搜档网
当前位置:搜档网 › 氧化锌压敏电阻的老化机理..

氧化锌压敏电阻的老化机理..

氧化锌压敏电阻的老化机理..
氧化锌压敏电阻的老化机理..

氧化锌压敏电阻的老化机理

1 前言

从氧化锌压敏电组U-I 特性、介电特性以及热激发电流(TSC),综述了压敏电阻直流电压和交流电压作用引起的老化现象。

氧化锌压敏电阻的老化,归因于晶粒边界区耗尽层中填隙锌离子的扩散,由同时施加的电压和温度引起的。当耗尽层中的填隙锌通过加热退火处理永久地扩展出来,压敏电阻的稳定性得以改善。

2 氧化锌压敏电阻的老化现象

2.1 伏安特性曲线的老化现象

图1 是对直径14mm,厚度1.8mm 的氧化锌压敏电阻的试验中得到的。图中分别列出直流和交流电压作用下伏安特性的老化现象[1-6.8]。

2.1.1 直流电压作用下的老化

在直流电压的作用下,氧化锌压敏电阻的U-I 曲线发生不对称变化,即在施加电压一段时间后,再测量压敏电阻的U-I 特性时,其非线性特性曲线发生不对称的变化,如图1(a) 所示。试验时施加的电压梯度为95V/mm,温度为70℃。加压后在测量压敏电阻的U-I 特性表明,在同样的电压下,流过压敏电阻的电流将增加。不对称变化表现在:和老化试验电压极性相反的伏安特性(图1(a) 左下角)的变化比极性一致的正方向特性(图1(a) 右上角)的变化要大。随所施加电压和加压时间的增加,U-I 特性曲线的改变程度也加大。

2.1.2 交流电压作用下的老化

当施加交流电压一定时间后,氧化锌压敏电阻的U-I 特性曲线发生对称变化,如图(1)b 所示。除了特性曲线的变化是对称的特点外,改变的趋势与施加直流电压的趋势相近。试验时所施加的交流电压梯度为65V/mm,温度为70℃。

试验还表明,不论是直流还是交流作用电压,老化试验后压敏电阻U-I 特性在预击穿区(即低电场区域)的变化程度要比击穿区即(中电场区域)大得多。

2.2 功率损耗和阻性电流的增加

在直流电压作用下对氧化锌压敏电阻进行加速老化试验,试验结果表明,与交流电压作用下压敏电阻一样,氧化锌压敏电阻的功率损耗和阻性电流在老化试验过程中明显增加[1,4,5]。

2.2.1 功率损耗增加

对压敏电阻试品在加速老化后,在室温下测量其功率损耗与电压的关系曲线。图 2 表示试品在老化试验前后测试的结果。加速老化试验时的温度为135℃,施加直流的荷电率为0.85,试验时间为100h。和老化试验前的功耗特性曲线相比,试验后的功耗有明显增加,即试验后功率损耗与电压的关系曲线发生了向左的移动。

2.2.2 阻性电流增加

老化试验后阻性电流增加,以及压敏电阻整体电阻率逐渐下降。

图3 表示不同老化试验过程中交流电压和直流电压作用下,压敏电阻的电流增加的典型曲线。

图4 表示进行老化试验前后氧化锌压敏电阻在低电场区的电阻率随温度变化的情况。从图中可以看出,老化试验后氧化锌压敏电阻的电阻率明显减小。

2.3 氧化锌压敏电阻电介质特性的变化

2.3.1 介电常数的变化

介电常数的变化将导致压敏电阻电容值的变化[1,4,5]。

图 5 所示为氧化锌压敏电阻在95V/mm 的直流电压及有效值为65Vrms/mm 交流电压时,进行加速老化试验前后压敏电阻电容随频率的变化曲线,试验时温度为70℃,加压时间为500h。从图中可以看出,老化试验后,电容随频率的变化曲线发生了移动,电容值比加压老化试验前有所减小。

图6 所示为氧化锌压敏电阻经95V/mm 的直流电压,温度70℃,110h 老化试验后,压敏电阻电容值随施加电压的变化曲线。从图中看出,电容随电压的增加而减小,而且老化试验后曲线向下移动,即电容值有较大下降。

2.3.2 介质损耗变化

图7 所示为与图 5 相同的老化试验条件下,在进行直流和交流老化试验前后测量得到的压敏电阻介质损耗因数tanδ随频率的变化曲线[1,4,5]。在对氧化锌压敏电阻进行交流或直流老化试验后,介质损耗在频率0.1MHz 以下时都比试验前有所增加。

试验表明,随着老化试验时间、试验时的温度及施加电压幅值的增加,氧化锌压敏电阻电容的减小和介质损耗的增加都将进一步加剧。

3 氧化锌压敏电阻的老化原因

3.1 热激发电流

测量热激发电流(TSC)是常用于研究连续电压作用下电介质老化机理的一种方法。在连续电压作用下,介质内部积累了电荷,试验时,当温度升高,这些电荷因受热而释放出来,便形成热激发电流[1,4]。

3.1.1 热激发电流的测定

当对经施加直流电压老化后的压敏电阻,用石英管通过以0.333K/s 一定的速率加温时(不加偏压),可以观察到并测定出热激发电流TSC,热激发电流是在非平衡状态下的迁移离子向平衡状态的过渡中产生的。通过一定速率的加热,界面附近积累的离子通过扩散又恢复到起始分布状态,而这种扩散是定向的,因而产生热激发电流,所以当压敏电阻经热激发电流测试后,其U-I 特性曲线会恢复到原来的状态,因此,热激发电流的大小也就正好是老化程度的量度。

压敏电阻经过不同直流负荷时间的直流老化,测得的热激发电流如图8 所示。

由图8 可见,热激发电流TSC 峰值随着老化时间的增长而增大,并且相应的峰值温度Tm 向高温方向移动。

3.1.2 热激发释放电荷与老化时间的关系

热激发释放的电荷QTSC 与老化时间t 的关系用下式表示

QTSC=Ktn (1)

式中:K —常数;

n —指数,约为0.6。

从上式可知,QTSC 随时间的变化是缓慢和连续的。考虑到老化可以在长达几百小时内连续发生,要陷阱中的电子显出长达几百小时的响应时间是不可能的,只有离子迁移可以说明上述现象,这里的离子迁移发生在耗尽层区和ZnO-ZnO 晶粒之间的晶界层区。

在95V/mm、343K、1h 偏压后测定了经800℃热处理2h 试验的热激发电流TSC。图8 实验结果用破折线表示。热处理后试样的TSC 约为未处理试样TSC 的1/5。说明热处理后的试样比未热处理的U-I 曲线变化显著地小,表现出良好的耐受偏压稳定性。3.2 离子扩散

在氧化锌压敏电阻耗尽层中,可能迁移的离子有填隙锌离子()、格点上的锌离子() 格点上的氧离子() 和其他在锌格点上的替位(外来)离子(如Bi···、Co··和Mn··等)。Gupta 等通过对交流电压作用下填隙锌扩散过程的研究,提出了填隙锌是占优势的迁移离子的证据[1,2,4]。

根据承受交流电压作用的压敏电阻,其电流衰减方程和反向偏压一边的耗尽层中占优势的离子,在电场作用下向晶界方向迁移的离子扩散方程,可以求出离子扩散系数

(2)

式中:D —离子扩散系数;

L —耗尽层宽度;

τ—电流衰减时间常数。

从测得的电流衰减曲线,可以求出时间常数τ。若耗尽层宽度L=100nm,温度在100℃~170℃范围内,则按式(2) 计算的扩散系数D=10-12~10-13 (cm2/s)。

表 1 列出了文献报导的离子扩散系数。从表中的数据可以看出,按式(2) 计算的结果与文献中报导的填隙锌离子的扩散系数十分接近。

表1 文献报导的离子扩散系数与用式(2) 计算的

离子扩散系数的比较

扩散离子扩散系数(cm2/s)

格点上的锌离子 DZn(L) 10-42

格点上的氧离子 Do(L) 10-84

填隙锌离子 DZn(i) 10-10~10-12

按式(2)计算 Di 10-12~10-13

因此,可以认为填隙锌是氧化锌压敏电阻老化过程中起决定性作用的迁移离子。

3.3 填隙锌离子的来源

氧化锌的非化学计量特性,当加热时,特别是在氧气氛下,它可形成过剩的Zn 施主,寄存在点阵的间隙位上,当冷却时在室温下“冻结”。填隙锌离子从锌颗粒内逐渐迁移到其边界,在耗尽层中被捕获的冻结填隙离子对压敏电阻的稳定性是有害的,会引起压敏电阻老化

[2,7]。基于这一概念,研究了压敏电阻的晶界缺陷模型(图10),与肖特基势垒能级模型相似。

压敏电阻的不稳定性是由于电场促使填隙锌在耗尽层中的扩散,继而通过与晶粒边界缺陷产生化学反应的过程,结果导致随着时间延长势垒高度降低,泄漏电流增加。

由两种势垒成分构成一耗尽层:

(1) 空间固定的正电荷离子构成的稳定成分。

(2) 由移动的正电荷的填隙锌离子构成的亚稳定成分。热处理使填隙锌还原,提高了稳定性。当耗尽层中的填隙锌通过加热退火处理永久性地扩散出来,表明压敏电阻的稳定性得以改善。

3.4 肖特基势垒的变化

压敏电阻经直流负荷后U-I特性曲线的老化归因于肖特基势垒的变化。老化主要发生在预击穿区,预击穿区的热激发方程(热发射电流)[2,4] 是

(3)

式中:J —热发射电流;

φB —电子热激活能;

E —电场强度;

B —常数;

Jo —常数;

K —波尔兹常数;

T —绝对温度。

U-I 特性曲线老化后一定电压下的电流增大。由上式可知,这种电流增大归因于φB 的减小,所以上面所说肖特基势垒的变化就是指φB 的减小。

位于晶粒边界的肖特基势垒φB:

(4)

式中:e —电子电荷;

Ns —表面态密度;

εo —真空介电常数;

Nd —ZnO 晶粒中的施主浓度。

由上式看出,Ns 的减小或Nd 的增加都可使φB 下降,即晶界层或晶粒边界中负电荷(Ns) 的减少、或者是耗尽层中正电荷(Nd) 的增加都会导致φB 的下降,使J 相对地增大,从而造成U-I 特性曲线的老化。使Ns 减少或使Nd 增加的原因在于正、负离子在晶界层与晶粒的界面两侧的积累和离散。

由式(3) 可知,泄漏电流是与势垒高度、外施电压及温度有关的。当外施电压和温度一定时,泄漏电流增加意味着势垒高度的降低。图9 所示根据老化前后,不同温度下的电压一电流特性求得的老化前后势垒高度随外施电压的变化。

从这些数据可以看出,老化后势垒高度确实降低,并且势垒高度降低的程度随着外施电压的增加而增加。因此,可以认为老化后,压敏电阻片泄漏电流的增加完全是由于肖特基础势垒

高度降低造成的。

下面用图10 具体地说明由离子迁移而引起起的这种离子的积累和离散现象。

表2 列出在直流负荷电压作用下,肖特基势垒的变化情况。

肖特基势垒高度的减小是由于Ns 的减小或在界面的负电荷引起;或者由于施主浓度的增加或者耗尽层中的正电荷Nd 的增加而引起的。

3.5 晶界缺陷模型

氧化锌压敏电阻的晶界缺陷模型(图11)[1,2,6],由两种势垒成分构成一耗尽层:a. 空间位置固定的、正电荷离子形成的稳定成分。这种离子是3 价的置换(外来)离子,称为施主离子,(D 是Bi、Sb 等)和本征氧空位及。

b. 可移动的、正电荷的Zn 填隙离子组成的亚稳定成分。这一种离子是单电荷和双电荷本征Zn 填隙离子、。

这些正电荷施主从晶粒边界的两侧扩散到邻近晶粒,由晶粒边界处负电荷受主层来补偿,它们基本上是本征Zn 空位和。认为氧填隙和在ZnO 中不是主要的缺陷类型。

(1) 为了满足电中性,晶界上的负电荷(、)是由相邻晶粒的耗尽层中的正电荷在两边平衡的。在耗尽层中电荷的重要特点是这些正离子的空间位置是不同的:置换离子()和空位(,)是位于点阵(子晶格)位置上,而Zn 填隙离子(,)是位于ZnO(纤锌矿)结构的间隙位上。其结果,Zn 填隙离子(,)可以迅速地在结构中经由这种间隙位置上迁移,而基质点阵离子(,,)或其置换离子()必须通过被热力学定位的相邻空位来运动。对所有的实际用途来说,通常压敏电阻的工作温度下这些离子在空间上是固定的。

(2) 这一模型的另一个特点是晶界表现出它好像是一个被“畸变”的层。这个畸变层有两个特点:

a. 提供了一个负离子(氧)的迅速扩散通道;

b. 起着中性空位Vx 的无限的来源和吸收剂的作用。

这个模型表征地解释了压敏电阻负载情况下的不稳定性。

3.6 缺陷间的化学反应

在压敏电阻老化缺陷型研究中,最重要的是解释离子迁移的驱动力[2]。该模型以为在负荷期间压敏电阻是被“激发”了,它可提供带正电荷填隙离子向带负电荷晶界面迁移所必需的驱动力。在交界面处,由于缺陷的化学反应:

(5)

式中:—带正电荷的填隙锌;

—带负电荷的锌空位;

—中性填隙锌;

—中性锌空位。

这些带电缺陷被转换为中性缺陷。有两种中性缺陷,在晶界吸收剂中消失(消失于“无序层陷阱”),留在晶界处。

压敏电阻随着电应力的持续,中性的持续聚集在界面。如图12 所示,由于从邻近储存的正和负的电荷继续消耗相反的电荷,这种电荷的损耗引起势垒电势和势垒高度降低,因此

导致漏电流增大。

正如图12(b) 所示,准确的对立物反应是发生在电场去除(压敏电阻去激励)和势垒电势与势垒高度恢复时。

虽然扩散和化学反应都发生在压敏电阻的“激励”和“去激励”期间,但缓慢的扩散现象是一个速率控制台阶。这样一来,图11 中所描述的时间相关不稳定现象,就可以直接与填隙Zn 离子的扩散有关。利用氧空位VO 作为扩散空间难以说明加载引起的不稳定现象和特性的改变。

4 氧化锌压敏电阻的老化机理

4.1 直流老化机理

分析表明,老化是由于压敏电阻的肖特基势垒的畸变引起的,而肖特基势垒的畸变又是由晶界区域的离子迁移造成的,根据分析迁移离子主要是填隙锌离子[1,4,9]。

在直流电压长期作用下,压敏电阻的U-I 特性曲线发生不对称的改变,原因是反向肖特基势垒高度比正向肖特基势垒高度降低更多,即肖特基势垒出现了不对称的畸变(见图13)。由于直流电压极性不变,离子一直在向晶界势垒单向迁移,导致反向偏压侧肖特基势垒不断降低。图13(a) 和(b) 为直流电压作用前后ZnO 晶粒边界区的能带图,表明正偏压侧的反向肖特基势垒逐渐下降,从而导致泄漏电流密度随时间的增加。

肖特基势垒的下降导致泄漏电流和功率损耗的增加;由于势垒的不对称变化,又导致U-I 特性曲线的不对称变化。

泄漏电流密度随时间增加可表示为:

J=A exp(Bt n) (6)

式中:A、B、n 为常数。

4.2 交流老化机理

在交流电压在作用下,在预击穿区,压敏电阻的阻性电流密度可以采用下式表示[1,4,6]

(7)

式中:β为常数;

(8)

ε为介电常数;

E 为电场强度;

Φo —肖特基势垒高度;

T —温度;

K —波尔兹曼常数。

4.2.1 交流正半波电压作用

在交流正半波电压作用下,假设右侧施加正偏压,则左侧为正向肖特基势垒,右侧为反向肖特基势垒,如图14(a) 所示。这时在晶界层及反向肖特基势垒侧的耗尽层都发生离子迁移。反向偏压侧肖特基势垒耗尽层中的填隙锌离子向晶界层迁移,即离子往左方向迁移,与右侧界面上的负电荷的锌空位生成中性离子,导致右边反向肖特基势垒高度降低。

4.2.2 交流负半波电压作用

当所加电压的极性改变时,即在交流电压的负半波作用下,这时左侧正偏压下为反向肖特基势垒,右侧为正向肖特基势垒。左侧耗尽层中的填隙锌离子向晶界层迁移,与在左侧界面上的负电荷的锌空位生成中性离子,导致左边反向肖特基势垒降低,如图14(b) 所示。

交流电压作用下极性改变时,晶界层的离子一会往左,一会往右,左右运动的距离相等,则晶界层的离子迁移总的来说保持位置不变,相当于没有发生迁移。然而在耗尽层中的离子迁移则不能忽略。因为当为反向肖特基势垒时,在其上施加一个高电场,而当为正向肖特基势垒时,在其上只施加一个小的电场。在电压不断改变极性时,耗尽层的填隙锌离子一会往晶界层的方向迁移,一会往反方向迁移,但左右两边运动的距离不相等,最终正填隙锌离子迁移到达肖特基势垒的界面,与锌空位发生反应生成中性离子。这种情况导致氧化锌晶粒—晶界层—氧化锌晶粒的界面形成的两个肖特基势垒发生对称畸变,两侧势垒高度均有所降低,如图14(c) 所示。

和直流老化相似,交流电压作用下阻性电流的增加是由于势垒高度的降低引起的。

4.3 冲击电流作用时的老化机理

在冲击负荷时,压敏电阻经受着大电流的冲击作用,虽然脉冲宽度很窄(数十μs 到2ms),但是压敏电阻局部的温升是相当高的。

冲击老化的机理主要是热老化[1,4,9]。冲击电流作用下,在短时间内将大量的能量注入压敏电阻。如果不考虑散热,将压敏电阻吸收冲击能量的升温过程近似看作绝热温升,测吸收冲击能量Wi 后,压敏电阻的温升为:

(9)

式中:ΔT —温升;

ρ—电阻率;

cp —定压比热。

压敏电阻吸收能量升温之后,较高的温度在压敏电阻内部产生较大的热激活能。在单极性的冲击电压作用下,一方面晶界层的Bi…等正离子向反向偏压肖特基势垒的晶界迁移;另一方面在反向肖特基势垒耗尽层内的正离子也向晶界方向迁移。但所有离子迁移速度明显高于低电场区直流电压作用时的迁移速度。两方面的作用将引起肖特基势垒的较大的畸变,最终产生较严重的单极性老化。

冲击老化与冲击电流的幅值和波形、作用次数以及环境温度有关。

4.4 冲击电流与工作电压同时作用的复合老化

在实际应用中,压敏电阻是在长期承受直流或交流工作电压的作用,只间隙性地承受冲击电流的作用,即冲击老化是与交流老化或直流老化同时进行的[9]。

如果压敏电阻长期承受直流电压作用,同极性的冲击电流作用将使老化加速。若直流作用时所加冲击的极性相反,或在交流作用时叠加冲击,则冲击电流作用下出现的老化经过一段时间以后能得到一定的恢复。

冲击和交流叠加时,冲击使晶界层的正离子向一边的势垒迁移,但接下去的交流作用又使正离子向两边的势垒均匀扩散,使偏向一边离子又被拉过来迁移到另一边,从而使冲击的老化程度降低,即交流和冲击叠加造成的老化具有相减性。

4.5 压敏电阻老化的预防

4.5.1 热处理改善稳定性

已经表明,利用热处理退火可以将耗尽层中的填隙锌离子永久地扩散出去,改善压敏电阻的稳定性。当不稳定的压敏电阻在氧化气氛中退火几小时,最好600℃~800℃,压敏电阻变得相对时间稳定。600℃退火样品,显示出阻性电流IR 的上升可以忽略。利用晶粒内Bi2O3 相从初始的β/δ向γ相转变时压敏电阻也变得稳定[1,2]。

(1) 空气中热处理时,氧分子通过各种方式扩散进入晶界,与位于晶界的中性氧空位发生化学反应,在晶界处生成中性的氧晶格[见图15(a)、(b)]。

(10)

(2) 中性的氧晶格立即从晶界处带负电荷的锌空位上捕获一个电子(因为它们之间有很强的亲和力),在界面形成中性的锌空位和带负电荷的氧晶格上离子。

(11)

虽然湮灭在晶粒边界吸收层中了,但氧晶格上带负电荷的保留在界面上了(见图15(c))。

(3) 填隙锌Zni 从晶粒内到边界区向外扩散。由被激活扩散到界面的正填隙锌离子与锌空位反应,湮灭而形成晶格上出现带正电荷的锌离子和中性填隙空位[见图15(d)、

(e)]。

(12)

(4) 两种带相反电荷的离子,带正电荷的锌晶格与晶格上带负电荷的氧离子反应,即在晶界形成中性的氧化锌晶格ZnO(见图15(f))。

(13)

从而消除了耗尽层中的填隙锌离子。

以上说明,通过热处理使氧分子扩散进入晶界形成氧原子,减少了造成晶界势垒降低的填隙锌离子Zni,使压敏电阻的性能得到改善。表3 列出氧化锌压敏电阻的退火效果。

表3 氧化锌压敏电阻的退火效果

序号参数效果

1 U-I 曲线在击穿前区产生永久性变化

2 E0.5 (RT) 因退火下降

3 IR (RT) 因退火而增加

4 E0.

5 随t 的变化退过火的器件随时间不产生变化,

未退火器件随时间而降低

5 IR 随t 的变化退火器件不随时间变化,

未退火器件随时间增加。

6 界态面态密度退火时降低

7 陷阱密度因退火降低

8 非线性系数α因退火而降低

9 过载稳定性因退火而增加

10 矩形波稳定性因退火而增加

11 能量吸收因退火而增加

4.5.2 化学法改善稳定性

最近报道,引入像Na 和K 那样的两性掺杂剂到ZnO 点阵中去,两性掺杂具有能占据点阵位置和填隙位置两者的能力[2,10]。利用占据填隙位置,掺杂剂首先将在可能位置上的Zn 填隙离子骨架分割成块,然后阻止Zn 填隙利用可用位置的迁移。进一步,Na 离子在填隙位置起受主的作用,而在点阵位置的Na 离子起施主的作用。

这一模式表明,必须存在一个填隙密度大大降低的掺杂区域(见图16),于是就产生了强化稳定性的前景,在图16 中,中性区域Ⅲ就是这样一个希望的掺杂区。

当这一掺杂效果实现时,IR 随t 变化曲线出现一个对压敏电阻所期望的平台响应(见图17)。

采用二次离子质谱仪(SIMS)和离子扫描谱仪(ISS)研究,已表明在近晶界耗散区形成了模型中所假定的Na 掺杂,证实了Na 掺杂对改善稳定性的有效性。

5 结论

(1) 从氧化锌压敏电阻U-I 特性,介电特性以及热激发电流(TSC),综述了压敏电阻直流电压和交流电压作用引起的老化现象。

a、直流电压作用后U-I 曲线反向的老化是由于正向偏压肖特基势垒的变形引起的,由于富Bi2O3 晶界层中的离子迁移。

b、直流电压作用后U-I 曲线正向的老化是由于反向偏压肖特基势垒的变形引起的,由于肖特基势垒的耗尽层的离子迁移。

c、交流电压作用后U-I 曲线的老化由位于富Bi2O3 晶界层两侧的肖特基势垒的变形引起,由于肖特基势垒耗尽层中的离子迁移。

(2) 氧化锌压敏电阻的老化,归因于晶粒边界区中耗尽中填隙锌离子的扩散,由同时施加的电压和温度引起的。当耗尽层中的填隙锌通过加热退火处理永久地扩散出来,压敏电阻的稳定性得以改善。

参考文献

[1] Kazuo Eda,Atsushi Iga,Michio Matsuoka.J.Appl. Phys.1980,51(5),2678~2684

[2] T. K. Gupta . J .Am.Ceram.Soc.1990,73(7),1817~1840

[3] Chang-Shun Chen,Chen-Tzu Kuo,I-Nan Lin.J.Mater. Res.1998,13(6),560~567

[4] 陈志清,谢恒堃。氧化锌压敏瓷及其在电力系统中的应用,北京:水利电力出版社,1992年4月

[5] 何金良.雷电防护与标准化.2003年1期7~10

[6] Jan Harloff, D. Bonnel. SE566 ”PhysicalProperties of Ceramics (Zinc Oxide)”[degree paper] 1995

[7] Jiaping Han,A.M.R.Senos,P.Q.Mantas. Journod of the European Ceramic Society. 2002,22,1653~1660

[8] 莫以豪,李标荣,周国良.半导体陶瓷及其敏威元件.上海:上海科学技术出版社,1983年10月

[9] 何金良.雷电防护与标准化.2004年1期7~10

[10] D.Jason Binks,Robin W Glimes. Communications Of the Am. Ceram Soc.1993,76(9),2370~2373.

氧化锌压敏电阻的电性能参数及添加剂的作用

氧化锌压敏电阻的电性能参数及添加剂的作用 压敏电阻是由在电子级ZnO 粉末基料中掺入少量的电子级Bi 2O 3、Co 2O 3、MnO 2、Sb 2O 3、TiO 2、Cr 2O 3、Ni 2O 3等多种添加剂,经混合、成型、烧结等工艺过程制成的精细电子陶瓷;它具有电阻值对外加电压敏感变化的特性,主要用于感知、限制电路中可能出现的各种瞬态过电压、吸收浪涌能量。 1 氧化锌压敏电阻电性能参数 1.1 压敏电压U 1mA 压敏电阻的电流为1mA 时所对应的电压作为I 随U 迅速上升的电压大小的标准,该电压用U 1mA 表示,称为压敏电压。压敏电压是ZnO 压敏电阻器伏安曲线中预击穿区和击穿区转折点的一个参数,一般情况下是1mA (Φ5产品为0.1mA )直流电流通过时,产品的两端的电压值,其偏差为±0.1%。 1.2 最大连续工作电压MCOV 最大连续工作电压MCOV 指的是压敏电阻在应用时能长期承受的最大直流电压U D C 或最大交流电压有效值 U RMS 。最大直流电压的值为80%~92%U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大直流电压;最大交流电压的值为60%~65% U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大交流电压。 1.3 漏电流 I L 漏电流(mA)也称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器电流。IEC 对漏电流 I L 较为普遍的定义是:环境温度25℃时,在压敏电阻上施加其所属规格的最大连续直流工作电压 U DC 时,流过压敏电阻的直流电流。 一般而言,在材料配方和烧结工艺固定的情况下,漏电流适中的压敏电阻具有较好的安全性和较长的寿命。 1.4 非线性指数α 非线性指数α指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。 它是一个元件的电阻值是否随电压或电流变化和变化是否敏感的标志。ZnO 压敏电阻器是一种非线性导电电阻。α在预击穿区和击穿区是不同的,一般所指是预击穿区的非线性系数。IEC 规定: )/l g (1 1.01mA mA U U =α(瓷片直径7mm 及以上的压敏电阻) )/lg(1 01.01.0mA mA U U =α(瓷片直径5mm 的压敏电阻) IEC 规定的非线性指数实际上只能表示压敏电阻在0.1mA~1mA 或0.01mA~0.1mA 之间的平均非线性指数。由于击穿区的特性接近于直线,而且上述电流区域处于击穿区内,因此IEC 规定的非线性指数可以近似地表示压敏电阻击穿后的整体非线性特性的好坏。 1.5 电压比 电压比指压敏电阻器的电流为1mA 时产生的电压值与压敏电阻器的电流为0.1mA 时产生的电压值之比。 1.6 残压 U R 残压 U R 是指特定波形的浪涌电流流入压敏电阻器时,它两端电压的峰值。一般来说,

压敏电阻的工作原理的作用

压敏电阻的工作原理的作用 对于我们设备中使用的压敏电阻,原选用型号为14D101K,实际运行3个月中,此型号压敏电阻经常烧毁。后改为14D121K,实际运行3个月,没有发现烧坏。所以,为指导以后工作,整理并学习此资料,并在整理过程中,发现压敏电阻不应该直接并接在元件的输入端。具体压敏电阻的资料如下 一、压敏电阻的原理 压敏电阻意思是”在一定电流电压范围内电阻值随电压而变”,或者是说”电阻值对电压敏感”的阻器。相应的英文名称叫“VoltageDependentResistor”简写为“VDR”。 随着加在它上面的电压不断增大,它的电阻值可以从MΩ(兆欧)级变到mΩ(毫欧)级。当电压较低时,压敏电阻工作于漏电流区,呈现很大的电阻,漏电流很小;当电压升高进入非线性区后,电流在相当大的范围内变化时,电压变化不大,呈现较好的限压特性;电压再升高,压敏电阻进入饱和区,呈现一个很小的线性电阻,由于电流很大,时

间一长就会使压敏电阻过热烧毁甚至炸裂。正常使用时压敏电阻处于漏电流区,受到浪涌冲击时进入非线性区泄放浪涌电流,一般不能进入饱和区 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的”氧化锌”(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 二、压敏电阻的作用 压敏电阻的最大特点是当加在它上面的电压低于它的阀值”UN”时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对IC及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的IC或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC或电器设备;当电压低于压敏

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理 上传者:dolphin 由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。图1 中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2 的R2、G、R3 的反应时间为150ns,为改善反应时间加入R1 压敏电阻,这样可使反应时间为25ns。 金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。

金属氧化物压敏电阻(MOV)特性参数 由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4 的u1)时,放电管内部气体被电离,放电管开始放电。放电管端的压降迅速下降至辉光放电电压(图4 的u2)(u2 在表2 中的数值为140V 或180V,与管子本身的特性有关),管内电流开始升高。随着放电电流的进一步增大,放电管便进入弧光放电状态。在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3 在表2 中数值为15V 或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4 的i1→i2 过程中)内保持稳定。因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3 和i2),且这个电流(从图4 的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。随着浪涌过电压的消退,流过气体放电管的电流降到维持弧光放电状态所需的最小值以下(约为10mA~100mA,与管子本身的特性关),弧光放电便停止,并再次通过辉光放电状态后,结束整个放电状态(熄弧)。

纳米氧化锌抗菌性能及机制

中国组织工程研究第16卷第3期 2012–01–15出版 Chinese Journal of Tissue Engineering Research January 15, 2012 Vol.16, No.3 ISSN 1673-8225 CN 21-1581/R CODEN: ZLKHAH 527 纳米氧化锌抗菌性能及机制*★◆ 胡占江1,赵忠1,王雪梅2 Antibacterial properties and mechanism of nano-zinc oxide Hu Zhan-jiang1, Zhao Zhong1, Wang Xue-mei2 Abstract BACKGROUND: The zinc oxide has a good biocompatibility, security and long effectiveness, and can be used as a type of antibacterial material of active oxide category. OBJECTIVE: To summarize the antibacterial properties and mechanism of nano-zinc oxide (nano-ZnO). METHODS: A computer-based online search of related papers from December 1995 to February 2011 was performed in Elsevier (Science Direct) and Web of Science databases using the key words of “antibacterial properties of nano-ZnO” in English, and in CNKI and Wanfang databases using the key words of “antibacterial properties of nano-ZnO” in Chinese. Totally 75 literatures were selected. RESULTS AND CONCLUSION: The nano-ZnO has a strong bactericidal property in many fields. It can replace other materials of active oxide category based on its good biocompatibility, security and long effectiveness. The antibacterial properties and mechanism of nano-ZnO were summarized in this study from the sides of modified antibacterial properties and the effects of morphology and structure of nano-ZnO on antibacterial properties. However, more studies are in need to solve how to improve the utilization and antibacterial properties, and to expand the applications of nano-ZnO in antibacterial and other fields. Hu ZJ, Zhao Z, Wang XM. Antibacterial properties and mechanism of nano-zinc oxide. Zhongguo Zuzhi Gongcheng Yanjiu. 2012;16(3):527-530. [https://www.sodocs.net/doc/8f14498470.html, https://www.sodocs.net/doc/8f14498470.html,] 摘要 背景:氧化锌作为一种活性氧化物类抗菌材料,拥有良好的生物相容性、安全性以及长效性。 目的:总结纳米氧化锌的抗菌性能及其抗菌机制。 方法:应用计算机检索1995-12/2011-02 Elsevier (ScienceDirect)及Web of Science期刊引文索引数据库相关文章,检索 词为“antibacterial properties of nano-zinc oxide”,并限定文章语言种类为English。同时计算机检索1995-12/2011-02 CNKI 学术总库及万方数据库相关文章,检索词为“纳米氧化锌抗菌性能”,并限定文章语言种类为中文。共检索到文献75篇。 结果与结论:纳米氧化锌在很多方面的杀菌性能都很强,并且由于其良好的生物相容性、安全性以及长效性,可以取代医学 上其他活性氧化物抗菌材料。文章从纳米氧化锌抗菌性能改性,以及形貌与结构对抗菌性的影响等方面,详细总结了纳米氧 化锌的抗菌性能及其抗菌机制,但是如何提高纳米氧化锌的利用率和杀菌性能,如何使纳米氧化锌应用于更多细菌的抑制或 更广阔的领域,都需要人们的继续努力。 关键词:纳米氧化锌;抗菌材料;抗菌机制;生物材料;综述文献 doi:10.3969/j.issn.1673-8225.2012.03.033 胡占江,赵忠,王雪梅.纳米氧化锌抗菌性能及机制[J].中国组织工程研究,2012,16(3):527-530. [https://www.sodocs.net/doc/8f14498470.html, https://www.sodocs.net/doc/8f14498470.html,] 0 引言 近年来随着资源的过度开发,环境破坏日益严重,由此导致各种致病细菌、真菌和病毒引起的疾病(例如非典,禽流感,猪流感等)严重威胁着人类的健康,因此,各种抗菌材料(也称抗菌剂)成为医学研究的重点。其中无机抗菌材料由于其优良的安全性、耐久性、缓释性和化学稳定性,且使用方便,得到了越来越重要的应用。目前应用比较广泛的无机抗菌材料主要有:银系抗菌材料、金属离子抗菌材料、光催化抗菌材料、活性氧化物类抗菌材料等。活性氧化物类抗菌材料拥有良好的生物相容性、安全性以及长效性,越来越受到青睐。对于活性氧化物抗菌材料的研究,人们最先关注的是以氧 化锌(ZnO)、氧化钙、氧化镁为代表的活性氧化 物,发现它们都具有良好的抗菌性,甚至较低浓 度的氧化物在无光条件下也显示出了优异的抗 菌性能。ZnO是一种宽禁带Ⅱ,Ⅵ族化合物半导 体材料,具有规整的六角形纤锌矿结构,本身为 白色,稳定性好,高温下不变色、不分解、价格 低廉、资源丰富,己成为无机抗菌剂研究的热点 之一。关于ZnO抗菌性能的研究[1],称ZnO的光催 化活性甚至强于二氧化钛,在很多方面,ZnO完 全可以作为二氧化钛的替代材料。二氧化钛在未 进行紫外光照射时是一种生物兼容性很好的材 料,但是经使用UVA进行照射后,又可以显示出 极强的细胞毒性[2-3]。因此,与二氧化钛相比ZnO 更具有实用价值。 1Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, China; 2School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China Hu Zhan-jiang★, Master, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, China huzj2010@ https://www.sodocs.net/doc/8f14498470.html, Correspondence to: Wang Xue-mei, Lecturer, School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China w_xuemei@ https://www.sodocs.net/doc/8f14498470.html, Supported by: Natural Science Foundation of Gansu Province, No. 1010RJZA112* Received: 2011-05-13 Accepted: 2011-07-30 1兰州大学物理科 学与技术学院,磁 学与磁性材料教 育部重点实验室, 甘肃省兰州市 730000;2兰州大 学口腔医学院,甘 肃省兰州市 730000 胡占江★,男, 1984年生,河北 省邯郸市人,满 族,2010年邯郸 学院毕业,硕士, 主要从事表面物 理化学的研究。 huzj2010@ https://www.sodocs.net/doc/8f14498470.html, 通讯作者:王雪 梅,讲师,兰州大 学口腔医学院,甘 肃省兰州市 730000 w_xuemei@ https://www.sodocs.net/doc/8f14498470.html, 中图分类号:R318 文献标识码:A 文章编号: 1673-8225 (2012)03-00527-04 收稿日期:2011-05-13 修回日期:2011-07-30 (20110513019/WL·L)

氧化锌知识

氧化锌是橡胶和轮胎工业必不可少的添加剂,也用作天然橡胶、合成橡胶及胶乳的硫化活性剂和补强剂以及着色剂。如果将普通氧化 锌制成纳米氧化锌用于橡胶中,则可以充分发挥硫化促进作用,提高橡胶的性能,其用量仅为普通氧化锌的30%~50%。氧化锌表面 积研究是非常重要的,氧化锌表面积检测数据只有采用bet方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对 比法的检测,现在国内也被淘汰了。 目前国内外比表面积测试统一采用多点bet法,国内外制定出来的比表面积测定标准都是以bet测试方法为基础的,请参看 我国国家标准(gb/t 19587-2004)-气体吸附bet原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由 于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能 离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。f-sorb 2400比表面积分析仪是真正能够实现bet法检测功能的仪器(兼备直接对比法),更重要的f-sorb 2400比表面积分析仪是迄今为 止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结 果精确性。 在化学工业中,氧化锌被广泛用作催化剂、脱硫剂,如合成甲醇时作催化剂,合成氨时作脱硫剂;纳米氧化锌的表面高活性 可以提高催化剂的选择性能和催化效率,具有广泛的潜在应用市场。 在涂料工业中,氧化锌除了具有着色力和遮盖力外,又是涂料中的防腐剂和发光剂;此外,纳米氧化锌优异的紫外线屏蔽能力使其在 涂料的抗老化等方面具有更加突出的特性。在医药卫生和食品工业中,氧化锌具有拔毒、止血、生肌收敛的功能,也用于橡皮膏原料,而且对于促进儿童智力发育具有帮助;纳米氧化锌用于食品卫生行业的需求在逐步扩大,但是产品要求也比较严格,尤其是有害 的重金属元素含量。 在玻璃工业中,氧化锌用在特种玻璃制品中;在陶瓷工业中,氧化锌用作助熔剂;在印染工业中,氧化锌用作防染剂;纳米 氧化锌由于颗粒细、活性高,可以降低玻璃和陶瓷的烧结温度,此外利用纳米氧化锌制备的陶瓷釉面更加光洁,而且具有抗菌、防酶、除臭等功效。 氧化锌作用补充: 在电子工业中,氧化锌既是压敏电阻的主原料,也是磁性、光学等材料的主要添加剂。采用纳米氧化锌制备压敏电阻,不仅 具有较低的烧结温度,而且压敏电阻性能得到提高,如通流能力、非线性系数等。纳米氧化锌在光学器件中的应用将随着纳米氧化锌 光学性能的深入研究会取得比较大的突破。 氧化锌是一种白色或微带黄色的细微粉末,易分散在橡胶和乳胶中,是天然橡胶、合成橡胶的补强剂,活性剂及硫化剂,也是白色胶 料的着色剂和填充剂。胶料中加入活性氧化锌后,能使橡胶具有良好的耐磨性,耐撕裂性和弹性。用于油漆、油墨、漆布的着色,印 染工业用的印花防染剂,在火柴工业中用于中和牛皮胶的酸性,增加胶粘效果,医药工业用作橡皮膏的原料,此外也用于颜料锌铬黄、醋酸锌、碳酸锌、氯化锌等的制造,合成甲醇的催化剂,合成氨的脱硫剂,玻璃和釉料生产,颗粒细的活性氧化锌(粒径0.1um左右)可用作聚烯烃和聚氯乙烯等塑料的光稳定剂,氧化锌也用于压敏、光催化、光电极、涂料、彩电显影等领域。 氧化锌作白色颜料。由于活性氧化锌具有良好的活化性能,在橡胶制品中得到了越来越广泛的应用,如在v型带中不仅能等量代替普 通的氧化锌,且能减少1/2—1/3的用量,使橡胶的各种性能指标稳定,硫化性能不受影响,降低了生产成本。细粒的氧化锌可用作 医药品。由于氧化锌对紫外线吸收能力强,人们越来越重视氧化锌在化妆品的应用,如开发的粒径为0.01—0.04um的氧化锌微粒子,其紫外线的吸收率、透明度均比历来用的二氧化钛微粒子好。 用透明氧化锌做的涂膜可有效地防止涂膜变色。这种氧化锌除作化妆品外,还可用作汽车漆、家具建筑材料、油墨、油彩的 原料,也可用于橡胶、塑料的防老化剂。最近开发的食品包装透明薄膜就是将透明氧化锌涂覆在聚乙烯薄膜上,既可提高塑料薄膜的 抗紫外线能力,同时也保护了食品的质量。随着高新技术的发展,人们正在开发利用作为金属、陶瓷的补强材料的氧化锌晶须材料及 陶瓷、塑料过滤膜用材料、气体传感元件、电磁屏蔽材料和大比表面积的氧化锌材料。 氧化锌应用领域 一、橡胶轮胎行业 1、高级黑色及深色橡胶轮胎、子午线轮胎 作用:提高产品的导热性能、耐磨性能、抗撕裂性能、拉伸强度等项指标,并可节省氧化锌用量30%左右。 二、橡胶制品

《氧化锌避雷器基本原理和作用》

《氧化锌避雷器基本原理和作用》氧化锌避雷器基本原理: 氧化锌避雷器是目前国际上理想的过电压保护器,它采用了氧化锌电阻为主要元件,与传统的碳化硅避雷器相比,大大改无间隙避雷器。因此带来了电器结构特点的根本变化。 当避雷器在正常工作电压下,流过避雷器的电流仅是微安级,当遭受过电压时,避雷器优异的非线性特性发挥了作用,流释放过电压能量,从而防止了过电压对输变电设备的侵害。氧化锌避雷器作用:避雷器的主要作用是保护电气设备免受雷电侵入波过电压和操作过电压对其设备的绝缘损坏。 第二篇:关于氧化锌避雷器带电测量的探讨摘要:氧化性避雷器在运行中,由于阀片老化以及经受热和冲击破坏会引起故障,必须对其进行及时的预试,而相邻的电器主设备往往不能及时停运,因而必须采用带电测量的方法对氧化锌避雷器进行测量。在测量中,因不能停电,方法不当、外界电磁干扰等因素往往对试验结果产生很大的影响,采用合理的试验方法,消除因相邻设备带电而带来的电磁干扰显得尤为重要。 关键词:氧化锌避雷器;带电测量;阻性电流分量 引言 氧化锌避雷器因其优越的过电压保护特性而逐步取代了老式的阀式避雷器,在电力系统中得到广泛应用。但氧化锌避雷器阀片老化以及经受热和冲击破坏会引起故障,严重时可能会导致爆炸,避雷器

击穿还会导致变电站母线短路,影响系统安全运行。因此,必须对运行中的氧化锌避雷器进行严格有效的检测和定期预防性试验,开展氧化锌避雷器在线监测。由于氧化锌避雷器预试(特别是主变三侧避雷器)必须停运主设备,会影响设备的运行可靠性,而且有时受运行方式的限制无法停运主设备,导致避雷器不能按时预试。因此,氧化锌避雷器的带电测试与在线监测显得尤为重要。 一、氧化锌避雷器的工作原理 氧化锌zno避雷器是20世纪70年代发展起来的一种新型避雷器,它主要由氧化锌压敏电阻构成。每一块压敏电阻从制成时就有它的一定开关电压(叫压敏电阻),在正常的工作电压下(即小于压敏电压)压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值被击穿,相当于短路状态。然而压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高阻状态。因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压控制在安全范围内,从而保护了电器设备的安全。 二、氧化锌避雷器带电测试的理论依据 1.氧化锌避雷器带电测试的重要性 氧化锌避雷器在运行中由于其阀片老化、受潮等原因,容易引起故障,这将导致主设备得不到保护,严重时可能发生爆炸,影响系统的安全运行。而氧化锌避雷器预试必须停运主设备,会影响设备的运行可靠性,而且有时受运行方式的限制无法停运主设备,导致避雷器

压敏电阻

压敏电阻如何能起到高压保护的作用? 悬赏分:0 - 解决时间:2007-2-1 10:53 例如一个360v的压敏电阻如何知道它的的阀门电压?压敏电阻串一个16K的电阻能否接在L与N之间起到过压保护的功能呢? 提问者:fier180 - 见习魔法师二级最佳答案 “压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”。 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 在中国台湾,压敏电阻器是按其用途来命名的,称为"突波吸收器"。压敏电阻器按其用途有时也称为“电冲击(浪涌)抑制器(吸收器)”。 2、压敏电阻电路的“安全阀”作用 压敏电阻有什么用?压敏电阻的最大特点是当加在它上面的电压低于它的阀值"UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 3、应用类型 不同的使用场合,应用压敏电阻的目的,作用在压敏电阻上的电压/电流应力并不相同, 因而对压敏电阻的要求也不相同,注意区分这种差异,对于正确使用是十分重要的。 根据使用目的的不同,可将压敏电阻区分为两大类:①保护用压敏电阻,②电路功能用压敏电阻。 3.1保护用压敏电阻 (1)区分电源保护用,还是信号线,数据线保护用压敏电阻器,它们要满足不同的技术标准的要求。(2)根据施加在压敏电阻上的连续工作电压的不同,可将跨电源线用压敏电阻器可区分为交流用或直流用两种类型,压敏电阻在这两种电压应力下的老化特性表现不同。 (3)根据压敏电阻承受的异常过电压特性的不同,可将压敏电阻区分为浪涌抑制型,高功率型和高能型这三种类型。 ★浪涌抑制型:是指用于抑制雷电过电压和操作过电压等瞬态过电压的压敏电阻器,这种瞬态过电压的出现是随机的,非周期的,电流电压的峰值可能很大。绝大多数压敏电阻器都属于这一类。 ★高功率型:是指用于吸收周期出现的连续脉冲群的压敏电阻器,例如并接在开关电源变换器上的压敏电阻,这里冲击电压周期出现,且周期可知,能量值一般可以计算出来,电压的峰值并不大,但因出现频率高,其平均功率相当大。 ★高能型:指用于吸收发电机励磁线圈,起重电磁铁线圈等大型电感线圈中的磁能的压敏电压器,对这类应用,主要技术指标是能量吸收能力。 压敏电阻器的保护功能,绝大多数应用场合下,是可以多次反复作用的,但有时也将它做成电流保险丝那样的"一次性"保护器件。例如并接在某些电流互感器负载上的带短路接点压敏电阻。 3.2电路功能用压敏电阻 压敏电阻主要应用于瞬态过电压保护,但是它的类似于半导体稳压管的伏安特性,还使它具有多种电路元件功能,例如可用作: (1)直流高压小电流稳压元件,其稳定电压可高达数千伏以上,这是硅稳压管无法达到的。 (2)电压波动检测元件。 (3)直流电瓶移位元件。 (4)均压元件。 (5)荧光启动元件

ZnO的光催化反应机理 纳米ZnO的制备_改性及光催化研究进展

第40卷第5期2011年9月 内蒙古师范大学学报(自然科学汉文版) JournaloInnerongolaormalniverstyNaturalScencediion) Vol.0No. Sept.2011 纳米ZnO的制备、改性及光催化研究进展 邹彩琼,贾漫珂,曹婷婷,罗光富,黄应平 (三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌443002) 摘要:归纳了ZnO的物理化学基本特性,简述了ZnO的光催化反应机理,重点介绍了ZnO光催化剂的制 备方法、应用及改性研究现状,同时分析了目前ZnO光催化技术需要解决的问题,并对纳米ZnO在光催化治理 有毒有机污染物领域的发展前景进行了展望. 关键词:ZnO;光催化;降解;有毒有机污染物 中图分类号:O43.2文献标志码:A文章编号:1001--8735(011)5--0500--08 纳米ZnO已成为继碳纳米管之后备受关注的纳米功能材料之一[1].随着颗粒尺寸减小至纳米级,比表 面积剧增,纳米ZnO产生了与体相材料不同的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等特 性[2].这些特殊效应使纳米ZnO具备了一系列优异的物理、化学、表面和界面性质,已被广泛应用在磁、光、 电和催化等领域[3-4]. 纳米ZnO是一种直接宽带隙半导体,带隙能为3.7eV,与TiO2的带隙能相近,可有效地被紫外光 (≤368nm)激发,因而呈现出良好的光催化活性[].作为分子组成简单的一类无机氧化物,nO具有无毒、原料易得、制备成本低和生物相容性良好等优点,应用广泛[6-8],尤其在光催化降解有毒有机污染物方面逐渐 显现出优势.已有报道9-11]表明,nO在降解生物难降解的有毒有机污染物方面,比广泛研究的TiO2表现 出更高的光催化活性和量子产率,被认为是极具应用前景的高活性光催化剂之一.目前,可控制备不同形貌 的ZnO(纳米棒[12-14]、纳米花[15]、纳米管[16]和空心球[17]等)以提高光催化活性,改性ZnO以提高可见光响应 范围[18-20],以及通过载体负载提高稳定性和重复使用率,从而建立环境友好的绿色光催化体系的研究[21]已 成为热点.本文就ZnO的光催化机理、制备及应用、改性和发展前景等进行简要概述. [] ZnO俗称锌白或白铅粉,为白色、淡黄色粉末或六方结晶,相对密度为5.7g/cm3,难溶于水,可溶于酸 和强碱.nO为n型半导体,具有六方纤锌矿、立方闪锌矿和非常罕见的NaCl式八面体3种结构.闪锌矿结

氧化锌压敏陶瓷个人总结

探究掺杂二氧化钛对氧化锌压敏陶瓷 的影响 个人项目总结 学院材料与化学工程学院 专业无机非金属材料与工程 班级 13级无机非2班 指导教师徐海燕 提交日期 2016、1、2 在大三刚开学的时候,李燕老师对我们说我们大三的学生要做一

个CDIO项目,刚听到这个消息的时候,我的心里就在想“完了,自己的实践能力不好,以前从来没有做过这种项目,怎么办呢”,当时不知道怎么办,就按照老师的说法去找指导老师,我和室友一起找的老师是徐海燕老师,刚开始去见老师的时候,什么都没有准备,被老师教育了一顿,后来我们在去见老师的时候,都是先准备好每个人要说的东西,然后这样就不会害怕了,就这样在老师的指导下,我们一点一点把实验给做完,得到了我们想要的东西,在这次试验中,我学到了“学中做,做中学”实验原则和团队合作的实验精神,刚开始做实验的时候,我们一窍不懂,对要做什么,怎么去做一点都不了解,从最开始的实验任务布置下来,到去图书馆网上查找文献资料,再到实验方案的设计,以及后来的实验具体操作过程,我从中间的过程学到了很多知识,从对实验的一无所知,到后来知识的一点一点总结,我感觉到从书本上学到的知识得到了充分的运用。 我们一大组有十个人,后来因为实验的需要,我们学要不同条件下的实验结果,所以我们这一大组分成了三个小组,我们这组有四个人,在我们这四个人之中,每个人都有自己的任务,在每一次老师布置任务下来之后,我们都会分工好每个人需要做的东西,这样每个人都有事情可做,避免了有人偷懒的情况。 经过了差不多一个学期的实验,CDIO就快要结束了,结题汇报很快就要进行了,在整个CDIO项目期间,我感觉最重要的不是实验结果,而是实验过程让我们学到了些什么,需要掌握的知识,实验态度,

压敏电阻特性及选用分析

压敏电阻的原理、选型及设计实例分析压敏电阻的设计 与选型 2013/4/11 16:44:30 关键词:传感技术过电压压敏电阻器保护器 目前压敏电阻绝大多数为氧化锌压敏电阻,本文就不要以氧化锌压敏电阻来介绍原理、选型以及应用实例。 压敏电阻的原理 ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏。 它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。 图1 压敏电阻伏安特性 压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示。

图2 压敏电阻在电路中通常并接在被保护电器的输入端 压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为 V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。 图3 压敏电阻特性曲线

氧化锌常识

1 普通氧化锌的生产工艺及制备方法进展 普通氧化锌包括直接法氧化锌、间接法氧化锌和湿法氧化锌。其中直接法氧化锌占10% -20%,间接法氧化锌占70%气80%,而湿法氧化锌只占1%-2%。 直接法也称“韦氏炉”法,因首先出现在美国,又称“美国法”。直接法生产氧化锌,优点是成本较低,热效率高。含锌的原料在1000-1200℃下,被含碳物质(主要是煤)还原。锌原料的含锌质量分数在60%-70%。反应设备一般选用回转窑。常用的回转窑长30m,直径2.5 m左右。燃烧气中含有的锌蒸气和CO,可导入氧化设备,使氧化反应进行完全,再经过热交换器,冷却后进入布袋分离器,以收集成品。直接法生产的氧化锌为针状结构,是工业等级氧化锌。直接法氧化锌因含有未能完全分离的杂质,白度也较差,但因价格较低而有一定的销路。 间接法出现于19世纪中叶,法国使用金属锌在坩埚中高温气化,并使锌蒸气氧化燃烧,而收集到氧化锌粉末,因此也称为“法国法”。工业上,间接法生产ZnO是先将锌块在高温下熔融而蒸发成锌蒸气,进而氧化生成ZnO。产品品型及物理性能与氧化的条件有关,而产品的纯度与所用的锌块纯度有关。 间接法也可使用锌渣等低规格的含锌原料,但需要采用气-液相的分离技术,预先分离出Cd,Pb,Fe及Al等杂质,以提高锌蒸气的纯度。除去杂质的措施如下:1)采用坩埚法或马弗炉法,使不易蒸发的Fe和Pb等杂质成渣而分离;2)采用分馏法,使高温蒸发的原料蒸气中的Cd,Pb,Fe,Al及Cu等杂质在通过由碳化硅材料制成的分馏塔板时得以分离;3)采用二室炉分离法,原料预先在一室炉中分离杂质,进入第二室后,在无氧存在的条件下进行蒸馏,以提高锌蒸气的纯度,如纯度不够,还可以继续用分馏法分离少量的Pb;4)采用回转窑法,在回转窑中使物料熔化、蒸馏,并有部分氧化,可控制温度、CO2及O2的分压等操作条件,以减少Pb杂质的含量,还可控制生成的氧化锌的颗粒和晶体形状。 间接法生产的氧化锌为无定形,可制成光敏氧化锌、彩电玻壳用氧化锌、药用氧化锌及饲料级氧化锌等。 湿法是以ZnSO4或ZnCl2为原料,经去除杂质,加入Na2CO3溶液,生成Zn2(OH)2CO3沉淀,再经过漂洗、过滤、干燥,将所得干粉焙烧得ZnO。所制得的ZnO具有较大的比表面积,所以也有称其为活性ZnO。其反应式如下: ZnSO4+Na2CO3→ZnCO3+N a2SO4 沉淀中可能含有一定量的Zn(OH)2,焙烧后释放出CO2和水蒸气,而得到ZnO。 2 活性氧化锌生产方法及改进 2.1 有机化合物的碱性还原法 1951年日本特许公报昭26-113报道了这种方法。即用有机化合物的碱性还原废锌,再用水洗净,加热到高温,单独或混以少量的硫,生产适合橡胶填料用的活性氧化锌。 2.2 通入二氧化碳的方法

氧化锌压敏电阻的原理

压敏电阻原理概述 本文就氧化锌压敏电阻的原理、特性、正确选用等问题进行简介,并提供一些应用电路实例供各位参考。 ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏,它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为 3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。 压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示 压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因

而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

压敏电阻保护电路设计讲解

??AUMOV????LV UltraMOV??? 儎???????????? ???? ???????? ????

2 https://www.sodocs.net/doc/8f14498470.html, 3 AUMOV?系列压敏电阻介绍5 LV UltraMOV?压敏电阻系列介绍6 压敏电阻基础 8 汽车MOV 背景信息和应用例举 11 LV UltraMOV?背景信息和应用例举13 低压直流 MOV 选型16 瞬态浪潮抑制技术 18 金属氧化物压敏电阻(MOV )介绍18 压敏电阻串、并联 21 附件:技术规格和零件号相互参照 本文件的技术规格说明和说明性材料为出版时所知的最准确的描述,如有变更,恕不另行通知。 更多信息,请访问https://www.sodocs.net/doc/8f14498470.html, 。

https://www.sodocs.net/doc/8f14498470.html, 3 AUMOV TM 系列压敏电阻介绍 以上器件有以下规格: ? 磁盘大小: 5mm, 7mm, 10mm, 14mm, 20mm ? 额定工作电压:16–50VDC 额定浪涌电流:400-5000A (8/20ps )? ? 额定助推起动功率:6-100焦耳? 额定负载突降: 25–35 V AUMOV TM 系列特点 ? 符合AEC-Q200(表10)的规定? 强劲的负载突降和助推起动功率? 通过UL 认证(可选环氧树脂涂层) ? 较高的工作温度:最高达125°C (可选酚醛树脂涂层)? 较高的额定峰值浪涌电流和能量吸收能力 AUMOV TM 系列的优点 ? 符合汽车行业要求? 符合ISO 7637-2的规定 ? 有助于电路设计员符合UL1449标准? 适合高温环境和应用 ? 卓越的浪涌保护和能量吸收能力,提高了产品的安全性? 具有通过TS16949认证的生产器件 AUMOV?系列压敏电阻是专为保护低压(12VDC 、24VDC 和42VDC )汽车系统的电路而设计的。该系列压敏电阻有5种磁盘规格,径向引线可选择环氧树脂涂层或酚醛树脂涂层。汽车MOV 压敏电阻符合AEC-Q200(表10)的规定,能够提供强劲的负载突降、实现助推起动、产生额定峰值浪涌电流以及具有高能量吸收能力。

相关主题