搜档网
当前位置:搜档网 › 热工宝典说明书

热工宝典说明书

热工宝典说明书
热工宝典说明书

热工控制系统课程设计样本

热工控制系统课程设计 题目燃烧控制系统 专业班级: 能动1307 姓名: 毕腾 学号: 02400402 指导教师: 李建强 时间: .12.30— .01.12

目录 第一部分多容对象动态特性的求取 (1) 1.1、导前区 (1) 1.2、惰性区 (2) 第二部分单回路系统参数整定 (3) 2.1、广义频率特性法参数整定 (3) 2.2、广义频率特性法参数整定 (5) 2.3分析不同主调节器参数对调节过程的影响 (6) 第三部分串级控制系统参数整定....................... (10) 3.1 、蒸汽压力控制和燃料空气比值控制系统 (10) 3.2 、炉膛负压控制系统 (10) 3.3、系统分析 (12) 3.4有扰动仿真 (21) 第四部分四川万盛电厂燃烧控制系统SAMA图分析 (24) 4.1、送风控制系统SAMA图简化 (24) 4.2、燃料控制系统SAMA图简化 (25) 4.3、引风控制系统SAMA图简化 (27) 第五部分设计总结 (28)

第一部分 多容对象动态特性的求取 某主汽温对象不同负荷下导前区和惰性区对象动态如下: 导前区: 136324815.02++-S S 惰性区: 1 110507812459017193431265436538806720276 .123456++++++S S S S S S 对于上述特定负荷下主汽温导前区和惰性区对象传递函数, 能够用两点法求上述主汽温对象的传递函数, 传递函数形式为 w(s)= n TS K )1(+,再利用 Matlab 求取阶跃响应曲线, 然后利用两点法确 定对象传递函数。 1.1 导前区 利用MATLAB 搭建对象传递函数模型如图所示:

热工设备

1.原有化合物化合键破坏 2.新材料化合键重组 3.新材料制品成型 4.新材料化合键合成 5.新材料制成。 1.必须在设备结构上满足热制备工艺过程要求 2.必须在热 工制度上..3.在自动控制上和调节上… 间歇式、连续式 制备与生产过程都要经过高温阶段(即需要热制备过程)。 5. 无机非金属材料通常是通过离子键、共价键或离子-共价混合键构成。 6.无机非金属材料、有极高分子材料、金属材料并列为三大基础材料。 7.窑业材料-硅酸盐材料-无机非金 属材料是我国对材料认识的几次飞跃。 窑炉 9.热工设备:产生热量、利用热量的设备。 是一些高温结构空间即在这些空间内能够用加热的方法,按工艺要求的烧成制度,使原料、生料或生坯经过一系列物理化学变化后成为熟料或产品。 1.普通烧制方法(固相烧结、液相烧结、熔化三种具体烧制方法)、高技术制备方法(材料的“放电等离子体烧结”、微波烧结、激光烧结、热压烧结、热等静压制备、自蔓延高温合成、活化烧结、真空烧结、爆炸烧结、气氛烧结、活化热压烧结) 其本质是在物料温度低于熔化温度的高温条件下,物料内部产生致密化的过程。 是在高温阶段将物料的气孔排除,使气孔率下降、物料颗粒之间粘合、物料收缩产生致密化、晶界移动、烧结体强度、化学稳定性提高,可以有部分固相反应存在,也允许有晶型转变以及固溶体存在,但不出现液相。 是在高温烧结阶段除了固相烧结的特征外,还会有部分液相出现,其产品中也有玻璃相存在。 除原料的前期处理和烧制品的后期处理阶段,大体都经过预热、烧成、冷却三阶段。 水泥:生料制备-干燥预热-碳酸盐分解-固相反应-烧结反应-冷却-熟料。 陶瓷:生坯体-干燥预热-脱水分解-晶型转变区域-坯体内气体排出-烧成保温-冷却。 玻璃:石英砂、纯碱、长石粉碎-池窑-池窑进料口-干燥预热熔化-调整静臵-出料口-成型(锡槽) 于稳定的系统输入热量之和等于输出热量之和 是构成窑炉高温空间的窑体材料。包括耐火材料(粘 土砖、高铝砖、镁质砖及浇注料)、保温材料、围护结构材料。 新建窑炉在正式生产之前按照适应耐火材料砌体体积变化的加热速度升温,以排除耐火材料砌体中的水分和适应相应的晶型转变( 作用),而为窑炉的安全稳定打下基础。 固体、气体、液体燃料燃烧设备 燃料燃烧的设备叫… 成汽油再按气体燃料的方 22.常用雾化介质有空气、水蒸气 根据雾化介质压强大小有低压、中压、高压雾化;按油流与雾化介质流向有直 流式、涡流式交流式;按雾化级数有一级、二级、多级雾化;按油流与雾化介质混合位臵有:外混式、内混式。 重油、轻质柴油烧嘴) 25.气体燃料的燃烧器也叫烧嘴传统的有:长焰、短焰、无焰烧嘴。新型的有:高速调温、脉冲烧嘴。 26.新型干法水泥回转窑系统是以“悬浮预热”“窑外分解”技术为核心,以NSP 窑为主导的 产量、热耗 、换热效率 生料样品的影响后所得的分解率。 从窑尾下料管去料测定烧失量后计算而得的分解率 解的碳酸盐量占原来未分解时碳酸盐量 的百分数。 发热能力、燃烧带截面、表面、容积热力强度、空 气过剩系数。 为了实现废气与生料粉之间的高效换热,达到提高生料温度降低排除废气温度。 由旋风筒及其连接管作为一个换热单元,若干换热单元相互连接组成预热器。物料进入连接管被上升气流冲散,均匀悬浮于气流中。此时 气体与固体颗粒接触面积极大完成高换热。当它们到达旋风筒后气、固相分离。如此完成每个换气单元达到达到提高生料温度降低排除废气温度实现其功能。 在悬浮预热器内生料粉被气流冲散处于悬浮状态,气、固相之间接触面积极大对流换热系数也较高速度极快。 因为气、固相换热过程主要发生在固相刚刚加入加入到气相的加速阶段,再增加接触意义不大所以实现 气、固分离进入下一换热单元才能强化气、固换热。这是旋风预热器需要多个级换热单元串联的缘故。 串联级数 越多换热效果越好但是系统流体阻力增大点好增加 是完成气、固相的分离和生料粉的收集。 35.气固换热主要发生在连接管道内。 因为生料只有悬浮于高温气流才能完成高换热,而只有悬浮区风速为10-25m/s 时生料才不会短路直接坠入下一单元。 37.为什么一级与最后一级较其他级的旋风筒的分离效率高? 因为整个旋风预热器系统中,越 往下气体温度越高故最下一级分离效率最高。但是出了第一级旋风筒的生料成为飞损的粉尘增加了料耗、热耗以及后面收尘的负担。所以第一级的重要性大于其它各级。 因为旋风预热器系统中越往下,旋风筒及其管道的表面温度越高,散热损失越大;旋风预热器系统中越往下气体温度越高,冷风漏入对系统 热效率影响越大。

多功能校验仪说明书

产品名称:ConST316多功能温度校验仪 产品型号:ConST316 生产厂商:康斯特 产品数量:不限 产品单价:电议 ConST316多功能温度校验仪的详细资料 新一代多功能温度校验仪,强大的任务管理功能,智能手机操作模式,助您更方便、更快捷地完成校准工作。 功能特点: 1.智能手机菜单操作模式:图文快速操作向导,图标式菜单管理; 2.强大的任务管理功能:支持被校仪表信息管理、校准过程参数设定、校准过程自动执行、数据自动分析、超差点自动标记、校准结果快速存储,可下载任务、上传数据。 3.热工宝典功能:压力、温度单位转换,电压值、电阻值与温度值的互算,符合ITS-90国际温标; 4.先进的自动冷端补偿技术:内嵌式冷端保温模块,快速跟踪温度变化,并且率先实现了冷端传感器的校准(专利:201010223848.2)。 5.可靠的误操作保护技术:任意两个插孔之间都可承受30V误操作的电压。电流测量端可长时间承受1A误操作的电流,误操作撤销后,仪表自动恢复到正常状态,不需要更换保险。 √具有屏幕快照存储功能。 √测量电压、电流、电阻、频率、热电偶和热电阻。 √输出电压、电流、电阻和频率,模拟热电偶、热电阻输出。 √可校准开方型变送器,也可校准开方型变送器显示仪表。 √使用可编程的斜坡输出,可校准开关类仪表,自动捕获开关动作。 √校准指针类仪表,支持示值基准法和标准基准法两种模式。 √可设定脉冲数频率输出,方便流量积算仪等仪表的校准。

√频率输出的幅值可设定。 √测量电路、输出电路及回路电源相互隔离。 √可作为高准确度铂电阻数字温度计使用,支持修正R0、a、b、c参数。 √标准的热偶插头及补偿导线,使用方便。 √可更换的充电电池,充电快,使用时间长。 √采用3.5寸TFT彩屏,中英文菜单。 √支持系统固件升级。 √体积小,重量轻。 测量(环境温度20℃±5℃) 信号种类量程范围准确度 毫伏电压 (-75.0000~75.0000)mV ±(0.01%RD+0.005%FS) 电压(-30.0000~30.0000)V ±(0.01%RD+0.005%FS) 电流(-30.0000~30.0000)mA ±(0.01%RD+0.005%FS) 电阻2、3 线制 (0~400.000)?±(0.02%RD+0.005%FS) 4线 制 (0~4000.00)?±(0.01%RD+0.005%FS) 频率(1~50000.0)Hz ±(0.005%RD+0.002%FS)脉冲0~999999 N/A 热电偶S、R、B、K、E、N、J、T、C、D、G、L、U 热电阻Pt10(385)、Pt100(385)、Pt100(391)、Pt100(392)、Pt500(385)、Pt100 Cu10(427)、Cu50(428)、Cu100(428)、Ni120(672)、Ni100(618) 通断/ 输出(环境温度20℃±5℃) 信号种类量程范围准确度 毫伏电压(-10.000~75.000)mV ±(0.02%RD+0.005%FS)电压(0.0000~12.0000)V ±(0.02%RD+0.005%FS)电流(0~22.000)mA ±(0.02%RD+0.005%FS) 电阻(1~400.00)?±(0.02%RD+0.005%FS) (1~4000.0)?±(0.03%RD+0.005%FS) 频率(0~50000.0)Hz ±(0.005%RD+0.002%FS)

数控加工工艺课程设计说明书(DOC 22页)

数控加工工艺课程设计说明书(DOC 22页)

《数控加工工艺》课程设计说明书 班级: 学号: 姓名】 指导老师:】

1.设计任务 本次课程设计是通过分析零件图,合理选择零件的数控加工工艺过程,对零件进行数控加工工艺路线进行设计,从而完成零件的数控加工程序的编写。使零件能在数控机床上顺利加工,并且符合零件的设计要求。 2.设计目的。 《数控加工工艺课程设计》是一个重要的实践性教学环节,要求学生运用所学的理论知识,独立进行的设计训练,主要目的有: 1 通过本设计,使学生全面地、系统地了解和掌握数控加工工艺和数控编程的基本内容和基本知识,学习总体方案的拟定、分析与比较的方法。 2 通过对夹具的设计,掌握数控夹具的设计原则以及如何保证零件的工艺尺寸。 3 通过工艺分析,掌握零件的毛坯选择方式以及相关的基准的确定,确定加工顺序。 4 通过对零件图纸的分析,掌握如何根据零件的加工区域选择机床以及加工刀具,并根据刀具和工件的材料确定加工参数。 5 锻炼学生实际数控加工工艺的设计方法,运用手册、标准等技术资料以及撰写论文的能力。同时培养学生的创新意识、工程意识和动手能力。 3.设计要求: 1、要求所设计的工艺能够达到图纸所设计的精度要求。 2、要求所设计的夹具能够安全、可靠、精度等级合格,所加工面充分暴露出来。 3、所编制的加工程序需进行仿真实验,以验证其正确

4.设计内容 4.1分析零件图纸 零件图如下: 1.该零件为滑台工作台,是一个方块形的零件。图中加工轮廓数据充分,尺寸 清晰,无尺寸封闭等缺陷。 2.其中有多个孔有明确的尺寸公差要求和位置公差要求,而无特殊的表面粗糙 度要求,如70+0.1、102+0.1、80+0.1、100+0.1、13.5+0.05、26+0.05.

水泥热工设备问答题汇总资料

第2章水泥 2.4 入窑生料的表观分解率与真是分解率的主要差别在什么地方? 答:表观分解率是预热生料与旋风筒收集的飞灰两种料综合的分解率。真是分解率仅是预热生料/预分解系统内预分解的真实数据。 2.6 预热器的功能是什么?怎样才能有效地实现这些功能? 答:预热器有三个功能:第一,生料粉在废气中的分散与悬浮;第二,气、固相之间的换热;第三,气、固相之间的分离:气流被排走,生料粉被收集。 第1,悬浮:1 选择合理的喂料位置 2 选择适当的管道风速3在喂料口加装撒料装置 4 注意来料的均匀性。 第 2, 换热,合理的换热级数。 第3,分离,1 合理的旋风筒尺寸及形状 2适当的旋风筒高度3适当的排气管尺寸和插入深度 4 合理的旋风筒直径 2.7为什么悬浮预热器系统内气固之间的换热速率极高?为什么旋风预热器系统又要分成多级换热单元相串联的形式? 答:在管道内的悬浮态,由于气流速度较大(对流换热系数也因此较大),气、固相之间换热面积极大,所以气、固相之间的换热速度极快,经过0.02—0.04s的时间,气、固相之间就可以达到温度的动态平衡,而且气、固相换热过程主要发生在固相刚刚加入到气相后的加速段,尤其是加速的初始段。这时,再增加气、固相之间的接触时间,其意义已经不大,所以这时只有实现气、固相分离进入下一个换热单元,才能够起到强化气、固相之间换热的作用。 2.8 在旋风预热器系统中,旋风筒的主要作用是什么?气(废气)、固(生料)之间的换热主要是发生在联接各级旋风筒的管道内,还是发生在旋风筒内? 答:旋风筒的作用主要是气固分离,传热只占6%~12.5%。气固间的热交换80%以上是在入口管道内进行的,热交换方式以对流换热为主。当dp=100μm时换热时间只需0.02~0.04s,相应换热距离仅0.2~0.4m。因此,气固之间的换热主要在进口管道内瞬间完成的,即粉料在转向被加速的起始区段内完成换热。

核反应堆热工分析课程设计报告书详细过程版本

华扶#力*孑 课程设计报告 (20 13 一2014年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计 院系:核科学与工程学院______________________ 班级:实践核1101班______________________ 学号:06 _________________________ 学生姓名:M _____________________ 指导教师:王胜飞__________________ 设计周数:Ul _______________________ 成绩:_____________________ 日期:2014 年6月19日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设讣,尤其是对动力堆,最基本的要求是安全。要求在整个寿期内能够长期稳泄运行,并能适应启动、功率调和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确左的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选左堆型,确怎所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化范用: (3)燃料元件的形状、它在堆芯内的分布方式以及栅距允许变化的范H: <4)二回路对一回路冷却剂热工参数的要求: (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规立了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规左的稳态热工设计准则,一般有以下几点:< 1)燃料元件芯块内最高应低于英他相应燃耗下的熔化温度; (2)燃料元件外表而不允许发生沸腾临界: (3)必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热: <4)在稳态额泄工况和可预计的瞬态运行工况中,不发生流动不稳左性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确?DNBR?J 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和英它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设讣准则: 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焰场的计算并求岀体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR, 燃料元件中心温度及其最高温度,包壳表面温度及英最髙温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等: 5、掌握压降的计算: 6、掌握单相及沸腾时的传热计算。 7、理解单通道模型的编程方法。 课程设计要求: 1.设计时间为一周;

五大热工设备介绍

五大热工设备介绍 一、预热器: 预热器主要功能是充分利用回转窑和分解炉排出的废气余热加热生料,使生料预热及部分硅酸盐分解,最大限度提高气固间的预热效率,实现整个煅烧系统的优质、高产、低消耗。它必须具备气固分散均匀、换热迅速和高效分离三个功能,在旋风预热器中,物料与气流之间的热交换主要在各级旋风筒之间的连接管道中进行,因此对旋风筒本身的设计,主要考虑了如何获得较高的分离效率和较低的压力损失,旋风筒的主要任务在于气固分离。来自上一级旋风筒收集下来的物料经喂料管落入散料板上冲散折回进入下一级旋风筒的排气管道中均匀冲散悬浮,并随上升气流进入旋风筒进行气固分离,气流由上而下做旋风运动,最后从锥部随排风机给予的动能沿旋风筒的中心垂直往上运动,此时,固体的物料沿筒壁落下进入下料溜管,排出的是相对干净的废气。旋风筒的收尘效率及阻力与旋风筒内的风速密切相关,旋风筒截面风速一般控制在5—6m/s,进风口风速在15-18m/s,出口风速控制在11-14m/s,若过高,引起系统阻力较大,过低不利于旋风筒收尘。 预热器主要部位工艺操作参数如下图(以天津院TDF预热器为例):

预 图:

二、分解炉: 分解炉是在预热器和回转窑之间增设的一个装臵,燃煤喂入分解炉燃烧放出的热量与进入炉内的生料碳酸盐的分解和吸热过程同时在浮状态下进行,使得入窑碳酸盐分解率提高到90%以上。原来在窑内进行的分解反应移至分解炉内来,燃料大部分从分解炉内加入,减轻了窑内热负荷,延长了衬料的寿命有利于生产大型化,由于燃料与生料粉混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程都得到优化,因而具有优质、高效、低耗等一系列优良性能特点,它主要作用是燃料的燃烧、换热和碳酸盐的分解。在分解炉内,生料及燃料分别依靠“涡旋效应”、“喷腾效应”、“悬浮效应”和“流化态效应”分散于气流之中。由于物料之间在炉内流场中产生相对运动,从而达到高度分散、均匀混合和分布、迅速换热、延长物料在炉内的滞留时

热工控制系统课程设计56223

热工控制系统课程设计 ----某直流锅炉给水控制系统设计 二○一○年十二月 目录 第一部分多容对象动态特性的求取 (2) 第二部分单回路系统参数整定 (4) 一、广义频率特性法参数整定 (5) 二、临界比例带法确定调节器参数 (6) 三、比例、积分、微分调节器的作用 (9) 第三部分串级控制系统参数整定 (10) 一、主蒸汽温度串级控制系统参数整定 (10) 二、给水串级控制系统参数整定 (13) 三、燃烧控制系统参数整定 (15)

第四部分 某电厂热工系统图分析 ........................................................ 16 参考文献: (19) 第一部分 多容对象动态特性的求取 选取某主汽温对象特定负荷下导前区和惰性区对象动态特性如下: 导前区: 1 40400657 .12++-s s 惰性区: 1 1891542269658718877531306948665277276960851073457948202 .1234567+++++++s s s s s s s 对于上述特定负荷下主汽温导前区和惰性区对象传递函数,可以用两点法求上述主汽温对象的传递

函数,传递函数形式为n Ts K s W )1()(+=,利用Matlab 求取阶跃响应曲线,然后利用两点法确定对象 传递函数。 导前区阶跃响应曲线: 图1-1 由曲线和两点法可得: 657.1=K 637.28,663.0657.14.0)(4.01==?=∞t y 165.61,326.1657.18.0)(8.02==?=∞t y 2092.25.0075.12 121≈=??? ? ??+-=t t t n ,8.2016.22 1≈+≈n t t T 即可根据阶跃响应曲线利用两点法确定其传递函数:2 ) 18.20(657 .1)(+-= s s W 惰性区阶跃响应曲线:

核反应堆热工水力课程设计

一、设计要求 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: 1.燃料元件芯块内最高应低于其他相应燃耗下的熔化温度; 2.燃料元件外表面不允许发生沸腾临界; 3.必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下 能提供足够的冷却剂以排除堆芯余热; 4.在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 5.在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而 热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 二、设计任务 某压水反应堆的冷却剂和慢化剂都是水,用二氧化铀作燃料,Zr-4作燃料包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列,已知下列参数:系统压力P15.8M P a 堆芯输出热功率N t1820M W 冷却剂总流量W32500t/h 反应堆进口温度t f i n287℃堆芯高度L 3.60m 燃料组件数m121 燃料组件形式n0×n017×17 每个组件燃料棒数n265 燃料包壳外径d c s9.5m m 燃料包壳内径d c i8.6m m 燃料包壳厚度δc0.57m m 燃料芯块直径d u8.19m m 燃料棒间距(栅距)s12.6m m 两个组件间的水隙δ0.8m m UO2芯块密度ρUO2 95%理论密度旁流系数ζ5% 燃料元件发热占总发热份额F a97.4% 径向核热管因子 1.33 轴向核热管因子 1.520 热流量核热点因子= 2.022 热流量工程热点因子 1.03 焓升工程热点因子(未计入交混因子) 1.142 交混因子0.95 焓升核热管因子= 1.085

SWPCA101热工宝典产品介绍

SWP-CA101热工宝典产品介绍 一、特性 : SWP-CA101 热工信号校验仪主要是为工业现场热工仪表及系统的校验维护而设计的,仪表提供完善而实用的功能,操作简单。仪表采用单片机作为 CPU ,集最新大规模数字转换集成电路和大屏幕液晶显示技术于一体,具有输出、测量、手册和 24VDC 配电功能,且四项功能可同时工作,同屏显示输出和测量值以及对应的 ITS-90 标准值(热电阻和热电偶)。并配备超大容量可充电电池,携带方便,能方便地完成工业现场热工仪表(传感器、变送器、显示仪表、控制系统)的检修、校验。其具有如下的使用特点: ■小巧、便于携带和手持。 ■坚固、可靠,背面的支撑架和挂钩孔适合现场使用。 ■大显示屏,测量、输出可同时显示。 ■电压、电流、电阻的测量和电压、电流的输出。 ■ 8 种热电偶( K 、 E 、 T 、 J 、 S 、 R 、 N 、 B )的测量和输出, 2 种热电阻( PT100 、 Cu50 )的测量。 ■热电偶、热电阻的测量输出具有 ITS-90 国际标准毫伏、电阻值对应显示。 ■电压和电流测量可显示百分比。 ■热电偶测量、输出具有自动或手动补偿功能。 ■输出值的输入采用多种方式。 ■热工宝典可实现电阻值与温度值、毫伏值与温度值的快速互查。 ■内置大容量充电电池,充电一次可连续工作 5~7 小时(与工作状况相关)。 ■大屏幕液晶带背光显示,中文菜单操作。 ■按键声音和背光可控制,并能才每次开机时保持上次最后设置的状态。 二、技术参数 2.1 直流信号输入: 2.2直流信号输出

Hz 0~1000Hz ± 1Hz 0~5.00KHz ± 0.02KHz 2.3 性能指标: 工作温度: -10~50 ℃ 贮存温度: -27~70 ℃ L × W1(W2) × H 外形尺寸: mm3 237 × 131(95) × 45 三、操作方式 3.1 仪表面版 ●液晶显示屏:显示测量及输出信号的相关信息。 ●电源开关:按下电源 ON 开关,接通电源。 OFF 关断电源。 ●键盘: ⑴数字区:直接输入要输出的量或查询的值。 ⑵:主画面和查询画面时设定光标位数值,参数设定时选择要修改的参数项。 ⑶:设定光标位。 ⑷ ENT :回车键,确定选定的项操作有效 ⑸ ESC :在主画面时进入热工宝典查询,参数设置时为退出参数设置画面。 ⑹ FUN :测量或输出的类型切换。测量时由 DCV 、 DCmA 、 DCmV 、 RTD 、 TC 、 F 顺序循环切换。 输出时由 DCV 、 DCmA 、 DCmV 、 TC 顺序循环切换。 ⑺ Range :测量或输出中的 RTD 、 TC 的类型范围切换。 RTD 由 Cu50 、 Pt100 顺序切换, TC 由 S 、 K 、 E 、 T 、 J、 B 、 R 、 N 顺序切换。 ⑻ Zero :输出值复位为 0 。 ⑼ ON 、 OFF :电源开关。按下 ON 2 秒钟,电源开关接通。 ●输入输出端子 端子分为 OUT 区和 IN 区, OUT 区作为信号输出用, IN 区为信号测量用。红色的端子为正级,黑色的端子为负极。 3.2 顶端面图 当电池电量不足的时候(屏幕闪动或者按开机键无法开机),将充电器插在此孔充电。 3.3 测量和输出操作 在该画面下,可以进行所有的仪表提供的输出和测量信号的操 作。 打开电源,然后显示图1 这时可以测量电压和输出电压,在附加信息栏里显示当前测量或 输出值对应的 1~5V 的百分 比,当测量值或输出值超 1~5V 的范围时,百分比不显示。

核反应堆热工分析课程设计报告书详细过程版本

课程设计报告 ( 20 13 -- 2014 年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计院系:核科学与工程学院 班级:实践核1101班 学号:1111440306 学生:佳 指导教师:王胜飞 设计周数:1周 成绩:

日期:2014 年 6 月19 日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设计,尤其是对动力堆,最基本的要安全。要求在整个寿期能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确定的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化围; (3)燃料元件的形状、它在堆芯的分布方式以及栅距允许变化的围; (4)二回路对一回路冷却剂热工参数的要求; (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: (1)燃料元件芯块最高应低于其他相应燃耗下的熔化温度; (2)燃料元件外表面不允许发生沸腾临界; (3)必须保证正常运行工况下燃料元件和堆构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热; (4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和其它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设计准则; 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焓场的计算并求出体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR,燃料元件中心温度及其最高温度,包壳表面温度及其最高温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等; 5、掌握压降的计算;

换热站课程设计说明书

供热课程设计说明书 题目: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 完成日期:

目录 摘要 (3) 第一章绪论 (4) 第二章热负荷计算 (6) 原始资料 负荷计算 第三章供热系统方案的选择 (11) 系统热源型式及热媒的选择 供热管道的平面布置类型 供热管道的定线原则 管道的保温与防腐 第四章设备的选择 (13) 热交换器选型 水泵的选择和计算 除污器选择 设计小结 (19) 参考文献 (21) 摘要 本设计名为长春市曙光苑小区室外供热管网和换热站工程设计。 随着国家计量供热的逐步推行,供热行业面临着新的机遇和挑战。计量供热是供热行业从粗放型管理方式向精细型管理方式的一次深刻转变。计量供热的主目标是节能环保。计量供热的成功实行必须依托高精确的热网调控。而热网的高精确调控基础是热网的设计和建设。这对我们供热系统的设计人员和施工人员提出了新的更高的要求。能否设计出满足热网精确调控需求的供热系统是当前我们设计人员面临的一道重要难题。

供热工程是现代化城市重要的基础设施,也是城市公共事业的一项重要设计。各地区都努力从现有条件出发,积极调整能源结构,研究多元化的供热方式,实现供热事业的可持续发展,实现计量供热的节能目标。计量供热不仅能给城市提供稳定的可靠地高品位热源,改善人民生活环境。而且能节约能源,减少城市污染。有利于城市美化,有效地利用城市空间。城市供热管网的设计,首先要在总体规划的指导下,既要为今后的发展留有余地,又要实事求是的对热负荷进行调查和计算。在了解热负荷的性质、类别、用途等多方面现场的资料后,进行供热外网的设计。 本次设计以节能建筑的热指标为基础,以热网的精确调节为最终目标,尽量降低热网的各项指标,尽量应用精确调节的阀门和设备,为计量供热打好基础。 本设计以经济、环保、节能为原则,通过借鉴以前的设计方法和经验,采用了合理的技术措施,使设计的各个系统达到了很好的使用效果。 关键词:集中供热;供热管网;换热站;节能; 第一章绪论 一、我国城市供热的技术走向 1,我国城市集中供热的技术方向,主要采用热电联产的型式,这是我国当前的具体情况决定的。当然,集中供热的首要前提是节约能源,但是当前我国电力紧张的局面也是不能忽视的。在供热的同时,生产一定量的电力,也能缓解部分用电的需要。 2,落实热负荷,是集中供热一切要素之首。没有准确的热负荷,热电站的建设将似海滩上的建筑,不仅不能节约燃料,更无经济效益可谈。 3,目前,我国建设资金短缺,无论是建设热源还是管网,耗资都相当大。因此,改造老凝汽式电站为热电厂,既可大大降低投资,也可缩短工期,且运行效益可立竿见影。这是集中供热应优先考虑的热源。 4,尽可能在老厂扩建供热机组,降低生产与非生产设施投资,并且技术上有比较强的后盾,安全生产有比较可靠的保证。

热工宝典说明书(文档)

一、特点 SK-JF4型手持式热工宝典主要是为了现场热工仪表及系统的校验维护而设计,仪表提供完善面实用的功能,操作简单。仪表采用单片机作为CPU,集最新大规模数字转换集成电路和大屏幕液晶显示技术于一体,具有输出、测量、手册和24VDC配电功能,且四项功能可同时工作,同屏显示输出和测量值以及对应的ITS-90标准值(热电阻、热电偶)。并配备超大容量可充电电池,携带方便,能方便地完成工业现场热工仪表(传感器、变送器、显示仪表、控制系统)的检修、校验。其具有如下的使用特点: ●小巧、便于携带和手特。 ●坚固、可靠,背面的支撑架和挂钩孔适合现场使用。 ●大显示屏,测量、输出可同时显示。 ●电压、电流、电阻的测量和电压、电流的输出。 ●8种热电偶(K、E、T、J、S、R、N、B)的测量和输出,2种热电阻(Pt100、Cu50) 的测量。 ●热电偶、热电阻的测量输出具有ITS-90国际标准毫伏、电阻值对应显示。 ●电压和电流测量可显示百分比。 ●热电偶测量、输出具有自动或手动补偿功能。 ●输出值的输入采用多种方式。 ●热工宝典可实现电阻值与温度值、毫伏值与温度值的快速互查。 ●内置大容量充电电池,充电一次可连续工作5~7小时(与工作状况相关。 ●大屏幕液晶带背光显示,中文菜单操作。 ●按键声音和背光可控制,并能在每次开机时保持上次最后设置的状态。 二、技术参数

2.3性能指标: 工作温度:-10~50℃ 贮存温度:-27~70℃ 外型尺寸: mm 重 量:1.8Kg 三、 操作方式 3.1仪表面板 3.2 顶端面图 L ×W1(W2)×H 237×131(95)×45 3 测量值 电源开关数字区 充电插座

供热课程设计计算说明书.doc

目录 第1章绪论 (1) 1.1设计目的 (1) 1.2工程概述 (1) 1.3设计任务 (1) 第2章设计依据 (2) 2.1主要参考资料 (2) 2.2设计范围 (2) 2.3设计参数 (2) 2.3.1 室外设计参数 (2) 2.3.2 室内设计参数 (3) 2.4设计原始资料 (3) 2.4.1 土建资料 (3) 2.4.2 建筑结构 (3) 2.5动力与能源资料 (3) 2.6其他资料 (3) 2.7朝向修正率 (4) 第3章供暖系统的设计热负荷 (5) 3.1热负荷组成 (5) 3.2负荷计算 (5) 3.2.1 围护结构计算参数 (5) 3.2.2主要计算公式 (5) 3.3热负荷计算 (7)

第4章热水供暖系统设计方案比较与确定 (8) 4.1循环动力 (8) 4.2供、回水方式 (8) 4.3系统敷设方式 (9) 4.4供、回水管布置方式 (9) 第5章散热器的选型及安装形式 (10) 5.1散热器的选择 (10) 5.2散热器的布置 (10) 5.3散热器的安装 (10) 5.4散热器的计算 (10) 第6章热水供暖系统水力计算 (11) 6.1确定系统原理图 (11) 6.2系统水力计算 (11) 6.2.1 散热器计算 (11) 6.2.2 户内水平系统水力计算 (12) 6.2.3 单元立管与水平干管采暖系统水力计算 (19) 附录 (23) 参考文献 (24) 总结 (25)

第1章绪论 1.1 设计目的 供热工程课程设计是本专业学生在学习完《供热工程》后的一次综合训练,其目的是让学生根据所学理论和专业知识,结合实际工程,按照工程设计规范、标准、设计图集和有关参考资料,独立完成建筑所要求的工程设计,掌握供暖系统的设计方法,了解设计流程,通过对系统的设计进一步掌握供热工程的专业知识,深入了解负荷计算、水力计算、散热器计算、系统选择的具体方法,从而达到具有能结合工程实际进行供暖系统设计的能力。 供热工程课程设计是建筑环境与设备专业培养学生解决实际问题能力的一个重要的教学实践环节,在建筑环境与设备专业的教学计划中占有重要的地位和作用。 1.2 工程概述 1.本工程为北京市某建筑小区,整个建筑物为3层,建筑总供暖面积约1800.26平方米。系统与室外管网连接,供水温度950C,回水温度700C.该工程采用接外热网下供下回式分户热水供暖系统,楼梯间不供热。热源由城市热网提供,引入口管径为DN50。 1.3 设计任务 本设计为整栋小区冬季热水供暖工程。设计主要内容为: (一)设计准备(收集和熟悉有关规范、标准并确定室内外设计参数) (二)采暖设计热负荷及热指标的计算 (三)散热设备选择计算 (四)布置管道和附属设备选择,绘制设计草图 (五)管道水力计算 (六)平面布置图、系统原理图等绘制 (七)设计及施工说明的编制

热工设备思考题(答案)

第2章水泥 P173:2.1水泥熟料烧成技术的发展历程是什么?与其他回转窑相比,为什么NSP 窑在节能、高产方面具有优势? 答:水泥熟料烧成技术发展历程:从立窑到传统干法回转窑,到湿法回转窑,到立波尔窑,再到新型干法水泥回转窑系统。 窑外预分解窑的优点主要体现在:一是在流程结构方面:它在SP窑的悬浮预热器与回转窑之间增加了一个分解炉。分解炉高效的承担了原来主要在回转窑内进行的大量CaCO3分解的任务,缩短回转窑,减少占地面积、减少可动部件数以及降低窑体设备费用;二是在热工过程方面:分解炉是预分解窑系统的第二热源,小部分燃料加入窑头、大部分燃料加入分解炉。有效地改善了整个窑系统的热力布局,从而大大减轻了窑内耐火衬料的热负荷,延长窑龄。另外减少了NOX(有害成分)的含量,有利于保护环境。三是在工艺过程方面:将熟料煅烧过程中热耗量最大的CaCO3分解过程移至分解炉内进行后,燃料燃烧产生的热量能及时高效的传递给预热后的生料,于是燃烧。换热及CaCO3分解过程得到优化熟料质量、回转窑的单位容积产量。单机产量得到大幅提升烧成热火也因此有所降低,也能够利用一些低质燃料。 P173:2.2某旋风预热器的符号写成2-1-1-1-1是什么含义?2-2-2-2-2又是什么含义? 答:单列,一级有2个旋风筒,其余各级均有1个;双列,各级都有2个旋风筒。 P173:2.3在表示旋风筒级数的符号中,1,2,3,4,5和Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ这两种类型的数字符号,一般来说有什么区别?旋风筒通常用字母C表示,例如C1,C2…;CⅠ,CⅡ,…。这里的C代表什么意思? 答:用阿拉伯数字表示是国内的习惯,即从上向下数各级旋风筒;用罗马数字表示是国外的习惯,即从下向上数各级旋风筒。C代表Cyclone。 2.4 入窑生料的表观分解率与真是分解率的主要差别在什么地方? 答:表观分解率是预热生料与旋风筒收集的飞灰两种料综合的分解率。真是分解率仅是预热生料/预分解系统内预分解的真实数据。 2.5 请推导出入窑生料表观分解率的计算公式? 答:表观分解率e=(生料中原有烧失量—样品中残留烧失量)/生料中原有烧失量*100% ={(100L1/100-L1)—(100L2/100-L2)}/(L1/100-L1)*100% =10000(L1-L2)/L1(100-L2) 2.6 预热器的功能是什么?怎样才能有效地实现这些功能? 答:预热器有三个功能:第一,生料粉在废气中的分散与悬浮;第二,气、固相之间的换热;第三,气、固相之间的分离:气流被排走,生料粉被收集。 第一,悬浮:1 选择合理的喂料位置 2 选择适当的管道风速 3 在喂料口加装撒

热工检测技术课程设计

课程设计报告 学生姓名:学号:2012307010936 学院:自动化工程学院 班级: 自动卓越121 题目: 热工参数检测仪表 刘口 指导教师:职称: 实验师 201年月日

目录 第一章题目背景及意义 (1) 第二章第二章设计题目介绍 (1) 2.1设计目的 (1) 2.2设计内容及要求 (1) 2.3设计工作任务及工作量的要求 (1) 2.4设计成果形式及要求 (2) 第三章压力表的检定 (2) 3.1压力表的概述 (2) 3.2压力表简介 (2) 3.2.1压力表原理 (2) 3.2.2压力表构造 (3) 3.2.3性能分类 (3) 3.3压力表检定方法 (3) 3.4计量器具 (4) 3.5示值误差、回城误差和敲定位移的检定 (4) 3.6实验操作步骤 (4) 3.7结果处理 (4) 3.8误差分析 (5) 3.9测量结果 (6) 第四章热电阻的检定 (7) 4.1热电阻概述 (7) 4.2热电阻工作原理 (7) 4.3热电阻允差 (7) 4.4热电阻的检定方法 (8) 4.5检定设计方法 (8) 4.6实验操作步骤 (8)

4.7结果处理 (8) 4.8误差分析 (9) 4.9检定结果 (9) 第五章流量计的检定 (16) 5.1流量计概述 (16) 5.2转子流量计工作原理 (16) 5.3流量计检定方法 (17) 5.4测量工作原理和主要技术参数 (17) 5.5实验操作步骤 (17) 5.6数据处理 (18) 5.7误差分析 (18) 第六章总结 (19) 参看文献 (19)

第一章题目背景及意义 电厂热工检测技术及仪表是电厂热工自动化的重要内容之一,所要完成的任务就是为运行操作人员及时、准确和方便的反应生产过程运行情况的各种物理量、化学量以及生产设备的工作状态并自动的进行检查和测量,以便监督生产过程的进行情况和趋势,电厂热工过程自动化是随着火力发电事业的发展而发展起来的。在火电厂锅炉和汽轮机都装有大量的检测仪表,其中包括传感器、变送器、显示仪表和记录仪表等。他们随时显示、记录、累积和变送机组运行各种参数,以便进行必要的操作和控制,保障机组安全经济的运行。 总之,检测仪表是保障生产过程安全经济运行及实现自动化的前提条件和必要条件,配备完善的自动监测系统能够为操作人员提供操作数据,为自动化装备提供准确及时的测量信号,为宏观技术管理提供参考依据,可以改善运行和检修人员的劳动条件,提高劳动效率和设备可靠性。 第二章设计题目介绍 2.1设计目的 通过本课程的学习,学生应达到如下基本目标:使学生了解热工系统中常用的压力、温度及流量等热工参数的特性及检测的方法,熟练掌握这些测量仪表的使用方法,能对常用测量仪表的精度进行校验。 2.2设计内容及要求 (1)根据《压力控制器检定规程JJG 544-2011》及《弹簧管式一般压力表、压力真空表和真空表检定规程JJG 52-1999》的要求对压力控制器和压力表进行检验,并给出检定报告。 (2)根据热电偶及热电阻检定规程,使用热工检定系统对热电偶或热电阻进行校验,并给出检定报告,报告格式见指导书。 (3)根据《冷水水表检定规程JJG162-2009》,利用流量试验台对流量表进行检定并给出相应的检定报告。 (4)熟练使用磁翻柱式、差压式液位计的使用方法。 2.3设计工作任务及工作量的要求 (1)课程设计报告(题目介绍、背景意义、要求及实验过程等);

核反应堆热工分析课设

目录 一、设计任务 (1) 二、课程设计要求 (2) 三、计算过程 (2) 四、程序设计框图 (8) 五、代码说明书 (9) 六、热工设计准则和出错矫正 (10) 七、重要的核心程序代码 (11) 八、计算结果及分析 (17)

一、设计任务 某压水反应堆的冷却剂及慢化剂都是水,用二氧化铀作燃料,用Zr-4作包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列。已知下列参数:系统压力 15.8MPa 堆芯输出功率 1820MW 冷却剂总流量 32100t/h 反应堆进口温度287℃ 堆芯高度 3.66m 燃料组件数 121 燃料组件形式17×17 每个组件燃料棒数 265 燃料包壳直径 9.5mm 燃料包壳内径 8.36mm 燃料包壳厚度 0.57mm 燃料芯块直径 8.19mm 燃料棒间距(栅距) 12.6mm 芯块密度 95% 理论密度旁流系数 5% 燃料元件发热占总发热的份额 97.4% 径向核热管因子 1.35 轴向核热管因子 1.528 局部峰核热管因子 1.11 交混因子 0.95 热流量工程热点因子 1.03 焓升工程热管因子 1.085 堆芯入口局部阻力系数 0.75 堆芯出口局部阻力系数 1.0 堆芯定位隔架局部阻力系数 1.05

若将堆芯自上而下划分为5个控制体,则其轴向归一化功率分布如下 表:堆芯轴向归一化功率分布(轴向等分5个控制体) 通过计算,得出 1. 堆芯出口温度; 2. 燃料棒表面平均热流及最大热流密度,平均线功率,最大线功率; 3. 热管的焓,包壳表面温度,芯块中心温度随轴向的分布; 4. 包壳表面最高温度,芯块中心最高温度; 5. DNBR在轴向上的变化; 6. 计算堆芯压降; 二、课程设计要求 1.设计时间为两周; 2.独立编制程序计算; 3.迭代误差为0.1%; 4.计算机绘图; 5.设计报告写作认真,条理清楚,页面整洁; 6.设计报告中要附源程序。 三、计算过程 目前,压水核反应堆的稳态热工设计准则有: (1)燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。 目前,压水堆大多采用UO2作为燃料。二氧化铀的熔点约为2805 ±15℃,经辐照后,其熔点会有所降低。燃耗每增加104兆瓦·日/吨铀,其熔点下降32℃。在通常所达到的燃耗深度下,熔点将降至2650℃左右。在稳态热工设计中,一般将燃料元件中心最高温度限制在2200~2450℃之间。 (2)燃料元件外表面不允许发生沸腾临界。

相关主题