搜档网
当前位置:搜档网 › 汽车发动机冷却系统的设计原则汇总

汽车发动机冷却系统的设计原则汇总

汽车发动机冷却系统的设计原则汇总
汽车发动机冷却系统的设计原则汇总

发动机冷却系统的设计原则

(李勇)

水冷式汽车发动机冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇及连接水管、冷却液等组成。我们主机厂主要根据整车布置及发动机功率的要求来选定散热器及各零部件的形状、大小,并合理布置整个冷却系统,保证发动机的动力性、经济性、可靠性和耐久性,从而提高整车的性能。

一、冷却系统的总体布置原则

冷却系统总布置主要考虑两方面,一是空气流通系统;二是冷却液循环系统。因此在设计中必须做到提高进风系数和冷却液循环中的散热能力。

1,提高进风系数。要做到提高进风系数就必须要做到:(1)

减小空气的流通阻力,(2)降低进风温度,防止热风回流。

(1)减小空气的流通阻力

设计中应尽量减少散热器前面的障碍物,进风口的有效进风面积不要小于60﹪的散热器芯部正面积;在整车布置允许的前提下,尽可能采用迎风正面积较大的散热器;风扇与任何部件的距离不应小于20mm,这样就可以组织气流通畅排出,可以减少风扇后的排风背压。

(2)降低进风温度,

要合理布置散热器的进风口,提高散热器与车身、发动机舱接合处的密封性,防止热风回流。

(3)合理布置风扇与散热器芯部的相对位置

从正面看,尽量使风扇中心与散热器中心重合,并使风扇直径与正方形一边相等,这样可以使通过散热器的气流分布最为均匀,或者使风扇中心高一下些,使空气流经散热器上部的高温高效区。

另:考虑发动机振动的因素,风扇和护风罩之间的间隙应该在20mm以上。

从轴向看,尽可能加大风扇前端面与散热器之间的距离,并合理设计护风罩。要使气流均匀通过散热器芯部整个面积,必须要求风扇与散热器之间保持一定的距离,一般对载货汽车,风扇与散热器芯部之间的距离不得小于50mm。

2,提高冷却液循环中的散热能力

要提高冷却液循环中的散热能力,提高冷却液循环中的除气能力是关键。冷却系统的气体会造成水泵流量下降,使散热器的冷却率下降;还会造成发动机水套内局部沸腾,致使局部热应力猛增,影响发动机性能;在热机停工况,气体还会造成冷却液过多的损失。因此要提高冷却液循环中的除气能力,其措施就是设计膨胀水箱和相应的除气管路(当散热器位置比发动机位置高时,可以在散热器上部直接开一个注水口,并在注水口上用一压力式的散热器盖即可,我厂的农用车型的散热器就是采用此方式进行排气及加

水)。

二、散热器的选择

(1)现在我厂基本上全部都采用铜制散热器,芯部结构为管带式的。

散热器要带走的热量Q w,按照热平衡的试验数据或经验公式计算:

Q w=(A·g e·Ne·h n)/3600 kJ/s

式中: A—传给冷却系统的热量占燃料热能的百分比,对柴油机A=0.18~0.25

g e—发动机燃料消耗率,㎏/(kW·h);

Ne—发动机功率,kW;

h n—燃料低热值,kJ/㎏

增压的直接喷射柴油机可取Qw=(0.5~0.6)Ne(kJ/s)。

冷却水的循环量V w,可以根据Q w按下式计算:

V w=Q w/(△t w·Yw·Cw)m·㎡/s

式中:△t w—冷却水在发动机中循环时的容许温升,

可取△t w=6~12℃;

Yw—水的密度,可近似取Yw=1000㎏/(m·㎡)

Cw—水的比热,可近似取Cw=4.184kJ/(㎏·d eg)

冷却空气的需要量V a,可根据Q w按下式计算:

V a=Q w/(△t a·Ya·Cp)m·㎡/s

式中:△t a—空气进入散热器以前与通过散热器之后的温度

差,

可取△t a=10~30℃;

Ya—空气的密度,一般Ya=1.01㎏/(m·㎡)

Cp—空气的定压比热,可近似取Cp=1.047kJ/(㎏·d eg)

散热器的正面积F R,根据V a按下式计算:

F R=V a/v a ㎡

式中:v a—散热器正前面的空气流速,m/s,载货汽车一般取

10m/s

算出F R后,根据总布置要求确定散热器芯部高度h和宽度b

F R=h·b

散热器的水管数i,可按下式计算:

i= V w/(ひw·f0)

式中:ひw—水在散热器水管中的流速,m/s,一般取

ひw =0.6~0.8 m/s

f0—每根水管的横断面积,㎡。

散热器的散热表面积F,可按下式计算:

F= Q w/(k R·△t)㎡

式中:△t—散热器冷却水和冷却空气的平均温度差,

△t=t w-t a;

t w—冷却水平均温度,t w= t w1+△t w/2;

t w1—散热器的进水温度,t w1=95~100℃;

△t w—散热器冷却水的进出口温度差,一般取△t w =6~12℃;

t a—冷却空气均温度,t a= t a1+△t a/2;

t a1—散热器冷却空气的进口温度,一般取40℃;

△t a—散热器冷却空气的进出口温度差,

一般取△t w =10~30℃;

k R—散热器的散热系数,W/(㎡·K)

散热器的实际散热面积F0要比计算结果大些,因为散热器中冷却空气流速不可能均匀,散热片上有尘土时散热性能降低,所以通常取:

F0=βF

式中:β—储备系数,一般取β=1.1~1.5。

设计散热器时,在考虑整车布置的前提下,使散热器的正面积尽可能大,因为正面积越大散热器被冷风扫过的区域就越大,冷却效率就越高。一般载货汽车推荐散热器正面积为30~40C㎡/kW。

(2)散热器的散热面积是指散热器冷却管和散热带与冷却空气所接触的所有表面积之和。在正面积确定之后,增大芯厚或增加冷却管及散热带的折数,都可以增加散热面积。散热器的散热面积是根据发动机的功率大小及风扇曲线、水泵曲线来进行计算确定的,一般对载货汽车推荐散热带折数为2.7~4.3折/cm,散热面积为

0.1~0.16㎡/kW。

三、膨胀水箱的选择

冷却液在发动机冷却回路流动,随温度升高体积膨胀,为了吸收这部分膨胀体积而需要选用膨胀水箱。选用的膨胀水箱必须要求有耐热、耐压、及一定的容积,膨胀水箱盖应该为压力式散热器盖。

一般要求膨胀水箱的设计容积占整个冷却系统容积的4﹪~6﹪,并且膨胀水箱安装位置必须高于散热器及发动机缸盖。

四、水管的设计

发动机冷却回路中的水管具有吸收发动机振动和散热器相对运动的作用。因此水管要求有耐热性、耐臭氧性、耐压性、对冷却液的适应性及柔软性。为了减少冷却液在冷却回路上的功率损失,应尽量减少水管的拐弯数,特别是尽量避免拐急弯的现象出现。从管子

连接处的密封考虑。胶管的内径应比与其连接管的外径小1mm,胶管两端与其他管相连接时,应有30~35mm地插入量。

五、防冻液的选择

(1)防冻液所要求的性能:1,防冻性,即使在冬天0℃以下不结冰,地区不同,防冻要求也不同;2,防腐蚀性,要求防冻液对钢、铸铁、铝、铜、黄铜、焊锡等多种金属没有腐蚀作用,也不能够腐蚀橡胶、树脂。防腐蚀性由选定的添加剂种类及多少决定,并且只能用书中添加剂的组合来满足整体防腐蚀性要求。现在经常使用以乙二醇为主要成分、加有防腐添加剂及水的LLC防冻液,由JIS K2234来规定,其中1种只在冬季使用;2种可以全年使用。

3,热传导性及传热性能必须优良;4,性能稳定,不容易变质。

(2)防冻液的老化:防冻液经长期使用,由于其接触的环境(主要消耗防腐蚀添加剂)和外部因素(主要是浓度降低),使防腐蚀性能下降。特别是由于主要成分乙二醇氧化变质产生腐蚀性物质使使用温度的提高,会加速防冻液的老化。为了保持它的防腐蚀性能,要定期维护,保持适当浓度,必要时应进行更换。同时还要防止锈和燃气等异物的混入。

七、冷却系统的固定

由于车辆行驶路况较复杂,加上发动机自身的振动等因素,如果不对冷却系统进行固定或者固定不牢固,就有可能会引起散热器芯子与发动机风扇的刮蹭甚至碰撞,从而导致散热器损坏漏水,因此冷却系统的固定是很重要的。我厂现在使用的散热器固定方式就是在散热器的侧板上焊接两散热器吊耳,两吊耳通过胶垫后直接架在车架上翼面,然后在散热器下部装上两个散热器拉板支架,与安装在横梁下翼面的支架连接,达到固定散热器的目的。散热器的固定原则就是:在车辆行驶过程中散热器不能够上下跳动及前后晃动(或者晃动量非常小),因此需要尽量将吊耳及下部拉板的上下距离尽量布置到最大,使拉板的力臂最大。详见下面的示意图所示:

冷却系统总成示意图

汽车发动机技术汇总DOC

你真正懂车么?汽车发动机技术汇总 目前应用于汽车的发动机主要有直列发动机,V型发动机、W型发动机、转子发动机几种 类型。为了使读者对各种发动机有一个更加深入的了解,我们在这里将常见的汽车汽油发动 机类型与各种先进的汽油发动机技术特点归纳在一起,供大家分享。 直列发动机(Line Engine) 直列发动机(Line Engine):它的所有汽缸均肩并肩排成一个平面,它的缸体和曲轴 结构简单,而且使用一个汽缸盖,制造成本较低,稳定性高,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛。其缺点是功率较低。“直列”可用L代表,后面加上汽缸数就是 发动机代号,现代汽车上主要有L3、L4、L5、L6型发动机。 L3(直列3缸发动机):一般用在1升以下的微型车上。它结构简单,维修方便,制 造成本也低,重量轻,比较省油。如果一台直列3台机能达到一台直列4缸机的动力性能,那当然是3缸机要好些。如早期的夏利车装配的就是3缸发动机。 L4(直列4缸发动机):直列4缸发动机俨然已成了现代汽车的一种标准选择。它的 适用范围极广,小到微型车,大到2升多的车型,均由四汽缸机为汽车提供动力。与6缸机相比,4缸机的体积小,结构简单,重量轻,但它的动力性和平稳性与同排量6缸机的差别并不十分显著;现代轿车大多为前置发动机前轮驱动方式,需要发动机横放在车头,要求发动机的体积不能太大,直列4缸机的体积尺寸正好,因而直列4缸机获得了广泛应用。 L5(直列5缸发动机):由于直列5缸机存在很难解决的平衡问题,容易引起振动,因此直列5缸发动机现已不多见。我国长春一汽曾生产过的奥迪100也是用直5发动机。现在沃尔沃S60、S80还在用直5发动机。 L6(直列6缸发动机):直列6缸发动机现在主要用在前置发动机后驱方式的汽车上。 从平衡角度来讲,直6比直4、直5,甚至V6的平衡性都要好。出于此原因,当你的机

捷达轿车发动机冷却系统的检修

捷达轿车发动机冷却系统的检修 目录 1绪论················错误!未定义书签。 2 冷却系统系统的结构和工作原理 (3) 2.1发动机冷却系统的功用和组成 (5) 2.2发动机冷却系统的类型 (6) 2.3捷达轿车冷却系统的组成 (4) 2.3.1散热器 (8) 2.3.2冷却风扇 (8) 2.3.3冷却水泵 (9) 2.3.4节温器 (9) 2.3.5冷却液介质 (10) 2.3.6冷却液温度传感器 (10) 2.4捷达轿车冷却系统工作原理11 3发动机冷却系统的故障分析及检修 (10) 3.1发动机过热. (10) 3.2发动机升温缓慢或工作温度过低 (13) 3.3冷却系主要部件故障检修 (11) 4捷达冷却系统的案例分析与维修 (14) 4.1实际案例分析与维修 (14)

4.2冷却系统的特点 (18) 5冷却系统的维护与保养 (16) 5.1使用防冻液注意事项 (17) 5.2冷却系统水垢形成原因与清除 (17) 结论 (19) 参考文献 (22) 致谢·················错误!未定义书签。 捷达轿车冷却系统常见故障检修 摘要:汽车冷却系统是发动机的重要组成部分,随着发动机采用更加紧凑的设计和具有更大的比功率,发动机产生的废热密度也随之明显增大。一些关键区域,如排气门周围散热问题需优先考虑,冷却系统即便出现小的故障也可能在这样的区域造成灾难性的后果。保证冷却系统的正常工作,能避免因冷却系的故障造成的车辆问题。为了人们能了解冷却系常见故障及检修知识,本文列举冷却系统一些常见故障及检修方法。 关键词:捷达轿车,冷却系统,工作过程,常见故障 1.绪论 发动机的冷却系统可以分为两大类,一类是水冷系统,另一类是风冷系统。车用发动机大多采用水冷系统进行冷却。水冷系大都是强制循环式水冷系,利用

汽车分类国家标准

道路上行驶的汽车造型和性能特征等千差万别,如何区别这些汽车?一般来讲,根据新的汽车分类国家标准(gb9417-89)就可方便地区分车型。中国汽车划分为8大类: 1.载货汽车:依公路运行时厂定最大总质量(ga)划分为:微型货车(ga≤1.8吨)轻型货车(1.8吨<ga≤6吨)中型货车(6.0吨<ga≤14吨)重型货车(ga>14吨)2.越野汽车:依越野运行时厂定最大总质量(ga)划分为:轻型越野汽车(ga≤5吨)中型越野汽车(5.0吨<ga≤13吨)重型越野汽车(13<ga≤24吨)超重型越野汽车(ga>24吨) 3.自卸汽车:依公路运行时厂定最大总质量(ga)划分为:轻型自卸汽车(ga≤6吨)中型自卸汽车(6.0吨<ga≤14吨)重型自卸汽车(ga>14吨)矿山自卸汽车; 4.牵引车:半挂牵引车、全挂牵引车; 5.专用汽车:厢式汽车、罐式汽车、起重举升汽车、仓棚式汽车、特种结构式汽车、专用自卸汽车; 6.客车:依车长(l)划分为:微型(l≤3.5米)轻型(3.5米<l≤7米)中型(7米<l≤10米)大型客车(l>10米)和特大型客车;中大型客车又可分为城市、长途、旅游及团体客车,特大型客车指铰接和双层客车; 7.轿车:依发动机排量(v)划分为:微型轿车(v≤1升)普通轿车(1升<v≤1.6升)中级轿车(1.6升<v≤2.5升)中高级轿车(2.5升<v≤4升)高级轿车(v>4升)8.半挂车:依公路运行时厂定最大总质量(ga)划分为:轻型半挂车(ga≤7.1吨)中型半挂车(7.1吨<ga≤19.5吨)重型半挂车(19.5<ga≤34吨)超重型半挂车(ga>34吨)本站点车型定义与分类本网站主要收集小型客车,如各种轿车,轻型越野汽车,微型货车,微型客车。在中国,根据公安部的车辆分类标准,小型客车的共分为四类,即:·小轿车、越野车、旅行车、轻型小客车·本站点即主要采用这种分类办法。·本站点还同时收录适宜家庭使用的小型货车(皮卡,pickup),归类为小货车每辆车属于哪一种车型,请参阅该车的行驶证(不是司机驾驶证)正页第5行均已标明。·小轿车举例:桑塔纳,宝马,奥迪等;夏利、奥拓属于小轿车。切诺基小客车在北京行驶按照小轿车进

汽车发动机-国标汇总

十、汽车发动机标准 GB 3847—2005 GB 11340—2005 车用压燃式发动机和压燃式发动机汽车排气烟 度排放限值及测量方法 装用点燃式发动机重型汽车曲轴箱污染物排 放限值及测量方法 GB 3843—1983、 GB 14761.6—1993、 GB 3847—1999、 GB/T 3846-1993、 GB 18285—2000中的压燃式发 动机汽车部分 GB 14761.4—1993、 GB 11340—1989 GB 14762—2008 重型车用汽油发动机与汽车排气污染物排放限 值及测量方法(中国Ⅲ、Ⅳ阶段) GB 14762—2002 GB 14763—2005 装用点燃式发动机重型汽车燃油蒸发污染物 排放限值及测量方法(收集法)GB 14761.3—1993、GB 14763—1993 GB 17691—2005 车用压燃式、气体燃料点燃式发动机与汽车排气 污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶 段)GB 17691—2001、 GB 14762—2002中的气体燃料点燃式发动机部分 GB 18285—2005 点燃式发动机汽车排气污染物排放限值及测量 方法(双怠速法及简易工况法)GB 14761.5—1993、 GB/T 3845—1993、 GB 18285—2000中的点燃式发动机汽车部分 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB 18352.3—2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2—2001 GB 20890—2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T 5181—2001 汽车排放术语和定义GB/T 5181—1985 GB/T 16570—1996 汽车柴油机架装直列式喷油泵安装尺寸 GB/T 17692—1999 汽车用发动机净功率测试方法 GB/T 18297—2001 汽车发动机性能试验方法 GB/T 18377—2001 汽油车用催化转化器的技术要求和试验方法 GB/T 19055—2003 汽车发动机可靠性试验方法QC/T 525-1999 GB/T 25983—2010 歧管式催化转化器 QC/T 33—2006 汽车发动机硅油风扇离合器试验方法QC/T 33—1992 QC/T 280—1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件ZB T12 002—1987* QC/T 281—1999 (2009) 汽车发动机轴瓦铜铅合金金相标准ZB T12 003—1987* QC/T 282—1999 (2009) 汽车发动机曲轴止推片技术条件ZB T12 004—1987* QC/T 288.1—2001 (2009) 汽车发动机冷却水泵技术条件QC/T 288—1999 QC/T 288.2—2001 (2009) 汽车发动机冷却水泵试验方法 QC/T 289—2001 (2009) 汽车发动机机油泵技术条件QC/T 289—1999 QC/T 468—2010 汽车散热器QC/T 468—1999 QC/T 469—2002(2009) 汽车发动机气门技术条件QC/T 469—1999

《车用汽油》国家标准标准

《车用汽油》国家标准 征求意见稿编制说明 1任务来源 依据国家标准化管理委员会下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责对修订《车用汽油》国家标准。项目编号:20120002-Q-469。 2目的和意义 近年来,国民经济的高速发展带动了国内汽车工业的发展。根据资料显示,2010年我国汽车的产量达到1826万辆,占到世界汽车总产量的23.5%。汽车的大量使用,在给人们的出行带来便捷的同时,也给大气质量造成一定的影响,汽车排放的污染物分担率不断上升,为此,为了降低机动车的排放污染物数量,改善大气环境,中国目前正在制定我国未来第V阶段的汽车排放法规。为了满足这一更加严格的排放要求,需要高质量的车用汽油与之相配套。 本标准在GB 17930-2011《车用汽油》附录A的基础上,参考了2012年北京市制定第V阶段地方标准时所做的一些研究工作,对某些指标进行适当的调整。 3 标准的编制过程及强制理由 本标准依据国家标准化管理委员会2012年4月27日下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责修订GB 17930-2011《车用汽油》国家标准。 2012年5-6月,接到任务后,课题组首先对国内相关标准的变化情况和国外标准的现状以及目前国内炼厂的状况开展调研。由于本次标准制定的时间要求非常急迫,难于遵循过去在GB 17930-2006和GB 17930-2011起草中所采用的研究方法,为此经课题组研究,本标准在GB 17930-2011《车用汽油》附录A的基础上,参考北京地方标准研究的相关数据。编写《车用汽油》国家标准的征求意见稿及编制说明,并向全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会的委员及有关单位发送标准征求意见稿,进行意见征集工作。

汽车发动机国标汇总

汽车发动机-国标汇总

————————————————————————————————作者: ————————————————————————————————日期:

十、汽车发动机标准 GB3847—2005错误!未定义书签。 GB 11340—2005错误!未定义书签。车用压燃式发动机和压燃式发动机汽车排气烟 度排放限值及测量方法 装用点燃式发动机重型汽车曲轴箱污染物排 放限值及测量方法 GB3843—1983、 GB14761.6—1993、 GB 3847—1999、 GB/T3846-1993、 GB18285—2000中的压燃式 发动机汽车部分 GB 14761.4—1993、 GB 11340—1989 GB14762—2008 重型车用汽油发动机与汽车排气污染物排放限 值及测量方法(中国Ⅲ、Ⅳ阶段) GB 14762—2002 GB 14763—2005装用点燃式发动机重型汽车燃油蒸发污染 物排放限值及测量方法(收集法)GB14761.3—1993、GB 14763—1993 GB17691—2005 错误!未定义书签。车用压燃式、气体燃料点燃式发动机与汽车排气 污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶 段) GB17691—2001、 GB14762—2002中的气体 燃料点燃式发动机部分 GB18285—2005错误!未定义书签。点燃式发动机汽车排气污染物排放限值及测量 方法(双怠速法及简易工况法) GB 14761.5—1993、 GB/T 3845—1993、 GB18285—2000中的点燃 式发动机汽车部分 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB18352.3—2005轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2—2001 GB20890—2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T5181—2001 错误!未定义书签。 汽车排放术语和定义GB/T 5181—1985GB/T 16570—199 6错误!未定义书签。 汽车柴油机架装直列式喷油泵安装尺寸 GB/T17692—1999 汽车用发动机净功率测试方法 GB/T18297—2001 错误!未定义书签。 汽车发动机性能试验方法 GB/T18377—200 1 汽油车用催化转化器的技术要求和试验方法 GB/T19055—2003 汽车发动机可靠性试验方法QC/T 525-1999 GB/T 25983—2010 歧管式催化转化器 QC/T33—2006 汽车发动机硅油风扇离合器试验方法QC/T 33—1992 QC/T 280—1999(20 09)错误!未定义书 签。 汽车发动机主轴瓦及连杆轴瓦技术条件ZB T12 002—1987* QC/T281—1999 (2009) 错误!未定义书 汽车发动机轴瓦铜铅合金金相标准ZB T12 003—1987*

论述汽车发动机冷却系统有几种形式,各有什么特点

题目:论述汽车发动机冷却系统有几种形式,各有什么特点 汽车冷却系统 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为风冷系及水冷系,风冷系是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷系则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 水冷系 水冷系是以冷却液为冷却介质,通过冷却液将高温零件的热量带走,再以一定的方式散发到大气中去,使发动机的温度降低而进行冷却的一系列装置。通常,冷却液在水冷系内的循环流动路线有两条,一条为大循环,另一条是小循环,两者由冷却液是否流经散热器而进行区别,冷却强度也不同。小循环是指冷却水仅在引擎内循环,而大循环则是冷却水在引擎与热交换器 (水箱) 间循环。 冷却系统的循环汽车发动机的冷却系为强制循环水冷系,即利用水泵提高冷却液的压力,强制冷却液在发动机中循环流动。冷却系主要由水泵、散热器、冷却风扇、补偿水箱、节温器、发动机机体和气缸盖中的水套以及附属装置等组成。其工作过程为:水泵将冷却液由机外吸人并加压,使之经分水管流入发动机缸体水套。这样,冷却水从气缸壁吸收热量,温度升高;流到气缸盖水套,再次受热升温后,沿水管进入散热器内。经风扇的强力抽吸,空气流由前向后高速通过散热器。最终使受热后的冷却水在流经散热器的过程中,其热量不断地通过散热器,散发到大气中去。同时,使水本身得到冷却。冷却了的冷却液流到散热器的底部后,又在水泵的加压下,经水管再压入水套,如此不断地循环。从而使得发动机在高温条件下工作的零件不断地得到冷却,从而确保发动机的正常工作。因此水冷却形式具有冷却可靠、布置紧凑、噪声小、使用方便等优点。 风冷系 这种冷却方法不是在发动机中进行液体循环,而是通过发动机缸体表面附着的铝片对气缸进行散热。一个功率强大的风扇向这些铝片吹风,使其向空气中散热,从而达到冷却发动机的目的。 风冷系以空气为冷却介质,利用汽车行驶时的高速空气流,将高温零件表面的热量吹散到大气中去。风冷系的汽车发动机一般采用由传热性能较好的铝合金铸成的汽缸和汽缸盖,为了增大散热面积,各汽缸一般都分开制造,并且在汽缸和汽缸盖表面分布许多均匀的散热片,以增大散热面积。为了有效地利用空气流和保证各汽缸冷却均匀,有的发动机上装有导流罩及分流板等部件。风冷系具有结构简单、重量轻、故障少、无需特殊保养、维护简便、对地理环境和气候环境

汽车概论论文-汽车发动机新技术

汽车发动机新技术 河北工业大学/内燃机/韩超 【内容提要】汽车的诞生发展已经经历的一个多世纪,汽车技术的发展已成为带动整个社会科技进步的重要标志,对人类文明有着不可忽视的影响,而汽车的心脏——发动机的科学技术水平起着重中之重的作用,随着信息、机械和电子等技术的快速发展,发动机电子控制、多气门、可变气门正时、可变气门升程、双涡轮增压、高压共轨等先进技术也已经深入人心,此外,为适应汽车的多变工况运行,还有一些特别的新技术——可变压缩比、缸内直喷、自动启停等应运而生。【关键字】汽车发动机、可变压缩比、缸内直喷、自动启停 伴随汽车工业近百年的连续进步,汽车发动机技术也综合了大量的高新技术使其具有更高的功率密度、更好的燃油经济性、更低的排放污染,如发动机电子控制、多气门、可变气门正时、可变气门升程、双涡轮增压、高压共轨、可变压缩比、BlueDIRECT、缸内直喷、自动启停等等。下面我们就后四种作详细介绍。 一、可变压缩比(Variable Compression Ratio) 可变压缩比(VCR)的目的在于提高增压发动机的燃油经济性。在增压发动机中为了防止爆震其压缩比低于自然吸气式发动机。在增压压力低时热效率降低使燃油经济性下降。特别在涡轮增压发动机中由于增压度上升缓慢在低压缩比条件下扭矩上升也很缓慢形成增压滞后现象。即发动机在低速时,增压作用滞后,要等到发动机加速至一定转速后增压系统才起到作用。解决这个问题,可变压缩比是重要方法。即在增压压力低的低负荷工况使压缩比提高到与自然吸气式发动

机压缩比相同或超过,在高增压的高负荷工况下适当降低压缩比。换言随着负荷 的变化连续调节压缩比以便能够从低负荷到高的整个工况范围内有提高热效率。 多连杆VCR系统 VCR系统使用一种新的活塞-曲轴系统并入一个多连杆机制来改变活塞在上止点的移动并因此获得了与工况相匹配的最佳的压缩比。这一多连杆可变压缩比机构可以在不提高发动机尺寸和重量的情况下安装。 运动规律:活塞与曲轴通过上连杆与下连杆连在一起。下连杆也通过控制连杆连接到了控制轴偏心轴颈中心。曲轴的旋转导致了下连杆围绕着主轴颈的中心旋转,同时围绕着曲柄销的中心转动。 压缩比改变的原理:移动偏心轴的中心向上使下连杆顺时针倾斜,因此使活塞的上止点和下止点的位置同时下降以降低压缩比。相反,偏心轴的中心向下移动可以提高压缩比。 ①在低速低负荷时采用高压缩比14:1以获得提高燃油经济性的最佳效果; ②随着负荷的增加,减小压缩比以防止爆震发生; ③为了在全负荷时采用高增压,将压缩比设为最低值8:1。 结果发现:通过在发动机低负荷下应用废气再循环并提高压缩比、在高负荷下采用更高的增压压力并降低压缩比,这样都可以提高发动机的燃油经济性和输出功率。 二、缸内直喷技术(BlueDirect、TFSI、EcoBoost、SIDI) 缸内直喷就是将燃油喷嘴安装于气缸内,直接将燃油喷入气缸内与进气混 合。喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控 制喷油并与进气混合,并且消除了缸外喷射的缺点。同时,喷嘴位置、喷雾形状、

汽车发动机国标汇总

汽车发动机国标汇总 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

十、汽车发动机标准 GB 3847—2005 GB 11340—2005 车用压燃式发动机和压燃式发动机汽车排 气烟度排放限值及测量方法 装用点燃式发动机重型汽车曲轴箱污染 物排放限值及测量方法 GB 3843—1983、 GB —1993、 GB 3847—1999、 GB/T 3846-1993、 GB 18285—2000中的压燃 式发动机汽车部分 GB —1993、 GB 11340—1989 GB 14762—2008 重型车用汽油发动机与汽车排气污染物排 放限值及测量方法(中国Ⅲ、Ⅳ阶段) GB 14762—2002 GB 14763—2005装用点燃式发动机重型汽车燃油蒸发污 染物排放限值及测量方法(收集法)GB —1993、GB 14763—1993 GB 17691—2005 车用压燃式、气体燃料点燃式发动机与汽 车排气污染物排放限值及测量方法(中国 Ⅲ、Ⅳ、Ⅴ阶段)GB 17691—2001、 GB 14762—2002中的气体燃料点燃式发动机部分 GB 18285—2005点燃式发动机汽车排气污染物排放限值及 测量方法(双怠速法及简易工况法)GB —1993、 GB/T 3845—1993、 GB 18285—2000中的点燃式发动机汽车部分 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB —2005轻型汽车污染物排放限值及测量方法(中 国Ⅲ、Ⅳ阶段) GB —2001 GB 20890—2007重型汽车排气污染物排放控制系统耐久性 要求及试验方法 GB/T 5181—2001 汽车排放术语和定义GB/T 5181—1985 GB/T 16570—1996 汽车柴油机架装直列式喷油泵安装尺寸 GB/T 17692—1999 汽车用发动机净功率测试方法 GB/T 18297—2001 汽车发动机性能试验方法 GB/T 18377—2001 汽油车用催化转化器的技术要求和试验方 法 GB/T 19055—2003 汽车发动机可靠性试验方法QC/T 525-1999 GB/T 25983—2010歧管式催化转化器 QC/T 33—2006汽车发动机硅油风扇离合器试验方法QC/T 33—1992 QC/T 280—1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件ZB T12 002—1987* QC/T 281—1999 (2009) 汽车发动机轴瓦铜铅合金金相标准ZB T12 003—1987* QC/T 282—1999 (2009) 汽车发动机曲轴止推片技术条件ZB T12 004—1987* QC/T —2001 (2009) 汽车发动机冷却水泵技术条件QC/T 288—1999 QC/T —2001 (2009)汽车发动机冷却水泵试验方法 QC/T 289—2001 (2009) 汽车发动机机油泵技术条件QC/T 289—1999

2010年全球汽车发动机技术排名情况

2010年初,美国权威汽车杂志《Ward’s Auto World》进行了一年一度的汽车发动机排名的评选。此次2010年汽车发动机排名前十的的汽车发动机名单包括了来自美国、欧洲和亚洲的发动机。这些发动机包括了2款混合动力发动机、2款柴油发动机、1款机械增压发动机和3款涡轮增压汽油发动机和2款自然吸气发动机。要想入选汽车发动机排名车辆必须 低于54000美元,发动机必须是量产版而且能够在2010第一季度购买 到。 下面我们就来看看2010年汽车发动机排名前十的汽车发动机都有那些 1、汽车发动机排名第一宝马3.0L DOHC L6 Turbodiesel 宝马3.0L DOHC L6 Turbodiesel 汽车发动机排名第一 这款发动机已经是第二次获此殊荣。宝马的双涡轮增压直列6缸发动机技术已经成为宝马的一个新标杆,这款柴油版直列6缸发动机采用可变双涡轮增压技术(Variable Twin Turbo Technology)。可变增压系统由特别设计制造的电子设备控制,根据发动机转速不同,由一个或两个涡轮增压器对进气进行增压。双涡轮增压技术用小涡轮提高发动机在低转时的扭矩输出,另一个涡轮则用于提高发动机的最大输出动力用以满足高速情况下的动力需求。该发动机最大输出功率为265 hp(约合195kW),最大转矩为425 lb-ft(约合576Nm)。配备该发动机的宝马335d车型从静止加速到100km/h所需时间仅为6.2s。尽管该发动机有着较高的性能,但其却有着良好的燃油经济性。这款柴油发动机同时满足美国50个州的排放标准。 上述内容中提到的涡轮增压知识在《涡轮增压发动机知识详解》,如需了解请点击查看。

汽车设计论文 发动机新技术

汽车发动机VVT技术与FSI技术分析 摘要:随着科技的迅猛发展,发动机出现了许多新技术,VVT-i和FSI就是其中最为引人注目的两个,本文从这两个新技术的技术和使用层面分别讨论了两种技术的发展,对未来新技术的涌现有借鉴价值。 关键字:VVT-i,FSI,可变气门,缸内直喷,丰田,大众 近年来,当代汽车发动机飞速发展,新技术不断涌现和应用,带动汽车性能得到极大改善,其中有大名鼎鼎的丰田VVT-i和德国的FSI,下面就这些新技术的一些基本原理做简单介绍。 智能可变气门正时系统 近年生产的丰田轿车,大都装配了标注有“VVT-i”字样的发动机,经过商业宣传,很多人已经知道VVT-i这一新名词,但它的具体内容却鲜为人知。VVT 是英文缩写,全称是“Variable Valve Timing”,中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。这些就是“VVT-i”的字面含义了。 VVT-i是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。 VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到ECU 并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVT-i控制器的不同油道上。 VVT-i系统视控制器的安装部位不同而分成两种,一种是安装在排气凸轮轴上的,称为叶片式VVT-i,丰田PREVIA(大霸王)安装此款。另一种是安装在进气凸轮轴上的,称为螺旋槽式VVT-i,丰田凌志400、430等高级轿车安装此款。两者构造有些不一样,但作用是相同的。叶片式VVT-i控制器由驱动进气凸轮轴的管壳和与排气凸轮轴相耦合的叶轮组成,来自提前或滞后侧油道的油压传递到排气凸轮轴上,导致VVT-i控制器管壳旋转以带动进气凸轮轴,连续改变进气正时。当油压施加在提前侧油腔转动壳体时,沿提前方向转动进气凸轮轴;当油压施加在滞后侧油腔转动壳体时,沿滞后方向转动进气凸轮轴;当发动机停止时,凸轮轴液压控制阀则处于最大的滞后状态。 螺旋槽式VVT-i控制器包括正时皮带驱动的齿轮、与进气凸轮轴刚性连接的内齿轮,以及一个位于内齿轮与外齿轮之间的可移动活塞,活塞表面有螺旋形花键,活塞沿轴向移动,会改变内、外齿轮的相位,从而产生气门配气相位的连续改变。当机油压力施加在活塞的左侧,迫使活塞右移,由于活塞上的螺旋形花键的作用,进气凸轮轴会相对于凸轮轴正时皮带轮提前某个角度。当机油压力施加在活塞的石侧,迫使活塞左移,就会使进气凸轮轴延迟某个角度。当得到理想的配气正时,凸轮轴正时液压控制阀就会关闭油道使活塞两侧压力平衡,活塞停止

汽车发动机冷却系

汽车发动机冷却系

汽车发动机冷却系系统维护摘要:汽车的发动机是动力的来源,它的出现给汽车带来了强劲的动 力,它就像人的心脏一样那样重要,但是人不只是有心脏,还有别的器官,心脏在这些器官的辅助下,才能发挥它原本的能力。这器官就是冷却系。它让工作中的发动机得到适度的冷却,从而保持发动机在最适宜的温度范围内工作。本文论述了冷却系的作用、组成、主要结构、工作原理、日常维护、故障检测步骤和排除方法。 关键词:冷却系统;过热、过冷的危害;冷却系统维护; 如果一台发动机,冷却系统的维修率一直居高不下,往往会引起发动机其他构件损坏,特别是随着车辆行驶里程的增加,冷却系统的工作效率逐渐下降,对发动机的整体工作能力产生较大影响,冷却系统的重要性在于维护发动机常温下工作,尤如人体的皮肤汗腺,如果有一天,人体的汗腺不能正常工作,那么身体内的热量将无法散去,轻则产生中暑,重则休克。 一、冷却系的组成与作用 (一)作用 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为气冷式引擎及水冷式引擎,气冷式引擎是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷式引擎则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 (二)组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种,空调冷凝器通常与其装在一起。 1.水泵和节温器 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。目前最先进的水泵是宝马新一代直六发动机上采用的电动水泵,它能精确的控制水泵的转速,并有效的减少了对输出功率的损耗。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液

汽车发动机-国标汇总

GB 3843— 1983、 GB 14761.6 —1993、 GB 3847— 1999、 GB/T 3846-1993 、 GB 18285— 2000 中的压燃式发 动机汽车部分 GB 18285 — 2000 中的点燃式发 动机汽车部分 GB 18296 —2001 汽车燃油箱 安全性能要求和试验方法 GB 18352.3 — 2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2 —2001 GB 20890 —2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T 5181 — 2001 汽车排放术语和定义 GB/T 5181 — 1985 GB/T 16570 —1996 汽车柴油机架装直列式喷油泵 安装尺寸 GB/T 17692 —1999 汽车用发动机净功率测试方法 GB/T 18297 —2001 汽车发动机性能试验方法 GB/T 18377 —2001 汽油车用催化转化器的技术要求和试验方法 GB/T 19055 —2003 汽车发动机可靠性试验方法 QC/T 525-1999 GB/T 25983 —2010 歧管式催化转化器 QC/T 33 —2006 汽车发动机硅油风扇离合器试验方法 QC/T 33 —1992 QC/T 280 — 1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件 ZB T12 002 —1987* QC/T 281 — 1999 (2009) 汽车发动机轴瓦铜铅合金金相标准 ZB T12 003 —1987* QC/T 282 — 1999 (2009) ZB T12 004 汽车发动机曲轴止推片技术条件 —1987* QC/T 288.1 —2001 (2009) 汽车发动机冷却水泵技术条件 QC/T 288 — 1999 QC/T 288.2 —2001 (2009) 汽车发动机冷却水泵试验方法 QC/T 289 — 2001 (2009) 汽车发动机机油泵技术条件 QC/T 289 — 1999 QC/T 468 — 2010 汽车散热器 QC/T 468 — 1999 QC/T 469 — 2002(2009) 汽车发动机气门技术条件 QC/T 469 — 1999 QC/T 471 — 2006 汽车柴油机技术条件 QC/T 471 — 1999 QC/T 481 — 2005 汽车发动机曲轴技术条件 QC/T 481 — 1999 十、汽车发动机标准 GB 11340 —2005 GB 14762 —2008 GB 14763 —2005 GB 17691 —2005 GB 18285 —2005 装用点燃式发动机重型汽车 曲轴箱污染物排 放限值及测量方法 GB 14761.4 —1993、 GB 11340 — 1989 重型车用汽油发动机与汽车排气污染物排放限 GB 14762 — 2002 值及测量方法 ( 中国Ⅲ、Ⅳ阶段 ) 装用点燃式发动机重型汽车 燃油蒸发污染物 GB 14761.3 —1993、 排放限值及测量方法(收集法) GB 14763 — 1993 车用压燃式、 气体燃料点燃式发动机与汽车排气 GB 17691 — 2001、 污染物排放限值及测量方法 (中国Ⅲ、 Ⅳ、Ⅴ阶 GB 14762— 2002 中的气体燃 料 段) 点燃式发动机部分 点燃式发动机汽车排气污染物排放限值及测量 GB 14761.5 —1993、 方法(双怠速法及简易工况法) GB/T 3845 — 1993、 GB 3847 —2005 车用压燃式发动机和压燃式发动机汽车排气烟

汽车发动机发展史

汽车发动机发展史 汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。 十佳发动机VQ35 汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。 回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。 汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 蒸汽机汽车 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 N.J.Cugnot 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。

日本汽车发动机所采用的新技术

日本汽车发动机所采用的新技术 【摘要】发动机作为汽车的心脏,其重要性不言而喻。有了好的发动机,汽车性能将会大幅度提高,从而给人一种驾驶汽车的快感。现如今,日本的发动机技术处于全世界领先地位,学习和借鉴他们先进的技术和经验将对我国发动机技术的发展产生巨大的推动作用。 As the heart of the car engine, its importance is self-evident. A good engine, vehicle performance will be improved, so as to give a person a kind of driving a car of pleasant sensation. Nowadays, Japan's engine technology in the world leading position, study and learn their advanced technology and experience of China's engine will of the development of the technology has the huge role. 【关键词】VTEC i-VTEC 可变进气歧管技术VVT-i 偏置曲轴技术电子式节气门 引言:现如今,汽车应用日益普遍,走进了千家万户,而作为一辆汽车的心脏-发动机,其重要性不言而喻,而目前我们发动机技术水平与国外相差甚大,我们需要学习和借鉴国外先进的发动机技术,以提高我们汽车水平。 本田发动机 1.VTEC技术 VTEC是本田开发的先进发动机技术,也是世界上第一个能同时控制气门开闭时间及升程两种不同情况的气门控制系统。VTEC(Variable Valve Timing and Valve Life Electronic Control System)的意思“可变气门配气相位和气门升程电子控制系统”。与普通发动机相比,VTEC发动机所不同的是凸轮与摇臂的数目及控制方法,它有中低速用和高速用两组不同的气门驱动凸轮,并可通过电子控制系统的调节进行自动转换。通过VTEC系统装置,发动机可以根据行驶工况自动改变气门的开启时间和提升程度,即改变进气量和排气量,从而达到增大功率、降低油耗及减少污染的目的。目前本田车型都使用i-VTEC(智能可变气门配

汽车发动机技术教案

自然吸气相对涡轮增压的优点: 1.相比之下温度稍低,从而产生的积碳问题轻一些。 2.发动机寿命相对长些。 3.动力输出相对较为线性。 4技术可靠性高、耐久性好 以同等动力输出而不是同等排量来比较,涡轮发动机因为排量更小,所以在涡轮不全力工作的状态下,它比同等动力水平的自然吸气发动机更加省油。例如:一台1.8T发动机动力水平相等于另一台2.4L自然吸气发动机,彼此都全力工作时,大家的油耗可能差不多;但当这两台发动机在90km/h等速巡航这种低负荷工作时,1.8T发动机的涡轮由于未充分介入工作,这时气缸内部实际工作排量只有1.8L,而另一台自然吸气发动机工作排量始终为2.4L,这时候1.8T带涡轮的比2.4L自然吸气的更省油。

增压就是将空气预先压缩然后再供入气缸,以期提高空气密度、增加进气量的一项技术。由于进气量增加,可相应地增加循环供油量,从而可以增加发动机功率。同时,增压还可以改善燃油经济性。实践证明,在小型汽车发动机上采用涡轮增压或机械增压,当汽车以正常的经济车速行驶时,不仅可以获得相当好的燃油经济性,而且还由于发动机功率增加,可以得到驾驶人所期望的良好的加速性。 第一节概述

增压有涡轮增压、机械增压和气波增压等三种基本类型。实现空气增压的装置称为增压器。各种增压类型所用的增压器分别称为涡轮增压器、机械增压器和气波增压器。 机械增压器由发动机曲轴经齿轮增速器驱动,或由曲轴齿形传动带轮经齿形传动带及电磁离合器驱动。机械增压能有效地提高发动机功率,与涡轮增压相比,其低速增压效果更好。另外,机械增压器与发动机容易匹配,结构也比较紧凑。但是,由于驱动增压器需消耗发动机功率,因此燃油消耗率比非增压发动机略高。 第一节概述

关于汽车的所有国家标准

B/T3730.1-1998汽车和半挂车的术语及定义车辆类型 GB/T3730.3-1992汽车和半挂车的术语及定义车辆尺寸 GB/T3730.2-1996道路车辆质量词汇和代码 GB/T17347-1998商用道路车辆尺寸代码 GB/T16735-1997道路车辆车辆识别代号(VIN)位置及固定 GB/T16736-1997道路车辆车辆识别代号(VIN)内容与构成 GB/T16737-1997道路车辆世界制造厂识别代号(WMI) GB/T16738-1997道路车辆世界零件制造厂识别代号(WPMI) GB/T17349.1-1998道路车辆汽车诊断系统词汇 GB/T4782-1984道路车辆-操纵件、指示器及信号装置-词汇 GB/T4971-1985汽车平顺性名词术语和定义 GB/T12549-1990汽车操纵稳定性术语及其定义 GB/T15089-1994机动车辆分类 QC/T34-1992汽车的故障模式及分类 QC/T571-1999汽车清洁度工作导则名词、术语 GB/T9417-1988汽车新产品型号编制规则 GB/T17349.2-1998道路车辆汽车诊断系统图形符号 GB4094-1999汽车操纵件指示器及信号装置的标志 GB/T17676-1999天然气汽车和液化石油气汽车标志 GB/T4781-1984牵引车与全挂车的机械连接装置互换性 GB/T4606-1984道路车辆半挂车鞍座50号牵引销主要尺寸和安装互换性尺寸GB/T4607-1984道路车辆半挂车鞍座90号牵引销主要尺寸和安装互换性尺寸QC/T538-1999载货汽车燃料消耗量限值 QC/T535-1999重型载货汽车燃料消耗量限值 GB1495-1979机动车辆允许噪声 GB16170-1996汽车定置噪声限值 GB1589-1989汽车外廓尺寸限界 GB11561-1989汽车加速器控制系统的技术要求 GB11553-1989汽车正面碰撞时对燃油泄漏的规定 GB/T7031-1986车辆振动输入路面平度表示方法 GB7258-1997机动车运行安全技术条件 GB17259-1998机动车用液化石油气钢瓶 GB17258-1998汽车用压缩天然气钢瓶 QC/T245-1998压缩天然气汽车专用装置和安装要求 QC/T247-1998液化石油气汽车专用装置和安装要求 QC/T251-1998矿用自卸汽车应急转向性能要求 GB/T16887-1997卧铺客车技术条件 QC/T635-2000双层客车技术要求

汽车发动机原理课本总结

汽车发动机原理 一、发动机实际循环与理论循环的比较 1.实际工质的影响 理论循环中假设工质比热容是定值,而实际气体比热是随温度上升而增大的,且燃烧后生成CO2、H2O等气体,这些多原子气体的比热又大于空气,这些原因导致循环的最高温度降低。加之循环还存在泄漏,使工质数量减少。实际工质影响引起的损失如图中Wk所示。这些影响使得发动机实际循环效率比理论循环低。 2.换气损失 为了使循环重复进行,必须更换工质,由此而消耗的功率为换气损失。如图中Wr所示。其中,因工质流动时需要克服进、排气系统阻力所消耗的功,成为泵气损失,如图中曲线rab’r包围的面积所示。因排气门在下止点提前开启而产生的损失,如图中面积W所示。 3.燃烧损失 (1)非瞬时燃烧损失和补燃损失。实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失. (2)不完全燃烧损失。实际循环中会有部分燃料、空气混合不良,部分燃料由于缺氧产生不完全燃烧损失。 (3)在高温下,如不考虑化学不平衡过程,燃料与氧的燃烧化学反应在每一瞬间都处在化学动平衡状态,如2H2O=2H2+O2等,由左向右反应为高温热分解,吸收热量。但在膨胀后期及排气温度较低时,以上各反应向左反应,同时放出热量。上述过程使燃烧放热的总时间拉长,实质上是降低了循环等容度而降低了热效率。 (4)传热损失。实际循环中,汽缸壁和工质之间始终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线而造成的损失。 (5)缸内流动损失。指压缩及燃烧膨胀过程中,由于缸内气流所形成的损失。体现为,在压缩过程中,多消耗压缩功;燃烧膨胀过程中,一部分能量用于克服气流阻力,使作用于活塞上做功的压力减小。 二、充量系数 衡量不同发动机动力性能和进气过程完善程度的重要指标;定义为每缸每循环实际吸入气缸的新鲜空气质量与进气状态下计算充满气缸工作容积的空气质量的比值。 影响因素: 1.进气门关闭时缸内压力Pa 2.进气门关闭时缸内气体温度Ta 3.残余废气系数 4.进排气相位角 5.压缩比 6.进气状状态 提高发动机充量系数的措施 1.降低进气系统阻力 发动机的进气系统是由空气滤清器、进气管、进气道和进气门所组成。减少各段通路对气流的阻力可有效提高充量系数。(1)减少进气门处的流动损失1)进气马赫数M 不超过0.5受气门大小、形状、升程规律、进气相位等因素影响2)减少气门处的流动损失增大气门相对通过面积,提高气门处流量系数以及合理的配气相位是限制M值、提高充量系数的主要方法。增大进气门直径可以扩大气流通路面积;增加气门数目;改进配气凸轮型线,适当增加气门升程,在惯性力容许条件下,使气门开闭尽可能快;改善气门处流体动力性能。(2)减少进气道、进气管和空气滤清器的阻力

相关主题