搜档网
当前位置:搜档网 › 地理坐标到本地CAD坐标的坐标转换公式20140 209

地理坐标到本地CAD坐标的坐标转换公式20140 209

地理坐标到本地CAD坐标的坐标转换公式20140 209
地理坐标到本地CAD坐标的坐标转换公式20140 209

地理全局坐标到本地局部CAD坐标的坐标转换公式

1、卫星位置用地球地心惯性坐标系ECI,由赤道面X轴(春分,由地心指向太阳),赤道面y轴(由地心指向春分向东90度方向),北极z轴(由地心指向地球北极),构成右手迪卡尔坐标系;

2、地面定位目标位置在导航电文中,使用WGS84地心地固坐标系ECEF,由赤道面X轴(由地心指向本初子午线,即0度经线方向),赤道面y轴(由地心指向东经90度方向),北极z轴(由地心指向地球北极),构成右手迪卡尔坐标系;

3、本地水平坐标系LTP(ENU),由本地切平面X,轴(由切点指向东,即东经方向),切平面y,轴(由切点指向北,即北纬方向),高度z,轴(由切点指向海拔高度方向),构成右手迪卡尔坐标系;

4、地固坐标系ECEF映射到经纬度坐标系的就是地理坐标系,由东经lon轴(由切点指向东经方向),北纬lat轴(由切点指向北纬方向);

5、在由本地切平面不大时,切平面的EN坐标系和地理坐标系存在近似线性变换关系,使用线性坐标转换矩阵可满足工程应用精度;

6、在坐标转换精度要求不高时,且坐标转换范围不大时,可忽略地球扁率的影响,用球体近似表达地球表面;

7、EN(x,y)坐标系和地理坐标系(lon,lat)的近似坐标变换公式如下:

?x=r*?lon,其中,x的单位是m,lat的单位是弧度;r=R*COS(lat),单位是m;

?Y=R*?lat,其中,y的单位是m,lat的单位是弧度,R是地球平均半径,6371000m;所以有

{?x,?y}T= RC{?lon,?lat }T

其中C为二阶对角线矩阵:

c11=cos(lat0)

c22= 1

c12= c21=0

且:{?lon,?lat }T= {lon- lon0,lat- lat0 }T,

得到

{?x,?y}T = RC{ lon- lon0,lat- lat0 }T

8、EN(?x,?y)坐标系到CAD坐标系(X,Y)的坐标变换公式如下:

{X,Y}T= K{?x,?y }T+S,这里{?x,?y}T = RC{ lon- lon0,lat- lat0 }T,S={ X0,Y0 }T

其中K为二阶旋转矩阵:

k11= cos(α-θ)

k12= -sin(α-θ)

k21= sin(α-θ)

k22= cos(α-θ)

通过基线测量得到两个旋转角:

tanθ=dy/dx= dlat /(dlon* cos(lat0))

tanα=DY/DX

式中

dlon = lon1- lon0

dlat = lat1- lat0

DX = X 1- X 0

DY = Y 1- Y 0

见坐标变换示意图,

9、综合7和8两步变换,得到地理坐标到CAD坐标系(X,Y)的坐标变换公式如下:

{X,Y}T= KRC{ lon- lon0,lat- lat0 }T +{ X0,Y0 }T,

地理坐标到CAD坐标变换示意图

10、考虑到CAD坐标系还需要归一化到切图坐标系下,对应的坐标变换公式如下:

{x,y}T= (60/L m)* ({ X,Y }T- { X C,Y C } T),

即:{x,y}T= (60/L m)* (KRC{ lon- lon0,lat- lat0 }T +{ X0,Y0 }T- { X C,Y C } T)

其中:(X C,Y C)为楼面积外接矩形中心坐标,L m为楼面积外接矩形的最大边长,地理坐标单位是弧度。其中:

L m=Max{X max-X min,Y max-Y min};

X C=(X max-X min)/2+ X min;

Y C=(Y max-Y min)/2+ Y min;

最终坐标转换计算公式为:

x= (60/L m)* (6371000* (cos(α-θ) * cos(lat0) * (lon- lon0)- sin(α-θ)* (lat- lat0) )+ X0- X C)

y= (60/L m)* (6371000* (sin(α-θ) * cos(lat0) * (lon- lon0)+ cos(α-θ)* (lat- lat0) )+ Y0- Y C)

式中:L m,X C,Y C由楼面图数据计算得到,lon0,lat0,X0,Y0,lon1,lat1,X1,Y1由基线测量得到,α,θ由基线坐标数据计算得到。上式用于从GPS坐标向直角绘图坐标的转换。

每栋楼的位置特征由以下9个独立参量确定:lon0,lat0,X0,Y0,α,θ,L m,X C,Y C。上式中的地理坐标单位为弧度,若地理坐标以度为单位,则:

x= (60/L m)* (6371000* (cos(α-θ) * cos(lat0) * (lon- lon0)*π/180- sin(α-θ)* (lat- lat0) *π/180 )+ X0- X C);

y= (60/L m)* (6371000* (sin(α-θ) * cos(lat0) * (lon- lon0) *π/180+ cos(α-θ)* (lat- lat0)

*π/180 )+ Y0- Y C);

上式用于GPS输出的地理坐标转换为CAD切图坐标,在室内定位终端程序中使用。

11、同理,从CAD坐标系到地理坐标系的坐标变换公式如下:

由:{x,y}T= (60/L m)* ({ X,Y }T- { X C,Y C } T),

有:(L m /60)*{x,y}T+ { X C,Y C } T = { X,Y }T= KRC{ lon- lon0,lat- lat0 }T +{ X0,Y0 }T,

(L m /60)*{x,y}T+ { X C,Y C } T - { X0,Y0 }T = KRC{ lon- lon0,lat- lat0 }T,

(L m /60)*{x,y}T+ { X C - X0,Y C - Y0} T = KRC{ lon- lon0,lat- lat0 }T,

(L m /60)*{x,y}T+ { X C - X0,Y C - Y0} T = RKC{ lon- lon0,lat- lat0 }T,

1/R* ( (L m /60)*{x,y}T+ { X C - X0,Y C - Y0} T) = KC{ lon- lon0,lat- lat0 }T,

K-1/R*( (L m /60)*{x,y}T+ { X C - X0,Y C - Y0} T) = C{ lon- lon0,lat- lat0 }T,

C-1 K-1/R* ((L m /60)*{x,y}T+ { X C - X0,Y C - Y0} T) = { lon- lon0,lat- lat0 }T,

变形得:{ lon,lat }T= C-1 K-1/R * ((L m /60)*{x,y}T+ { X C-X0,Y C -Y0}T)+ { lon0,lat0 }T,

其中K-1为K的逆矩阵:

k11= cos(α-θ)

k12= sin(α-θ)

k21= -sin(α-θ)

k22= cos(α-θ)

其中C -1为C的逆矩阵:

c11=1/cos(lat0)

c22= 1

c12= c21=0

将上式展开,最终得到从CAD切图坐标系到地理坐标系的坐标转换计算公式为:lon = ( (L m /60*x + X C - X0) cos(α-θ)+ (L m /60*y + Y C - Y0) sin(α-θ) )/6371000/cos(lat0) + lon0

lat = (-(L m /60*x + X C - X0) sin(α-θ) + (L m /60*y + Y C - Y0) cos(α-θ) )/6371000 + lat0

上式计算结果的单位为弧度,若以度为单位,则:

lon = ( (L m /60*x + X C - X0) cos(α-θ)+ (L m /60*y + Y C - Y0) sin(α-θ) )/6371000/cos(lat0)*180/π + lon0 lat = (-(L m /60*x + X C - X0) sin(α-θ) + (L m /60*y + Y C - Y0) cos(α-θ) )/6371000*180/π + lat0

12、准备CAD切图坐标系下的地理底图数据

1)、计算裁剪矩形角点地理坐标:

利用上式,分别代入裁剪四边形角点的CAD切图坐标,计算裁剪四边形角点地理坐标,得到地理坐标裁剪四边形(Excel表1);

裁剪四边形角点的CAD切图坐标为:

P1={-90,-90};

P2={-90, 90};

P3={ 90, 90};

P4={ 90, -90};

2)、用实测基线在ArcMap中确定高德地图数据偏差:

首先在ArcMap中,根据基线起点、终点的地标特征,在高德地图上确定基线对应位置,再读取基线在高德地图上的起点和终点地理坐标值{lon g0,lat g0},{lon g1,lat g1};

确定平移偏差值:Dlon g= lon g0 - lon 0,Dlat g= lat g0 - lat 0,

确定旋转偏差角:为γ-β,

其中

tanβ=dy/dx= dlat /(dlon* cos(lat0))

tanγ=Dy g /Dx g = dlat g /(dlon g * cos(lat0))

式中

dlon = lon1- lon0

dlat = lat1- lat0

dlon g = lon g1- lon g0

dlat g = lat g1- lat g0

见地理到高德坐标变换示意图;

地理坐标到高德坐标变换示意图

3)、根据裁剪四边形角点地理坐标计算裁剪四边形角点高德坐标:

如平移偏差值不为0,则平移裁剪四边形角点地理坐标到高德坐标

{ lon g,lat g}T = { lon,lat }T + { Dlon g,Dlat g }T,

如旋转偏差角不为0,则旋转裁剪四边形角点地理坐标到高德坐标

{?X,?Y}T= K{?x,?y }T,

RC { ?lon g,?lat g}T = KRC{ ?lon,?lat }T,

RC {?lon g,?lat g }T= KRC{ ?lon,?lat }T,

C {?lon g,?lat g }T= KC{?lon,?lat }T,

{ ?lon g,?lat g }T= C-1 K C{ ?lon,?lat }T,

{ ?lon g,?lat g }T = C-1 K { cos(lat0)?lon,?lat }T

{ ?lon g,?lat g }T = C-1 {cos(γ-β)cos(lat0)?lon - sin(γ-β)?lat,sin(γ-β)cos(lat0)?lon + cos(γ-β)?lat }T

{ ?lon g,?lat g }T = {cos(γ-β) ?lon - sin(γ-β)?lat/cos(lat0),sin(γ-β)cos(lat0)?lon + cos(γ-β)?lat }T 展开:

lon g - lon g0 = (lon- lon g0) cos(γ-β)- (lat- lat g0) /cos(lat0) *sin(γ-β);

lat g- lat g0 = (lon- lon g0) cos(lat0) sin(γ-β)+ (lat- lat g0) cos(γ-β);

即:

lon g = (lon- lon g0) cos(γ-β)- (lat- lat g0) /cos(lat0) *sin(γ-β) +lon g0;

lat g = (lon- lon g0) cos(lat0) sin(γ-β)+ (lat- lat g0) cos(γ-β) + lat g0;

利用上式,分别代入裁剪四边形角点的地理坐标,计算裁剪四边形角点高德坐标,得到高德坐标裁剪四边形(Excel表2);

4)、用高德坐标裁剪四边形,在ArcMap中裁剪高德地图数据;

5)、用裁剪高德地图数据,在ArcMap中,利用裁剪四边形的控制点坐标对(高德到地理),将裁剪高德地图数据转换为裁剪地理坐标数据;

6)、用裁剪地理坐标数据,在ArcMap中,利用裁剪四边形的控制点坐标对(地理到CAD),将裁剪地理坐标数据转换为CAD切图坐标系下的地理底图数据。

13、在CAD切图坐标系下切制金字塔地图

1)、将CAD坐标系下的楼面数据转换为CAD切图坐标数据:

利用上式,分别代入裁剪四边形角点的CAD切图坐标,计算裁剪四边形角点CAD坐标,得到CAD坐标裁剪四边形(Excel表1);

2)、用CAD原图数据(单位为米),在ArcMap中,利用裁剪四边形的控制点坐标对(CAD 到裁剪),将CAD原图数据转换为CAD切图坐标数据;

3)、用CAD切图坐标系下的地理底图与楼面CAD数据统一在CAD切图坐标系下进行切图,得到在室内定位地图引擎中使用的金字塔地图。

14、在CAD切图坐标系与地理切图坐标系的对应关系

1)、楼面空间尺度一般为100米到400米左右,CAD切图坐标系0层的尺度放大6倍为600到2400米左右;

2)、将地理切图坐标系0层的尺度为L0=6371000*2π=40030174米;

3)、将地理切图坐标系0层的尺度为40030174米,14层的尺度为2443.2米,15层的尺度为1221.6米,16层的尺度为610.8米左右,22层的尺度为9.544米左右;

4)、CAD切图坐标系0层尺度一般对应的地理切图坐标系12到13层左右;

5)、所以,楼面空间尺度100米到200米的CAD切图坐标系0层尺度对应与地理切图坐标系16层对应调整切图坐标缩放比例;楼面空间尺度200米到300米的CAD切图坐标系0层尺度对应与地理切图坐标系15层对应调整切图坐标缩放比例;楼面空间尺度300米到400米的CAD切图坐标系0层尺度对应与地理切图坐标系14层对应调整切图坐标缩放比例。

15、计算CAD切图坐标系0层尺度与地理切图坐标系12、13层的对应坐标缩放比例

1)、地理切图坐标系14层的空间尺度为L14=2443.2米,对应坐标缩放比例为BL14=360/2443.2,即CAD切图坐标系0层坐标与CAD原图坐标的变换关系如下:{x,y}T= BL14* ({ X,Y }T- { X C,Y C } T),或

{ X,Y }T= { x/BL14,y/BL14}T + { X C,Y C } T

对应GPS到CAD切图坐标系的坐标转换公式:

x= (360/2443.2)* (6371000* (cos(α-θ) * cos(lat0) * (lon- lon0)*π/180- sin(α-θ)* (lat- lat0) *π/180 )+ X0- X C);

y= (360/2443.2)* (6371000* (sin(α-θ) * cos(lat0) * (lon- lon0) *π/180+ cos(α-θ)* (lat- lat0) *π/180 )+ Y0- Y C);

2)、地理切图坐标系15层的空间尺度为L15=1221.6米,对应坐标缩放比例为BL15=360/1221.6,即CAD切图坐标系0层坐标与CAD原图坐标的变换关系如下:{x,y}T= BL15* ({ X,Y }T- { X C,Y C } T),或

{ X,Y }T= { x/BL15,y/BL15}T + { X C,Y C } T

对应GPS到CAD切图坐标系的坐标转换公式:

x= (360/1221.6)* (6371000* (cos(α-θ) * cos(lat0) * (lon- lon0)*π/180- sin(α-θ)* (lat- lat0) *π/180 )+ X0- X C);

y= (360/1221.6)* (6371000* (sin(α-θ) * cos(lat0) * (lon- lon0) *π/180+ cos(α-θ)* (lat- lat0) *π/180 )+ Y0- Y C);

3)、地理切图坐标系16层的空间尺度为L16=610.8米,对应坐标缩放比例为BL16=360/610.8,即CAD切图坐标系0层坐标与CAD原图坐标的变换关系如下:{x,y}T= BL16* ({ X,Y }T- { X C,Y C } T),或

{ X,Y }T= { x/BL16,y/BL16}T + { X C,Y C } T

对应GPS到CAD切图坐标系的坐标转换公式:

x= (360/610.8)* (6371000* (cos(α-θ) * cos(lat0) * (lon- lon0)*π/180- sin(α-θ)* (lat- lat0) *π/180 )+ X0- X C);

y= (360/610.8)* (6371000* (sin(α-θ) * cos(lat0) * (lon- lon0) *π/180+ cos(α-θ)* (lat- lat0) *π/180 )+ Y0- Y C);

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标 系的转换 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。

不同空间直角坐标系的转换

不同空间直角坐标系的转换 欧勒角 不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。 三参数法 三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。

七参数法 用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。下面给出布尔莎七参数公式: 坐标转换多项式回归模型 坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。 两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在???? ??????+??????????=??????????000111222Z Y X Z Y X Z Y X ???? ??????+????????????????????---+??????????+=??????????000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε

不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

大地坐标转换成施工坐标公式

大地(高斯平面)坐标系工程坐标系转换大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dX=Xp-Xo dY=Yp-Yo P点转换后之工程坐标为xp、yp: xp=dX*COS(a)+dY*SIN(a)+xo yp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系 ======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dx=xp-xo dy=yp-yo P点转换后之工程坐标为xp、yp: xp=Xo+dx*COS(a)-dy*SIN(a)

yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX ZY 后视点坐标:HX HY 方位角:W 两点间距离: S Lb1 0← {A, B, C, D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D 〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto 0← CASIO fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1 A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX”

直角坐标系下的画图及其转换公式

直角坐标系下的画图及其转换公式 在直角坐标系下我们的圆方程是: 222()()x a y b R -+-= 其中,a 和b 是圆心,R 是半径。但在画圆的时候,你就会发现如果按该公式画圆,多半是不成功的,或者画了一半,所以在matlab 中画圆,一半采用极坐标形式 圆对应的极坐标转换公式为: cos sin x R y R θ θ =?? =?(公式1) 这个很容易理解,你画个单位圆来看看就知道了。 那么上面那个黑色的点的x 坐标和y 坐标用半径和连线与坐标轴x 的夹角来表示,就得到了公式1。 观察这个公式,我们发现,在极坐标系下,圆的半径没变,夹角是在不断变化的,所以,在matlab 中极坐标系下画单位圆的问题可以这样来考虑: 首先将夹角360等分,也就是每一个步长为360度/360; 但需要指出的是,matlab 中正弦预先函数的变量其实是弧度,并不是度。这个你在matlab 命令窗里就可以试: 比如你要得到30度的正弦值,一般是sin (pi/6),而不是sin(30)。这里的pi 是3.1415926的在matlab 中的表示。 所以我们的步长应该是弧度制的,我们知道,1度对应的弧度为360/(2*pi)。也即180/pi; 所以我们的夹角应该是: Theta=0:180/pi:2*pi-180/pi; 注意,由于是从零开始画图的,所以最后一个应该是2*pi-180/pi;而不是2*pi ; 这个时候我们可以开始画图了 X=R*cos(Theta); Y=R*sin(Theta); Plot(x,y,’r.’) axis square %保证画出来的圆是圆的。

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

参考系坐标系及转换汇总

1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。天球直角坐标系 天球坐标系 天球球面坐标系 坐标系 地球直角坐标系 地球坐标系 地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交 点).

2 天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。

表示:2-1天球空间直角坐标系与天球球面坐标系的关系可用图

岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这 使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,。协议天球坐标系由此建立的坐标系称为 3 地球坐标系

平面直角坐标变换

§5.7 平面直角坐标变换 为了考虑同一图形在不同的坐标系下的方程之间的关系,我们首先需要建立同一个点在不同的坐标系下的坐标之间的关系,这就是坐标变换的问题,因为我们研究的图形是点的轨迹. 我们仅考虑平面直角坐标变换. 设在平面上给出了由两个标架 {O ;i , j } 和 {O';i', j' } 所决定的右手直角坐标系,这里i 和j 以及i' 和j' 是两组坐标基向量,它们是平面上的两个标准正交基,我们依次称这两个坐标系为旧坐标系和新坐标系. 由于坐标系的位置完全由原点和坐标基向量所决定,所以新坐标系与旧坐标系之间的关系,就由O' 在 {O ;i , j } 中的坐标以及i' 和j' 在 {O ;i , j } 中的分量所决定. 任一直角坐标变换总可以分解成移轴(也叫坐标平移)和转轴(也叫坐标旋转)两个步骤. 1.移轴 如果两个标架 {O ;i , j } 和 {O';i , j' } 的原点O 与O' 不同,O' 在{O ;i , j }中的坐标为 (x 0,y 0),但两标架的坐标基向量相同,即有 i' = i , j' = j 那么标架 {O';i', j'} 可以看成是由标架 {O ;i , j } 将原点平移到O'点而得来的(图5.7.1).这种坐标变换叫做移轴(坐标平移). 设P 是平面内任意一点,它对标架 {O ;i , j } 和 {O';i', j'} 的坐标分别为 (x ,y ) 与 (y x '',),则有 P O O O OP '+= 但 j i y x +=, j i y x O '+'=', j i 00y x O +=' 于是有 j i j i )()(00y y x x y x +'++'=+ 故 {x ,y } = {x 0,y 0} + {x',y' } 根据向量相等的定义得移轴公式为 图5.7.1 ? ? ?+'=+'=00 y y y x x x (5.7-1) 从中解出x' 和y',就得逆变换公式为 ? ? ?-='-='00 y y y x x x (5.7-2) 2.转轴 若两个标架 {O ;i , j } 和 {O';i', j'} 的原点相同,即O = O',但坐标基向量不同,且有∠(i ,i' ) = α,则标架 {O';i',j'} 可以看成是由标架 {O ;i ,j } 绕O 点旋转α 角而得

北京54坐标转换为地理坐标的简易方法

北京54坐标转换为地理坐标的简易方法 1. 椭球体、基准面及地图投影 GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

上述3个椭球体参数如下: 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出

坐标转换模型

坐标转换模型 1.空间直角坐标系间的转换模型(七参数模型) ①公式(布尔莎模型): ②分析: (1)将O-XYZ中的长度单位缩放l+m倍,使其与O'-X'Y'Z'的长度单位一致; (2)从X反向看向原点O,以O为旋转点,让O-XYZ绕X轴顺时针旋转Wx角,使经过旋转后的Y轴与O'-X'Y'Z’平面平行; (3)从Y反向看向原点O,以O为旋转点,让O-XYZ绕Y轴顺时针旋转Wy角,使经过旋转后的X轴与O'-X'Y'Z'平面平行。显然,此时Z轴也与Z'轴平行; (4)从Z反向看向原点O,以O点为旋转点,O-XYZ绕Z轴顺时针旋转Wz角,使经过旋转后的X轴与X’轴平行。显然,此时O-XYZ的三个坐标轴己与O'-X'Y'Z’中相应的坐标轴平行; 原坐标为O-XYZ,转换到新坐标O-X’Y’Z’.(两坐标系都为空间直角坐标系)其中(dX dY dZ)为坐标原点的平移参数,即将坐标O-XYZ的原点分别沿三个坐标轴平移-dX,-dY,-dZ,使原坐标轴与O-X’Y’Z’的点重合。m为尺度参数,(w1 w2 w3)分别为坐标轴的旋转参量(角度),构成的旋转矩阵分别为: 分别将R1 R2 R3代入上式,可得:

当旋转角度w1 w2 w3很小时(<=10),cos(w)=1,sin(w)=0;在误差允许范围内可以将模型简化为:(同样七参数模型) 四参数模型是在七参数模型的特例,没有考虑坐标轴的旋转量,只考虑坐标轴的平移。 总结: 类似布尔莎模型(以坐标原点为参考点),还有莫洛金斯基坐标模型(以目标点为变换中心)、武测转换模型和范士转换模型(以控制网参考点的站心地平坐标系的三个坐标轴为旋转轴),这些坐标转换模型很容易实现相关坐标在不同坐标系的转换,但是参考位置的偏移向量的相关参数,在实际运用中这些参量是很难测定的,并且受地球重力等物理因素的影响,两个坐标系统即使经过相似变换,仍可能存在较大的残差,所以这些模型适用于简单且规则模型中。 ④程序: clc clear all dX=input('please input value of dX=');

参考系坐标系及转换

1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。 L天球直角坐标系 厂天球坐标系 天球球面坐标系 地球直角坐标系地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1天球空间直角坐标系的定义 地球质心0为坐标原点,Z轴指向天球北极,X轴指向春分点,丫轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,丫Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)

A <空闵直笥坐瑟厂K V : z 丿的楚辽” 2天球球面坐标系的定义 地球质心0为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天 球经度(赤经)测量基准一一基准子午面,赤道为天球纬度测量基准而建立球面 坐标。空间点的位置在天球坐标系下的表述为(r ,a,S )。 天欢申诗与地球质?M 重合T 赤礙刊为舍天黏 和感分点的天球子牛面 与过天体$的天球子牛面 之间的夾角,未纬 S 为 原点Mi 天体£的连規与 天球击道面之间的夹角, 旬題丫为展点Mi 天体S 球球】?坐抚1就,S 1 r )的C 义: 天球空间直角坐标系与天球球面坐标系的关系可用图 2-1表示: 感鼻—地I 球质心M 一孑塾一指向天球北奴Pn 、 ¥菇'一垂直于XMZ 平面, 与X 抽和Z 抽枸成右 手坐 标系统。 Pn A Z y X 1 \y X 奋 My\5 Ps / /

对同一空间点,直角坐标糸与其著效的球面坐标糸参教间有如下转换关务: C X - /cos a cos S < Y= / sin cos -Z = ysin 5 Y V a = arctan —— L Xz d -arctail . 岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。 章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。 前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬 时春分点的方向,经过瞬时的岁差和章动改正后,分别作为 X轴和Z轴的指向, 由此建立的坐标系称为协议天球坐标系。天味奋 5 y X X Ps

坐标转换之计算公式

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度 L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数

a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式:

直角坐标与极坐标的区别与转换

直角坐标 直角坐标系在数学中应用广泛,是数学大厦最重要的根基之一。 在平面内画两条 直角坐标 直角坐标 互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。 直角坐标中的点 直角坐标中的点 坐标:对于平面内任意一点C,过点分C别向X轴、Y轴作垂线,垂足在X 轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序数对(a,b)叫做点C的坐标。坐标平面:坐标系所在平面。 坐标原点:两坐标轴的公共原点。 象限:X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点不属于任何象限。

极坐标 极坐标系 polar coordinates 在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP 的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P 点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地,如果(ρ,θ)是一个点的极坐标,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r 等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。 极坐标系到直角坐标系的转化: 在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换极坐标系中的两个坐标ρ和θ可以由下面的公式转换为直角坐标系下的坐标值 x=ρcosθ y=ρsinθ 由上述二公式,可得到从直角坐标系中x和y两坐标如何计算出极坐标下的坐标θ=arctany/x ( x不等于0) 在x= 0的情况下:若y为正数θ= 90° (π/2 radians);若y为负,则θ= 270° (3π/2 radians). 极坐标的方程 用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。 极坐标方程经常会表现出不同的对称形式,如果r(?θ) = r(θ),则曲线关于极点

#地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结 一、北京54坐标到西安80坐标转换小结 1、北京54和西安80是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。 2、数字化后的得到的坐标其实不是WGS84的经纬度坐标,因为54和80的转换参数至今没有公布,一般的软件中都没有54或80投影系的选项,往往会选择WGS84投影。 3、WGS8 4、北京54、西安80之间,没有现成的公式来完成转换。 4、对于54或80坐标,从经纬度到平面坐标(三度带或六度带)的相互转换可以借助软件完成。 5、54和80间的转换,必须借助现有的点和两种坐标,推算出变换参数,再对待转换坐标进行转换。(均靠软件实现) 6、在选择参考点时,注意不能选取河流、等高线、地名、高程点,公路尽量不选。这些在两幅地图上变化很大,不能用作参考。而应该选择固定物,如电站,桥梁等。 二、西安80坐标系和北京54坐标系转换 西安80坐标系和北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(W Z),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km(经验值),这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。 在MAPGIS平台中实现步骤: 第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z); 第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来) 第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。 第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 三、地理坐标系和投影坐标系的区别 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。

不同坐标系之间的变换

不同坐标系之间的变换 SANY GROUP system office room 【SANYUA16H-

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10)

????? ?????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11) ???? ? ?????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10- 13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简

平面直角坐标变换

平面直角坐标变换 【摘要】对利用EXCEL电子表格进行高斯投影换算的方法进行了较详细的介绍,对如何进行GPS坐标系转换进行了分析,提出了一种简单实用的坐标改正转换方法,介绍了用EXCEL完成转换的思路。 [关键字] 电子表格;GPS;坐标转换 作为尖端技术GPS,能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS坐标转换、面积计算会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS 坐标转换方法。 一、用EXCEL进行高斯投影换算 从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EX CEL的相应单元格中输入相应的公式即可。下面以54系为例,介绍具体的计算方法。 完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下: 单元格 单元格内容 说明A2 输入中央子午线,以度.分秒形式输入,如115度30分则输入1 15.30 起算数据L0 B2 =INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2* 100)*100)/3600 把L0化成度 C2 以度小数形式输入纬度值,如38°14′20″则输入38.1420 起算数据B D2 以度小数形式输入经度值 起算数据L E2 =INT(C2)+(INT(C2*100)-INT(C2)*100)/60+(C2*10000-INT(C2* 100)*100)/3600 把B化成度 F2 =INT(D2)+(INT(D2*100)-INT(D2)*100)/60+(D2*10000-INT(D2* 100)*100)/3600 把L化成度 G2 =F2-B2 L-L0 H2 =G2/57.2957795130823 化作弧度 I2 =TAN(RADIANS(E2)) Tan(B) J2 =COS(RADIANS(E2)) COS(B)

推导坐标旋转公式

推导坐标旋转公式 数学知识2010-09-12 21:03:53 阅读151 评论0 字号:大中小订阅 在《Flash actionScript 3.0 动画教程》一书中有一个旋转公式: x1=cos(angle)*x-sin(angle)*y; y1=cos(angle)*y+sin(angle)*x; 其中x,y表示物体相对于旋转点旋转angle的角度之前的坐标,x1,y1表示物体旋转angle 后相对于旋转点的坐标 从数学上来说,此公式可以用来计算某个点绕另外一点旋转一定角度后的坐标,例如:A(x,y)绕B(a,b)旋转β度后的位置为C(c,d),则x,y,a,b,β,c,d有如下关系式: 1。设A点旋转前的角度为δ,则旋转(逆时针)到C点后角度为δ+β 2。求A,B两点的距离:dist1=|AB|=y/sin(δ)=x/cos(δ) 3。求C,B两点的距离:dist2=|CB|=d/sin(δ+β)=c/cos(δ+β) 4。显然dist1=dist2,设dist1=r所以: r=x/cos(δ)=y/sin(δ)=d/sin(δ+β)=c/cos(δ+β) 5。由三角函数两角和差公式知: sin(δ+β)=sin(δ)cos(β)+cos(δ)sin(β) cos(δ+β)=cos(δ)cos(β)-sin(δ)sin(β) 所以得出:

c=r*cos(δ+β)=r*cos(δ)cos(β)-r*sin(δ)sin(β)=xcos(β)-ysin(β) d=r*sin(δ+β)=r*sin(δ)cos(β)+r*cos(δ)sin(β)=ycos(β)+xsin(β) 即旋转后的坐标c,d只与旋转前的坐标x,y及旋转的角度β有关 从图中可以很容易理解出A点旋转后的C点总是在圆周上运动,圆周的半径为|AB|,利用这点就可以使物体绕圆周运动,即旋转物体。 上面公式是相对于B点坐标来的,也就是假如B点位(0,0)可以这么做。现在给出可以适合任意情况的公式: x0 = dx * cos(a) - dy * sin(a) y0 = dy * cos(a) + dx * sin(a) 参数解释: x0,y0是旋转后相对于中心点的坐标,也就是原点的坐标,但不是之前点旋转后的实际坐标,还要计算一步,a旋转角度,可以是顺时针或者逆时针。 dx是旋转前的x坐标-旋转后的x坐标 dy是旋转前的y坐标-旋转后的y坐标 x1=b+x0; y1=c+y0; 上面才是旋转后的实际坐标,其中b,c是原点坐标 下面是上面图的公式解答: x0=(x-b)*cos(a)-(y-c)*sin(a); y0=(y-c)*cos(a)+(x-b)*sin(a); x1=x0+b; y1=y0+c;

相关主题