and analysis simulation waveform, design a GUI for showing waveform clearly.The results show that the simulation waveform in line with theoretical analysis, indicates that MATLAB is a powerful tool for researching simulation of power system. Keywords:PowerSystem。 Simulation。 Fault。 Matlab。 GUI 0 前言[1,2] 随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。现在,我们主要使用的电力系统仿真软件有:EMTP程序,用于电力系统电磁暂态计算,电力系统暂态过电压分析,暂态保护装置的综合选择等。PSCAD/EMTDC程序,典型应用是计算电力系统遭受扰动或参数变化时,参数随时间变化的规律。PSASP,其功能主要有稳态分析、故障分析和机电暂态分析。还有MathWorks公司开发的MATLAB软件。在MATLAB中,电力系统模型可以在Simulink环境下直接搭建,也可以进行封装和自定义模块库,充分显现了其仿真平台的优越性。更重要的是,MATLAB提供了丰富的工具箱资源,以及大量的实用模块,使我们可以更加深入地研究电力系统的行为特性。本篇论文将在熟练掌握MATLAB软件的基础上,对电力系统的故障进行建模、仿真、分析,并且设计一个GUI图形用户界面来反映故障波形。

matlab短路故障分析277664

(此文档为word 格式,下载后您可任意编辑修改!) 南昌大学科学技术学院 课程设计报告 题目电力系统短路故障分析学生姓名杨建伟学科部信息学科部专业班级电气122 课程设计地点电机301 指导教师吴敏黄灿英

目录 课程设计(论文)任务书 一、课题设计(论文)题目: 基于MATLAB勺电力系统单相短路故障分析与仿真 二、课程设计(论文)使用的原始资料(数据)及设计技术要求: 本文介绍了 MATLAB软件在电力系统中的应用,以及利用动态仿真工具Simulink。MATLAB Simulink 的仿真环境中,利用 Simpowersystems 中电气元件对电力系统发生单相短路时电路情况进行仿真与分析,着重分析了中性点 不接地时电压电流的变化情况。结果表明,仿真波形基本符合理论分析,说明了MATLAB!电力系统仿真研究的有力工具。 、课程设计(论文)工作内容及完成时间:

引言 随着电力工业的发展,电力系统的规模越来越大,在这种情况下,许多大型的电力科研实验很难进行,尤其是电力系统中对设备和人员等危害最大的事故 故障,尤其是短路故障,而在分析解决事故故障时要不断的实验,在现实设备中很难实现,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。考虑这两种情况,寻求一种最接近于电力系统实际运行状况的数字仿真工具十分重要,而MATLAB^件中的SIMULINK是用来对动态系统进行建模、仿真和分析的集成开发环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具,为解决具体的工程问题提供了更为快速、准确和简洁的途径。电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路,动力系统、电力系统和电力网简单示意如图1-1 o

MATLAB解决最短路径问题代码

默认是Dijkstra 算法 是有权的, 我想如果把权都赋1的话, 就相当于没权的了 参数是带权的稀疏矩阵及结点 看看这两个例子(一个有向一个无向), 或许你能找到你想知道的 % Create a directed graph with 6 nodes and 11 edges W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; %这是权 DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W) %有权的有向图 h = view(biograph(DG,[],'ShowWeights','on')) %画图, 这个好玩 % Find shortest path from 1 to 6 [dist,path,pred] = graphshortestpath(DG,1,6) %找顶点1到6的最短路径 % Mark the nodes and edges of the shortest path set(h.Nodes(path),'Color',[1 0.4 0.4]) %上色 edges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); set(edges,'LineColor',[1 0 0]) %上色 set(edges,'LineWidth',1.5) %上色 下面是无向图的例子 % % Solving the previous problem for an undirected graph % UG = tril(DG + DG') % h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on')) % % Find the shortest path between node 1 and 6 % [dist,path,pred] = graphshortestpath(UG,1,6,'directed',false) % % Mark the nodes and edges of the shortest path % set(h.Nodes(path),'Color',[1 0.4 0.4]) % fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); % revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID')); % edges = [fowEdges;revEdges]; % set(edges,'LineColor',[1 0 0]) % set(edges,'LineWidth',1.5) clc;close all; clear; load data; % global quyu; quyu = [2,3];%一片区域 z_jl = lxjl(jdxx,lxxh);%计算路线的距离 z = qyxz(jdxx,quyu,z_jl); % 根据节点信息,从z中将y区域的节点和路线选出所有点的信息 hzlx(z); %绘制Z的图像

基于MATLAB的电力系统短路故障的仿真报告

《电力系统建模及仿真课程设计》 总结报告 课题名称基于MATLAB的电力系统短路故障的仿 真与分析 姓名 学号 院系 班级 指导教师

摘要 基于Matlab最重要的组件之一Simulink中的电力元件库 (SimPowerSystems)构建电力系统仿真模型,在Matlab的平台下仿真电力系统 为工程设计和维修提供依据重要的依据,同时也为电力研究带来大大的便利,利 用Simulink中的画图工具搭建电力系统模型也是进行电力系统故障分析的 常用方法,它让电力研究者从大量繁琐的理论分析及复杂的矩阵计算中解 脱出来,让庞大的电力系统很直观的呈现在研究者的面前,从而将庞大的 电力网搬进了办公室,为研究带来了巨大的便利。 简要介绍了电力系统模型和MATLAB/ SIMULINK中SimPowerSystems (电力系统元件库) 的主 要功能. SimPowerSystems 是专门为电力系统设计的仿真分析软件,在对其基本元件进行介绍后,在仿真平 台上,通过对一个简单的电力系统输电线路的短路故障进行设计、仿真、分 析,得到了理想的仿真效果. 关键词: Matlab SimPowerSystems 短路电流计算仿真 Simulation and Analysis of Power System Short Circuit Fault Based on Matlab Zhang Jun-yue College of Physics and Electronic Information Electrical Engineering and Automation No: 070544037 Tutor: Wu Yan Abstract: The article describes the basic characteristics of Matlab /Simulink and the basic method and process of applying Matlab in the simulation of power system. Matlab SimPowerSystems Block set is used to build a model of single-machine infinity-bus system and simulate various fault of power system. The results show that the simulation waveform is in line with theoretical analysis and Matlab is a valid tool for the simulation of power system fault. By the contrast and analysis of different short circuit faults, we can obtain a result that the three-phase short circuit fault is the worst situation in the faults of power system. So this situation should be avoided as far as possible in manufacture. Also, by the contrast and analysis of the fault resolution time, we know that clearing the short circuit fault on a minimal time is one way to guarantee the power system running regularly and reduce the loss.

基于Matlab的电力系统短路故障分析与仿真

西南科技大学 电气工程及其自动化专业 方向设计报告 设计名称:基于Matlab的电力系统短路故障分析与仿真 姓名: *** 学号: *** 班级:*** 指导教师:*** 起止日期:2014.11.5-2014.12.6 ****大学****学院制

方向设计任务书 学生班级:**** 学生姓名:*** 学号:******** 设计名称:基于Matlab的电力系统短路故障分析与仿真 起止日期:2014.11.5-2014.12.6 指导教师:***

方向设计学生日志

基于Matlab的电力系统短路故障分析与仿真 摘要 本次设计介绍了电力系统短路故障分析方法及Matlab/Simulink的基本特点。通过三相短路的情况对电力系统故障进行分析计算。然后对该种情况,运用Matlab/Simulink进行电力系统三相短路故障仿真,得出仿真结果。并对Matlab/Simulink搭建的三相短路电路图所得仿真的结果进行分析,从而得出结论。结果表明运用Matlab对电力系统故障进行分析与仿真,能够准确直观地考察电力系统故障的动态特性,验证了Matlab在电力系统仿真中的强大功能。 关键词:电力系统;短路故障分析;Matlab;仿真

Power system fault analysis and simulation based on Matlab Abstract This design introduces the basic features of the power system short-circuit fault analysis method and Matlab / Simulink for. By three-phase short circuit fault on the power system analysis and calculation. Then this case, the use of Matlab / Simulink for system power three phase short circuit fault simulation, the simulation results obtained. And to analyze the resulting three-phase short circuit diagram Matlab / Simulink to build simulation results, leading to the conclusion. The results showed that the use of Matlab for power system fault analysis and simulation can accurately visually inspect the dynamic characteristics of the power system failure, verify the Matlab powerful in the power system simulation. Keywords: electric system; Fault; Matlab; Simulation

基于MATLAB同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介

基于MATLAB求解最短路问题

基于MATLAB求解最短路问题 1.引言 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。通过本学期的学习了解和上机实践,已经初步掌握使用MATLAB工具解决实际问题的能力。结合运筹学课程的学习,我考虑使用MATLAB求解最短路问题,而在所有求解最短路的方法中,Dijkstra算法是最为经典的一种,因此本文主要解决在MATLAB环境下使用Dijkstra算法求解最短路。 1.1 提出问题 设6个城市v1,v2,......,v6之间的一个公路网(图1)每条公路为图中的边,边上的权数表示该段公路的长度(单位:百公里),设你处在城市v1,那么从v1到v6应选择哪一路径使你的费用最省。 1.2 分析问题 这属于一个典型的求解最短路的问题,图中顶点代表六个城市,边上的权数表示该段公路的长度,题目所求为从v1到v6、的一条费用最省的路径,我们假设所需费用仅与路径长短有关,因此求费用最省的路径即求权值最小的路径。网络图中各权值均为正,可以使用Dijkstra算法。 1.3 数据整理 将网络图中各边的权作如下整理以方便程序运行 W(1,2)=5; W(2,1)=5; W(1,3)=2; W(3,1)=2; W(2,3)=1; W(3,2)=1; W(2,4)=5; W(4,2)=5; W(2,5)=5; W(5,2)=5;

W(3,4)=8; W(4,3)=8; W(3,5)=10; W(5,3)=10; W(4,5)=2; W(5,4)=2; W(4,6)=5; W(6,4)=5; W(5,6)=2; W(6,5)=2; 2.数学原理 2.1 Dijkstra算法介绍 Dijkstra 算法思想为:设G=(V,E)是一个带权有向图(也可以是无向图,无向图是有向图的特例),把图中顶点集合V分成两组:第一组为已求出最短路径的顶点集合(用S 表示,初始时S 中只有一个源点,以后每求得一条最短路径,就将其加入到集合S 中,直到全部顶点都加入到S 中,算法就结束了);第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S 中。在加入的过程中,总保持从源点v 到S 中各顶点的最短路径长度不大于从源点v 到U 中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S 中的顶点的距离就是从v 到此顶点的最短路径长度,U中的顶点的距离,是从v 到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。其步骤主要有: 第一,初始时,S 只包含源点,即S={顶点},v 的距离为0。U 包含除v 外的其他顶点,U 中顶点u 距离为边上的权(若v 与u 有边)或(若u 不是v 的出边邻接点)。 第二,从U 中选取一个距离v 最小的顶点k,把k 加入S 中(该选定的距离就是v 到k 的最短路径长度)。 第三,以k 为新考虑的中间点,修改U 中各顶点的距离;若从源点v 到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的

最短路径问题matlab求解详尽版

最短路径问题m a t l a b 求解详尽版 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

MATLAB 求最短路径 利用graphshortestpath 可以求最短路径,具体用法参考MATLAB帮助Examples: S=[1 1 2 2 3 3 4 4 4 4 5 6 6 7 8]; %起始节点向量 E=[2 3 5 4 4 6 5 7 8 6 7 8 9 9 9]; %终止节点向量 W=[1 2 12 6 3 4 4 15 7 2 7 7 15 3 10]; %边权值向量,有向图, G(9,9)=0; 9个节点 G=sparse(S,E,W); %关联矩阵的稀疏矩阵表示 G(9,9)=0; P=biograph(G,[],'ShowWeights','on');%建立有向图对象P H=view(P);%显示各个路径权值 [Dist,Path]=graphshortestpath(G,1,9,'Method','Dijkstra') %求节点1到节点9的最短路径 set(Path),'Color',[1 ]);%以下三条语句用红色修饰最短路径edges=getedgesbynodeid(H,get(Path),'ID')); set(edges,'LineColor',[1 0 0]); set(edges,'LineWidth',; %以下是运行结果,节点1到节点9的最短路径为19 Dist = 19 Path =

1 3 4 5 7 9 利用graphallshortestpaths可以求出所有最短路径Dists=graphallshortestpaths(G) %求所有最短路径Dists = 0 1 2 5 9 6 16 12 19 Inf 0 Inf 6 10 8 17 13 20 Inf Inf 0 3 7 4 14 10 17 Inf Inf Inf 0 4 2 11 7 14 Inf Inf Inf Inf 0 Inf 7 Inf 10 Inf Inf Inf Inf Inf 0 Inf 7 15 Inf Inf Inf Inf Inf Inf 0 Inf 3 Inf Inf Inf Inf Inf Inf Inf 0 10

相关主题