搜档网
当前位置:搜档网 › 渤南地区沙四段膏岩成藏体系中硫化氢的差异聚集

渤南地区沙四段膏岩成藏体系中硫化氢的差异聚集

渤南地区沙四段膏岩成藏体系中硫化氢的差异聚集
渤南地区沙四段膏岩成藏体系中硫化氢的差异聚集

渤南地区沙四段膏岩成藏体系中硫化氢的差异聚集①

毛曼

【摘要】济阳坳陷渤南油田是胜利油田高含硫化氢油气田,硫化氢含量最高达8%,严重威胁井场操作人员及生产设备安全。该文从渤南沙四段含硫油气藏的形成机制与分布特征入手,开展以下几个方面的研究:分析渤南油田油气成藏期和油气运移路径;分析压力场、地层水与硫化氢形成、聚集的关系;分析硫化氢的形成和保存条件与油气之间的关系和差异,建立硫化氢运聚模式等,并给出研究结论。

【期刊名称】科技创新导报

【年(卷),期】2013(000)002

【总页数】1

【关键词】含硫化氢油气藏运移通道运聚模式差异聚集

硫化氢是一种与油气伴生的无色、中弱酸性气体,其剧毒性和强腐蚀性对人、钻采设备及环境构成极大威胁。目前国内缺乏硫化氢气藏的分布规律、与油气的关系、以及硫化氢生成、运移、聚集的控制因素等方面研究,很难对其进行有效评价和预测。因此,开展对硫化氢的分布及运聚规律进行深入研究弥补国内空白,对含硫化氢油气藏进行有效预测和安全开发具有十分重要的指导意义。

1 硫化氢的来源与形成机制

同油气一样,硫化氢的聚集主要受控于三个因素,即生成、运移和保存条件的影响。在硫化氢的生成方面,必须同时满足硫酸盐、烃类的共存及一定的温度条件(100 ℃以上),温度还同时控制了烃类的生成。统计显示,渤南地区的硫化氢主要来源于沙四段,是烃源岩中硫酸盐热化学还原反应(TSR)成因。地

渤南洼陷下第三系沙三段高分辨率层序地层学研究

收稿日期:!""#$"%$&" 作者简介:董春梅(#’%&(),女(汉族),山西孝义人,在读博士研究生,从事沉积学、矿物岩石学及地球化学方面的科研和教学工作。参加研究工作的还有研究生辛治国等。 文章编号:#"""$)*+"(!""!)"!$""##$", 渤南洼陷下第三系沙三段高分辨率层序地层学研究 董春梅 (石油大学地球资源与信息学院,山东东营!)+"%# )摘要:根据湖泊陆相高分辨率层序地层学理论,综合利用岩心、测井和地震资料,对渤南洼陷沙三段层序地层和层序内体系域类型进行了识别和划分,并对层序地层的特征和演化进行了分析。研究结果表明,渤南洼陷沙三段储集层主要位于层序!的中上部,并划分出#个三级层序,&个准层序组,#&个准层序。体系域类型包括湖侵体系域、高水位体系域和湖泊萎缩体系域。渤南洼陷下第三系沙三段浊积扇扇中辫状沟道和沉积叶状体是今后油气勘探的新领域。 关键词:渤南洼陷;下第三系;沙三段;高分辨率;层序地层学;体系域;浊积扇中图分类号:-.#!#/&, 文献标识码:0 !地质概况 渤南洼陷位于沾化凹陷中部,是济阳坳陷中的#个三级负向构造单元, 接受了巨厚的中、新生代断陷湖盆和坳陷湖盆沉积。洼陷东邻孤北洼陷及孤岛凸起,南为罗家鼻状构造,西为四扣洼陷(图#)。渤南洼陷的北和北东方向是埕东及孤西断层下降盘的交汇处,为盆地的沉降中心及沉积中心,整体为北陡南缓、北东走向的箕状洼陷。在渤南洼陷中,主要以 断层控制的岩性油藏为特征。 图!渤南洼陷构造及井位略图 "层序边界及体系域边界的识别 很多学者对济阳坳陷下第三系层序地层进行了 研究[#"&]。通过对地震、岩心、测井等资料的综合 分析,识别出具有年代地质学意义的-1,-%,-#%,-&,-#!,-!,-##等+个地震反射界面。其中,-1,-&和-##为层序界面;-#%和-#!为首次湖泛面;-%和-! 为最大湖泛面。据此将沾化凹陷沙河街组划分为#个二 级层序,该层序内部按照湖平面变化的相对位置又可分出低水位、湖侵、高水位及湖泊萎缩等,个体系域,从而建立了沾化凹陷沙河街组综合层序地层剖面。渤南洼陷沙三段位于层序!的湖侵体系域和高水位体系域中,主要存在-%最大湖泛面和-&层序界面。 "#!层序边界及$% 层序界面的识别层序边界识别的关键是识别和确定不整合面,然后进行等时性追踪对比。层序界面标志是上、下沉积岩在岩性组合、地震反射特征、古生物组合及测井曲线等方面均有明显反映。 -&层序界面识别标志为:(#)地震响应。-&反射在湖盆的周缘地区,特别是远离边界断层的斜坡地带可见到明显的上超、削蚀等反射终止现象(图!)。(!)沉积学标志。-&界面以上大部分地区为三角洲(平原)相的灰色砂岩和泥岩;界面以下以氧化浅湖至河流相沉积为主。湖盆边缘地区主要以红色河流相粗碎屑岩沉积为特征,说明此时该地区正出露水面遭受剥蚀。(&)测井响应。自然伽马及自然电位曲线在界面附近均有明显变化,自然电位曲线 !""!年第!%卷 石油大学学报(自然科学版) 234/!%53/! 第!期63718943:;<=>8?@=1A ?;B 3 :C =;134=7D ,E

工艺设备中硫化氢腐蚀特性及选材案例分析

O ct. 2010 化肥设计 Chem ical Fertilizer Design 第48卷 第5期 2010年10月 工艺设备中硫化氢腐蚀特性及选材案例分析 熊同国, 孙 恺 (神华包头煤化工分公司, 内蒙古包头 014010) 摘 要: 介绍了硫化氢腐蚀机理; 着重分析了林德低温甲醇洗工艺中的甲醇洗涤塔等主要设备的硫化氢腐蚀特性;探讨了应对硫化氢腐蚀的设备选材策略; 提出了控制硫化氢腐蚀的工艺操作方案。 关键词: 硫化氢; 低温甲醇洗设备; 腐蚀; 材料; SSCC (硫化物应力腐蚀开裂); 分析 中图分类号: TQ 546. 5 文献标识码: A 文章编号: 1004- 8901( 2010) 05- 0042- 04 Concerning H 2S Corrosion F eature andMater ial Selection Strategy for Linde Low TemperatureMethanolWash XIONG Tong guo, SUN Kai (Shenhua B aotou Coa l Chem ica lE ng ineeringS ubcompany, Baotou InterM ongolia 014110 China ) Abstract : Author has in trodu ced the H 2S corrosion m ech an ism; hasm ain ly analyzed the H2S corros ion characteristic ofm ain equ ipment, su ch as,methano l scrubber etc. in L inde low tem peratu rem eth anolw ashp rocess; has d iscussed the strategy of equ ipmentm ateria l select ion facing H 2S corrosion; has presen ted the process operation scheme for control ling H 2S corrosion. Keyw ords: hydrogen sulphide (H 2S) ; low temp erature m ethanolw as equ ipm ent; corros ion; m ateria;l sscc( su lph ide stress corros ion crack) 1 硫化氢腐蚀机理 H 2S 的分子量为34. 08, 密度为1. 539mg /m 3 ,是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。H 2S 在水中的溶解度很大, 水溶液具有弱酸性。H 2S 在水的作用下电解, 电化学腐蚀过程如下。 H + 得到电子以成为氢原子, 易在合金钢中产生氢脆, 降低合金钢的强度, 同时氢原子易在金属材料有缺陷处产生聚集, 使材料内应力增大, 从而产生氢制裂纹。湿H2 S 环境中腐蚀产生的氢原子渗入钢的内部固溶于晶格中, 使钢的脆性增加, 在外加拉应力或残余应力作用下形成的开裂, 叫做硫化物应力腐蚀开裂。工程上有时也把受拉应力的钢及合金在湿H 2S 及其它硫化物腐蚀环境中产生的脆性开裂统称为SSCC(硫化物应力腐蚀开裂)。通常发生在中高强度钢中或焊缝及其热影响区等硬度较高的区域。 低温甲醇洗系统最易腐蚀的部位,往往是有酸性气通过的换热器处。腐蚀的出现, 主要是由于生成羰基铁, 特别是Fe(CO)5和含硫的羰基铁, 后者是生成Fe(CO)5过程中的中间产物。H 2S 的存在会明显地促进CO 与Fe 的反应。羰基铁的生成对生产十分不利, 一方面造成了设备的腐蚀, 缩

渤南洼陷沙四上亚段沉积相及有利储集层分布_刘雅利_刘鹏_伊伟

第35卷第1期新疆石油地质 Vol.35,No.12014年2月XINJIANG PETROLEUM GEOLOGY Feb.2014 渤南洼陷沙四上亚段沉积相及有利储集层分布 刘雅利1,3,刘鹏2,伊伟4 (1.中国石油大学盆地与油藏研究中心,北京102249;2.中国石油大学地球科学与技术学院,山东青岛266555; 3.中国石化胜利油田分公司地质科学研究院,山东东营257015; 4.中国石油煤层气有限责任公司韩城分公司,陕西韩城715400) 摘 要:为揭示渤南洼陷沙四上亚段沉积相的分布规律,明确勘探方向,依据岩心、测井、录井、分析化验及地震资料, 运用沉积学和储集层地质学理论,在该段划分出4种沉积相:扇三角洲相、近岸水下扇相、滩坝相和湖泊相。并根据层序划分结果,对各体系域的沉积相展布特征进行了探讨。通过对分析化验数据的归纳、总结,明确了8个有利储集体:罗家鼻状构造带砂岩滩坝、缓坡带扇三角洲前缘、义东断裂带生物礁、缓坡带砂质灰岩滩坝、缓坡带灰岩滩坝、陡坡带扇三角洲前缘、缓坡带扇三角洲平原以及缓坡带前扇三角洲,在此基础上预测出4个有利勘探区,即陡坡带扇三角洲前缘区、义东断裂带生物礁区、罗家鼻状构造带砂岩滩坝区及缓坡带扇三角洲—灰岩滩坝—砂质灰岩滩坝混合区。关键词:济阳坳陷;渤南洼陷;沙河街组;沙四上亚段;沉积相;有利储集层文章编号:1001-3873(2014)01-0039-06 中图分类号:TE121.21 文献标识码:A 收稿日期:2013-04-03 修订日期:2013-09-08 基金项目:国家科技重大专项(2011ZX05006);中石化科技攻关重点项目(P11066) 作者简介:刘雅利(1970-),男,吉林榆树人,高级工程师,博士,石油地质,(Tel )0546-8717981(E-mail )liuyali036.slyt@https://www.sodocs.net/doc/9019000284.html,. Depositional Facies and Favorable Reservoir Distribution of Sha?4Upper Member of Shahejie Formation in Bonan Sub?Sag LIU Yali 1,3,LIU Peng 2,YI Wei 4 (1.Research Center for Basin and Reservoir,China University of Petroleum,Beijing 102249,China;2.College of Geosciences,China University of Petroleum,Qingdao,Shandong 266555,China;3.Geological Science Research Institute,Shengli Oilfield Company,Sinopec, Dongying,Shandong 257015,China;4.Hancheng Branch of Coal?Bed Methane Company Ltd.,PetroChina, Hancheng,Shaanxi 715400,China) Abstract:Based on the core,logging,lab testing and seismic data,by means of theory of sedimentology and reservoir geology,four sedi?mentary facies are classified in the upper part of fourth member of Shahejie formation in Bonan sag as fan delta facies,near?shore subaque?ous fan facies,beach bar facies and lake facies,their distributions of each system tract are discussed,and eight favorable reservoir bodies are ascertained,such as sandstone beach bar in Luojia nose?like structural belt,fan delta front in the ramp belt,reef in Yidong fault belt,sandy limestone beach bar in the ramp belt,limestone beach bar in the ramp belt,fan delta front in the steep slope belt,fan delta plain in the ramp belt and fan prodelta in the ramp belt.Based on these,four favorable areas are predicted,they are the fan delta front area in the steep slope belt,the reef area in Yidong fault belt,the sandstone beach bar area in Luojia nose?like structrual belt,and the mixing areas of fan delta-limestone beach bar-sandy limestone beach bar in the ramp belt. Key Words:Jiyang depression;Bonan sub?sag;Shahejie formation;Sha?4upper member;sedimentary facies;favorable reservoir 渤南洼陷浅层的勘探程度相对较高[1-6],其油气勘探的难点在于主要储集层古近系沙河街组沙四段埋藏较深。前人对该区沙四上亚段沉积相和储集层特征的研究认为,沉积相主要有近岸水下扇、扇三角洲、湖底扇以及湖泊相,储集层非均质性强,储集空间以次生孔隙为主,孔、渗表现出南高北低、东西变化不明显的特点[7-10]。但前人研究时,深层钻井资料相对匮乏,对沉积期物源分布的认识不够,影响了对沉积相的认识。沉积相展布控制着储集层的非均质性,进而影响着油层能否有效获得最佳试采效果并长期稳产。因此,沉积相和储集层的研究滞后已直接制约了下一步 的勘探与开发。本文结合大量最新研究成果[11-16],在建立精细等时地层格架基础上,应用最新的钻井资料,研究各沉积相类型、展布特征、演化规律,分析了各储集体类型的储集性能。 1区域地质概况 渤南洼陷位于济阳坳陷沾化凹陷东部,其北靠埕东凸起,南临陈家庄凸起,西接义和庄凸起,东为孤岛凸起。受北东、北东东向张性和张扭性大断裂及一系列近东西向断裂的控制,在其南北向上形成缓坡或低凸起、洼陷、陡坡-断裂带组成的构造样式[14-15],洼陷内

硫化氢腐蚀的机理及影响因素(新编版)

硫化氢腐蚀的机理及影响因素 (新编版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

硫化氢腐蚀的机理及影响因素(新编版) 1.H2 S腐蚀机理 自20世纪50年代以来,含有H2 S气体的油气田中,钢在H2 S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2 S不仅对钢材具有很强的腐蚀性,而且H2 S本身还是一种很强的渗氢介质,H2 S腐蚀破裂是由氢引起的;但是,关于H2

S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2 S酸性油气田过程中,为了防止H2 S腐蚀,了解H2 S腐蚀的基本机理是非常必要的。 (1)硫化氢电化学腐蚀过程 硫化氢(H2 S)的相对分子质量为34.08,密度为1.539kg/m3 。硫化氢在水中的溶解度随着温度升高而降低。在 760mmHg,30℃时,硫化氢在水中的饱和浓度大约 3580mg/L。 在油气工业中,含H2 S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括

六亚甲基四胺(乌洛托品)

4、六亚甲基四胺(Hexamine) 4.1标识 别名: 乌洛托品、四氮六甲环,胺仿,环六亚甲基四胺,促进剂H,海克山明,Hexamethylene tetramine, Acceleralor H, Amino- form, Cystamin, Cystogen, Fermine, Hexamethylenamine, Methenamine Urotropine 分子式:(CH 2) 6 N 4 相对分子量:140.2 4.2危规分类及编号 按GB13690归类为第4类“易燃固体、自燃物品和遇湿易燃物品” 危规分类及编号:GB13690 4.1类“易燃固体” 危规号:41528 UN No. 1328;IMDG CODE 4150页,4.1类。 4.3规格、用途 规格:工业级(GB 9015-88)含量≥优等品99.3%,一等品99%,合格品98%。试剂级(GB 1400-78)含量≥分析纯99%,化学纯98%。 用途:用于医药、炸药、橡胶、塑料的促进剂和发泡剂。也用作纺织品的防缩剂和发泡剂,光的气体吸收剂。 4.4物化性质 无色或白色结晶或结晶性粉末,无臭,味甜而苦。在空气中吸水,有潮解性。相对密度1.27,加热至260~263℃即升华。易溶于水,水溶液呈碱性,溶于醇。不溶于汽油、丙酮。微溶于醚。与稀硝酸和乙酸反应能生成盐,与稀硫酸作用放出甲醛。。 4.5危险特性:遇明火有燃烧危险,接触皮肤稍有腐蚀性。 4.6应急措施 消防方法:用砂土、泡沫、二氧化碳灭火。 急救:应使患者移至有新鲜空气的场所休息并保暖;皮肤沾染用大量清水冲洗,严重者送医院诊治。 4.7储运须知 包装标志:易燃固体。 包装方法:(Ⅲ)类,麻袋、编制袋内衬塑料袋。

硫化氢和含硫气体腐蚀金属的原因

硫化氢和含硫气体腐蚀金属的原因 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性. 1. 湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97"油田设备抗硫化物应力开裂金属材料"标准: ⑴酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥0.0003MPa; ⑵酸性多相系统:当处理的原油中有两相或三相介质(油,水,气)时,条件可放宽为:气相总压≥ 1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S 含量超过15%. 四,硫化氢腐蚀机理 (2)国内湿硫化氢环境的定义 "在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境". (3) 硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使 水具有酸性,硫化氢在水中的离解反应式为: H2S = H+ + HS- (1) HS- = H+ + S2- (2) 2.硫化氢电化学腐蚀过程 阳极: Fe - 2e →Fe2+ 阴极: 2H+ + 2e →Had + Had →2H →H2↑ ↓ [H]→钢中扩散 其中:Had - 钢表面吸附的氢原子 [H] - 钢中的扩散氢 阳极反应产物: Fe2+ + S2- →FeS ↓ 注:钢材受到硫化氢腐蚀以后阳极的最终产物就是硫化亚铁,该产物通常是一种有缺陷的结构,它与钢铁表面的粘结力差,易脱落,易氧化,且电位较正,因而作为阴极与钢铁基体构成一个活性的微电池,对钢基体继续进行腐蚀. 硫化氢电化学腐蚀过程 阳极: Fe - 2e →Fe2+ 阴极: 2H+ + 2e →Had + Had →2H →H2↑ ↓ [H]→钢中扩散 其中:Had - 钢表面吸附的氢原子 [H] - 钢中的扩散氢 阳极反应产物: Fe2+ + S2- →FeS ↓ 五,硫化氢引起氢损伤的腐蚀类型 反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤.. 1. 氢压理论:与形成氢致鼓泡原因一样,在夹杂物,晶界等处形成的氢气团可产生一个很大的

硫化氢腐蚀的机理及影响因素..

硫化氢腐蚀的机理及影响因素 作者:安全管理网来源:安全管理网 1. H2S腐蚀机理 自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。 (1) 硫化氢电化学腐蚀过程 硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 1

在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X S;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-X S形成。而FeS保护膜形成之前,首先是形成Fe S1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重 2

H2S腐蚀研究进展

H2S腐蚀研究进展 摘要 近年来我国发现的气田均含有硫化氢、二氧化碳等腐蚀性气体,特别是我们盆地,含硫化氢天然气分布最广泛。众所周知,硫化氢腐蚀是井下油套管的主要腐蚀类型之一。本文简述了硫化氢的物性,研究了硫化氢腐蚀的机理和影响因素,并在此基础上介绍了采用缓蚀剂、涂镀层管材、根据国际标准合理选材、电化学保护等几种国外常用的防腐措施,并指出了各种方法的优缺点,最后还探讨了硫化氢油气田腐蚀研究的热点问题及发展方向。 关键词:硫化氢腐蚀,腐蚀机理,防腐技术 ABSTRACT In recent years, the gas fields found in our country contain hydrogen sulfide, carbon dioxide and other corrosive gases, especially in the Sichuan basin, with the most extensive distribution of hydrogen sulfide gas. It is well known that the hydrogen sulfide corrosion is one of the main corrosion types of the oil casing in the well. Properties of hydrogen sulfide is described in this paper to study the hydrogen sulfide corrosion mechanism and influencing factors, and on this basis, introduces the corrosion inhibitor, coating tubing, according to international standard and reasonable material and electrochemical protection at home and abroad, several commonly used anti-corrosion measures, and points out the advantages and disadvantages of each method, and finally discusses the hot issues and development direction of the research on oil and gas fields of hydrogen sulfide corrosion by. Key word s:hydrogen sulfide corrosion, corrosion mechanism, corrosion

罗68地区沙四段成藏规律研究

罗68地区沙四段成藏规律研究 罗68地区沙四段发育有岩性圈闭、构造-岩性圈闭、构造圈闭等多种圈闭类型,已发现的油藏类型以岩性和构造-岩性为主。成藏的关键因素取决于储层发育程度、圈闭的独立性、断层的输导或封堵作用等因素。针对不同的油藏类型,需从典型油藏解剖、油气分布规律、控藏因素和成藏模式等方面分析,以明确成藏的主要控制因素。本文通过对罗68地区沙四段中生油岩特征及油源分析、油气运移条件分析、油气保存条件分析、油藏类型、成藏模式等进行了分析,旨在总结沙四段成藏主控因素,对邻区或相似油藏充分分析的基础上,寻找出一种很好的、可以适用于本区石油地质特征的研究思路,指导勘探。 标签:罗68地区沙四段成藏规律研究 0前言 罗68地区位于山东省利津县境内渤南洼陷,面积约215km2,是沾化凹陷中部的一个三级负向构造单元,接受了巨厚的中、新生代断陷湖盆和坳陷湖盆沉积,洼陷北靠埕东凸起,南临陈家庄凸起,西接义和庄凸起,东南为孤岛凸起,是一个油气富集的洼陷,从洼陷边缘到洼陷中心都有油气藏分布。该区位于渤南洼陷南部缓坡带,目的层沙河街组地层以超覆-剥蚀构造形态为主,目前该地区沙四段尤其是沙四下亚段勘探程度较低,勘探难度较大,勘探潜力比较大。 1地层特征 罗68地区钻遇地层有古生界、中生界和新生界。新生界由第三系和第四系组成,在构造升降、断陷活动和气候干湿交替变迁过程中形成了多旋回的沉积层序。沙四段—沙三段为第一层序,顶底界面均为不整合面,底界面之下中生界遭受削蚀,界面之上沙三、四段表现为上超,层序内部特征主要为上超结构,以及盆地边缘砂砾岩体的杂乱反射结构,盆地边缘地层逐渐减薄;沙二段—东营组为第二层序;上第三系一第四系为第三层序。各层序的发育受控于构造活动、湖盆水体的变化和物源供给条件。 主要目的层沙四段(Es4):沙四段早期(Es4下)以干旱氧化环境下的暗红色粗碎屑沉积为主,局部夹有石膏并见有零星薄煤层。在南部湖盆边缘发育了冲积扇和扇三角洲沉积;沙四晚期(Es4上)气候转湿,主要发育以石膏质岩石和化学沉积的碳酸盐岩为代表的蒸发岩类沉积,局部为砂砾岩。 2生油岩特征及油源分析 罗68地区油源有邵家洼陷、渤南洼陷、三合村—富林洼陷三介洼陷的烃源岩。其中渤南洼陷是一个发育时间长、沉积厚度大、生油层段多、生油期长、有机质丰度高及母质类型好的第三系一类生油洼陷,生油岩厚度可达800~1200m,主要生油岩为沙四上亚段、沙三段和沙一段的暗色泥岩和油页岩沉积,是主要的

六亚甲基四胺

六亚甲基四胺 第一部分:化学品及企业标识 化学品中文名称六亚甲基四胺化学品英文名称hexamethylenetetramine 中文名称2 乌洛托品英文名称2 Urotropine 分子式C6H12N4分子量140.18 第二部分:成分/组成信息 有害物成分含量CAS No 六亚甲基四胺100-97-0 第三部分:危险性概述 危险性类别第4.1类易燃固体 侵入途径吸入、食入 健康危害生产条件下,主要引起皮炎和湿疹。皮疹多为多形性,奇痒,初起局限于接触部位,以后可蔓延,甚至遍及全身。 环境危害对环境有害。 燃爆危险本品易燃,其粉末与空气混合,能形成爆炸性混合物。 第四部分:急救措施 皮肤接触脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入饮足量温水,催吐。就医。 第五部分:消防措施 危险特性遇明火有引起燃烧的危险。受热分解放出有毒的氧化氮烟气。与氧化剂混合能形成爆炸性混合物。具有腐蚀性。 有害燃烧产 物 一氧化碳、二氧化碳、氧化氮。 灭火方法用泡沫、二氧化碳、雾状水、砂土灭火。 灭火注意事项及措施消防人员必须穿全身耐酸碱消防服、佩戴空气呼吸器灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 第六部分:泄漏应急处理 应急行动隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。不要直接接触泄漏物。小量泄漏:用洁净的铲子收集于干燥、洁净、有盖的容器中。大量泄漏:用塑料布、帆布覆盖。使用无火花工具收集回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事 项密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事 项储存于阴凉、通风的库房。远离火种、热源。包装密封。应与氧化剂、酸类分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有合适的材料收容泄漏物。

硫化氢腐蚀

硫化氢(H2S)的特性及来源 1.硫化氢的特性 硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。 H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。 H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。 2.石油工业中的来源 油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。。 3.石化工业中的来源 石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。 硫化氢腐蚀机理 1.湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准: ⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥ 0.0003MPa; ⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。(2)国内湿硫化氢环境的定义 “在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。 (3)硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:

2020年硫化氢腐蚀的机理及影响因素

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年硫化氢腐蚀的机理及影 响因素 Safety management is an important part of production management. Safety and production are in the implementation process

2020年硫化氢腐蚀的机理及影响因素 1.H2 S腐蚀机理 自20世纪50年代以来,含有H2 S气体的油气田中,钢在H2 S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2 S不仅对钢材具有很强的腐蚀性,而且H2 S本身还是一种很强的渗氢介质,H2 S腐蚀破裂是由氢引起的;但是,关于H2 S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2

S酸性油气田过程中,为了防止H2 S腐蚀,了解H2 S腐蚀的基本机理是非常必要的。 (1)硫化氢电化学腐蚀过程 硫化氢(H2 S)的相对分子质量为34.08,密度为1.539kg/m3 。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 在油气工业中,含H2 S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt 等提出的H2 S04 中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁

硫化氢腐蚀与防护

1. 选用抗硫化氢材料 抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。同时采用低硬度(强度)和完全淬火+回火处理工艺对材料抗硫化氢腐蚀是有利的。 美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行淬火+595℃以上温度的回火处理;对于最小屈服强度大于655MPa的钢材应进行淬火+回火处理,以获得抗硫化物应力腐蚀开裂的最佳能力 抗H2S腐蚀钢材的基本要求: ⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。 ⑵采用有害元素(包括氢, 氧, 氮等)含量很低纯净钢; ⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小; ⑷回火稳定性好,回火温度高(>600℃); ⑸良好的韧性; ⑹消除残余拉应力。 2.添加缓蚀剂 实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。缓蚀剂对应用条件的选择性要求很高,针对性很强。不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。 用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。 3.控制溶液pH值 提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。 4. 金属保护层 在需保护的金属表面用电镀或化学镀的方法镀上Au,Ag,Ni,Cr,Zn,Sn等金属,保护内层不被腐蚀。 5. 保护器保护 将被保护的金属如铁作阴极,较活泼的金属如Zn作牺牲性阳极。阳极腐蚀后定期更换。 6. 阴极保护 外加电源组成一个电解池,将被保护金属作阴极,废金属作阳极。 硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。

硫化氢腐蚀与防护相关知识

硫化氢腐蚀与防护相关知识 1. 硫化氢腐蚀的预防措施 1.1. 选用抗硫化氢材料 抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。同时采用低硬度(强度)和“完全淬火+回火”处理工艺对材料抗硫化氢腐蚀是有利的。 美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行“淬火+595℃以上温度的回火”处理;对于最小屈服强度大于655MPa的钢材应进行“淬火+回火”处理,以获得抗硫化物应力腐蚀开裂的最佳能力。 1.2. 抗H2S腐蚀钢材的基本要求 ⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。 ⑵采用有害元素(包括氢,氧,氮等)含量很低纯净钢; ⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小; ⑷回火稳定性好,回火温度高(>600℃); ⑸良好的韧性; ⑹消除残余拉应力。 1.3. 添加缓蚀剂 实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。缓蚀剂对应用条件的选择性要求很高,针对性很强。不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。 用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。 钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

硫化氢腐蚀的影响因素1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差

相关主题