搜档网
当前位置:搜档网 › 数值分析讲义——线性方程组的解法

数值分析讲义——线性方程组的解法

数值分析讲义——线性方程组的解法
数值分析讲义——线性方程组的解法

数值分析讲义

第三章线性方程组的解法

§3.0 引言

§3.1 雅可比(Jacobi)迭代法

§3.2 高斯-塞德尔(Gauss-Seidel)迭代法

§3.3 超松驰迭代法§3.7 三角分解法

§3.4 迭代法的收敛性§3.8 追赶法

§3.5 高斯消去法§3.9 其它应用

§3.6 高斯主元素消去法§3.10 误差分析

§3 作业讲评3 §3.11 总结

§3.0 引言

重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题.

分类:线性方程组的解法可分为直接法和迭代法两种方法.

(a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高.

(b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.

§3.1 雅可比Jacobi 迭代法 (AX =b )

1

基本思想:

与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2

问题:

(a) 如何建立迭代格式?

(b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析:

考虑解方程组???

??=+--=-+-=--2.453.82102

.72103

21321321x x x x x x x x x (1)

其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式:

???

??++=++=++=84.02.01.083.02.01.072

.02.01.02

13312321x x x x x x x x x (2) 据此建立迭代公式:

?????++=++=++=+++84

.02.01.083.02.01.072.02.01.0)(2)(1)1(3

)(3

)(1)1(23)(2)1(1k k k k k k k

k k x x x x x x x x x (3) 取迭代初值0)

0(3

)0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp

迭代次数 x1 x2 x3

0 0 0 0

1 0.7

2 0.8

3 0.84

2 0.971 1.07 1.15

3 1.057 1.1571 1.2482

4 1.0853

5 1.18534 1.28282

5 1.095098 1.195099 1.294138

6 1.098338 1.19833

7 1.298039

7 1.099442 1.199442 1.299335

8 1.099811 1.199811 1.299777

9 1.099936 1.199936 1.299924

10 1.099979 1.199979 1.299975

11 1.099993 1.199993 1.299991

12 1.099998 1.199998 1.299997

13 1.099999 1.199999 1.299999

14 1.1 1.2 1.3

15 1.1 1.2 1.3

4Jocobi迭代公式:

设方程组AX=b, 通过分离变量的过程建立

Jocobi迭代公式,即

)

,,2,1()(1

)

,,2,1(0,11

n i x a b a x n i a b x a n i

j j j ij i ii

i ii n

i i j ij =∑-==≠∑=≠== 由此我们可以得到Jacobi 迭代公式:

),,2,1()(1

1)

1(n i x a b a x

n i

j j k i ij i ii

k i

=∑-=≠=+

[Jacobi 迭代公式的算法] 1: 初始化. n , (a ij ), (b j ), (x 1) , M . 2: 执行k =1直到M 为止. ① 执行i =1直到n 为止.

ii n

i

j j j ij i i a x a b u /)(1∑-←≠= ;

② 执行i =1直到n 为止.

i i u x ← ;

输出k , (x i ).

另外,我们也可以建立Jacobi 迭代公式的矩阵形式. 设方程组AX =b ,

其中,A =(a ij )n 为非奇异阵,

X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T

将系数阵A 分解为: A =U +D +L ,

U 为上三角矩阵,D 为对角矩阵,L 为下三角矩阵.

于是AX =b 可改写为 (U +D +L )X =b

? X =D -1b -D -1(U +L )X

由此可得矩阵形式的Jocobi 迭代公式: X k +1=BX (k )+f □

§3.2 高斯-塞德尔Gauss-Seidel 迭代法

注意到利用Jocobi 迭代公式计算)

1(+k i

x 时,已经计算好

)(1)(2)(1,,,k i k k x x x - 的值,而Jocobi 迭代公式并不利用这些最新的近似值计

算,仍用)

(1)(2)

(1

,,,k i k k x x x - .这启发我们可以对其加以改进,即在每个分量的

计算中尽量利用最新的迭代值,得到

),,2,1()(1111)1()

1(n i x a x a b a x

n i j k j

ij i j k j ij i ii

k i

=∑-∑-=+=-=++

上式称为Gauss-Seidel 迭代法. 其矩阵形式是

X =-(D +L )-1UX +(D +L )-1b , X k +1=BX (k )+f .

迭代次数 x1 x2 x3 0 0 0 0 1 0.72 0.902 1.1644 2 1.04308 1.167188 1.282054 3 1.09313 1.195724 1.297771

4 1.099126 1.199467 1.299719

5 1.09989 1.199933 1.299965

6 1.099986 1.199992 1.299996

7 1.099998 1.199999 1.299999

8 1.1 1.2 1.3

§3.3 超松驰迭代法SOR 方法

1

基本思想:

逐次超松弛迭代法(Successive Over Relaxation Method,简写为SOR)可以看作带参数ω的高斯-塞德尔迭代法,是G-S 方法的一种修正或加速.是求解大型稀疏矩阵方程组的有效方法之一. 2 SOR 算法的构造:

设方程组AX =b , 其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T . 假设已算出x (k ),

),,2,1()(1111)

1()

1(n i x a x a b a x

n i j k j ij i j k j ij i ii

k i

=∑-∑-=+=-=++ (1)

相当于用高斯-塞德尔方法计算一个分量的公式. 若对某个参数ω,作)

1(+k i

x

与)(k i x 加权的平均,即

)

()1()()1()()

1()(1k i k i

k i k i

k i

k i

x x

x x

x

x

-+=+-=+++ωωω (2)

其中,ω称为松弛因子.

用(1)式代入(2)式,就得到解方程组AX =b 的逐次超松弛迭代公式:

???

??=∑-∑-=??+==-=++),,2,1()()

(11)1()()1(n i x a x a b a x x x x n i

j k j ij i j k j ij i ii

i i k i k i ω (3) 显然,当取ω=1时,式(3)就是高斯-塞德尔迭代公式. 3 例题分析:

利用SOR 方法解方程组

???

??=+---=-+-=--33222420243

21321321x x x x x x x x x (1) 其准确解为X *={1, 1, 2}. 建立与式(1)相等价的形式:

????

???

++=-+=+=13

2

315.05.05.025.05.021*******x x x x x x x x x (2) 据此建立迭代公式:

???????++=-+=+=+++13

2315.05.05.025.05.0)(2)(1)

1(3)

(3)(1)1(23)(2)

1(1

k k k k k k k

k k x x x x x x x x x (3)

利用SOR 算法,取迭代初值1)

0(3)0(2)0(1===x x x ,

ω=1.5,迭代结果如下表.

逐次超松弛迭代法

次数 x1 x2 x3 1 0.625000 0.062500 1.750000 2 0.390625 0.882813 1.468750 3 1.017578 0.516602 1.808594

4 0.55688

5 0.880981 1.710449

5 1.023712 0.743423 1.868103

6 0.746250 0.908419 1.838737

7 0.997715 0.860264 1.913894

8 0.864050 0.936742 1.908605

9 0.986259 0.922225 1.945523

10 0.928110 0.958649 1.947493

11 0.985242 0.955944 1.966198

12 0.961661 0.973818 1.969521

13 0.988103 0.974699 1.979289

14 0.979206 0.983746 1.982172

15 0.991521 0.985318 1.987416

16 0.988509 0.990038 1.989513

17 0.994341 0.991414 1.992397

18 0.993538 0.993946 1.993806

19 0.996367 0.994950 1.995424

20 0.996313 0.996342 1.996331

21 0.997724 0.997018 1.997254

22 0.997871 0.997798 1.997822

23 0.998596 0.998234 1.998355

GS迭代法须迭代85次得到准确值X*={1, 1, 2};而SOR方法只须55次即得准确值.由此可见,适当地选择松弛因子ω,SOR法具有明显的加速收敛效果. □

§3.4 迭代法的收敛性

1. 向量和矩阵范数 (a) 向量范数

R n 空间的向量范数 || · || ,对任意

n R y x ∈,, 满足下列条件:

00||||;0||||)1(

=?=≥x x x (正定性)

||||||||||)2(x x

?=αα (齐次性)

||||||||||||)3(y x y x

+≤+ (三角不等式)

常见的向量范数有: (1) 列范数:

(2) 谱范数:(欧几里德范数或向量的长度,模)

(3) 行范数:

(4) p 范数:

上述范数的几何意义是:

∞||||x =max(|x 2-x 1|,|y 2-y 1|) ; 1||||x =|x 2-x 1|+|y 2-y 1| ;

2122122)()(||||y y x x x -+-=.

向量序列}{)

(k x

依坐标收敛于向量x * 的充要条件是向量序列

}{)(k x 依范数收敛于向量x *,即0||||lim *)(=-∞

→x x k k .

(b) 矩阵范数

n m R ?空间的向量范数 || ·

|| ,对任意 n m R B A ?∈,, 满足下列条件:

||

|||||| || AB || (4)||

||||||||||)3(||||||||||)2(0

0||||;0||||)1(B A B A B A A A A A A ≤+≤+?==?=≥αα

常见的矩阵范数有:

∑==∞≤≤n

j ij a A n

i 1

||max ||||1 (行和范数)

∑==≤≤n

i ij a A n

j 1

1||max ||||1 (列和范数)

)(||||max 2A A A T λ= (谱范数)

若A 对称,则有

)()(2max max A A A T λλ=.

矩阵A 的谱半径记为)(||||

2A A ρ=,

ρ(A ) =||max

1i n

i λ≤≤,其中λi 为A 的特征根。

2. 迭代法基本定理

设有方程组X =BX +f ,对于任意初始向量X (0)及任意f ,迭代公式

X (k +1)=BX (k )+f 收敛的充要条件是)(B ρ<1,)(B ρ为矩阵B 的谱半径. 证:设X *为方程组X =BX +f 的准确解,即 X *=BX *+f .

对于任意初始向量X (0)及任意f ,迭代公式X (k +1)=BX (k )+f ,

于是,

)

()()

()

(*)0(*)2(2*

)

1(*)1(*)(X X B X X B X X

B f BX f BX X X k k k k k -=-=-=+-+=----

由此可得,迭代法收敛的充要条件是)(0∞→→k B k

.

即,

)(B ρ<1. □

上述定理是线性方程组迭代解法收敛性分析的基本定理,然而由于

)(B ρ的计算往往比较困难,尽管有各种办法估计)(B ρ的上界,但往往

偏听偏大而不实用,由此导致定理的理论价值胜于实用价值,为满足实际判敛的需要,有如下定理

.

(迭代收敛的充分条件)

设有迭代公式X (k +1)=BX (k )+f ,如果||B ||<1,则对于任意初始向量X (0)及任意f , 迭代公式均收敛.

3. 从方程组的系数矩阵A 判断迭代收敛性

实际中要求解的某些线性方程组,其系数矩阵往往具有一些特点,如系数矩阵为对称正定、对角元素占优等.由这些方程组系数矩阵的特殊性,使得我们可以直接从方程组的系数矩阵A 出发来讨论迭代法的收敛性

.

设n n n

n ij R a A ??∈=)(,满足

∑=≥≠=n

i

j j ij ii n i a a 1,,2,1,||||

且至少有一个i 值,使得

∑>≠=n

i

j j ij ii a a 1||||

成立,则称A 为对角占优矩阵;若

∑=>≠=n

i

j j ij ii n i a a 1,,2,1,|||| ,

则称A 为严格对角占优矩阵

.

如果n n n

n ij R a A ??∈=)(为严格对角占优矩阵,则对任意的初值

x (0),解方程组AX =B 的Jacobi 法、Guess-Seidel 迭代法均收敛. □ HW: 3.1 3.2 3.3(上机实习)

§3.5 高斯消去法

1

基本思想:

用高斯消去法求解线性方程组的基本思想是设法消去方程组的系数矩阵A 的主对角线下的元素,而将Ax =b 化为等价的上三角形方程组,然后再通过回代过程便可以获得方程组的解.

这种解线性方程组的方法,常称为高斯消去法(Gaussian Elimination)

.

2 例题分析:

利用高斯消去法求解方程组:??????

?-=-++-=++-=++-=++-38

1846273913334106812124226432

14321432

14321x x x x x x x x x x x x x x x x

??????

?-=-++-=++-=++-=++-38

1846273913334106812124226432

143214321432

1x x x x x x x x x x x x x x x x (1)

利用r i -111

1

r a a i ,i =2,3,4.得

??????

?-=-+=++-=++-=++-26

1432 21 812 10 2 24 12 4226432

4324324321x x x x x x x x x x x x x (2)

利用r i -2)2(22

)

2(2r a a i ,i =3,4.得

??????

?-=--=-=++-=++-21

13 4 9 5 2 10 2 24 12 422643434

324321x x x x x x x x x x x (3) 利用r i -3)3(33

)

3(3r a a i ,i =4.得

??????

?-=--=-=++-=++-3

3 9 5 2 10 2 2

4 12 42264434

324321x x x x x x x x x x (4) 显然,方程组(4)与(1)是等价的,其系数矩阵为上三角

状的,易于求解.称以上过程为高斯消去法的消去过程.通过方程组(4)的回代求解,可以得到准确解为

X *=[1, -3, -2,1]T .

这一过程为高斯消去法的回代过程. 2 高斯消去法算法的构造:

记方程组AX =b 为A (1)X =b (1), 其中,A (1)和b (1)的元素分别记为

.,,2,1,)1()

1(n j i b a i ij =、、

Step1:第一次消元

设0)1(11≠a ,将增广矩阵的第i 行减去)1(11

)1(11/a a m i i =倍,(i =2,…,n ),目的是将增广矩阵的第一列内除每一个元素不变外,其余全部消为零,得到A (2)X =b (2),即

][ 0

...0............][)2()2()2()2()2(2)2(2)2(2)2(22)1(1)1(1)1(12)1(11)1()1()1(2)1(1)1(2)1(2)1(22)1(21)1(1)

1(1)1(12)

1(11)1()1(b A b a a b a a b a a a b a a a b a a a b a a a b A n nn

n n

n n nn n n n

n =????

??

???????????????

?

???????=

其中

)...,,2,()

1(1

1)1()2()

1(11)

1()2(n j i b m b b a m a a i i i j i ij ij =???-=-= Step2:第k 次消元(12-≤≤n k )

设第k -1次消元已完成,且0)

(≠k kk

a ,得到A (k )X =

b (k ),即

????????

?????

????

?=)()

()()()

()()2(2)

2(2)2(2)2(22)1(1)

1(1)1(1)1(12)1(11)

()(][k n k nn

k kn

k k k kn k kk n

k

n

k k k b a a b a a b a a a b a a a a b A

计算因子)...,,1(/)()(n k i a a m k kk

k ik ik

+==,

???+=-=-=++)

...,,1,()()()1()

()()1(n k j i b m b b a m a a k k

ik k i k i k kj ik k ij k ij

如此反复,经过n -1次消元之后得到一个与原方程组等价的上三角形方程组.

?

?

??

?

?????????????=

???????????????????????????????

????

?=)()2(2)1(121)

()2(2)2(22

)

1(1)

1(12)

1(11)()

(...............

][n n n n nn n n

n n b b b x x x a a a a a a b A Step3:回代

只要0)

(≠n nn a 就可以回代求解

)

()(/n nn n n n a b x =

)1...,,1()(1)

()(-=∑-=

+=n i a

x a b x i ii

n

i j j i ij i i

i

3 高斯消去法[算法] Step1[消元]: 对k =1,2,…,n -1 ① 若0)

(=k kk

a 则停止计算

对i =k +1,k+2,…,n

计算因子)()(/k kk k ik ik a a m =;

对j =k +1,k+2,…,n

计算???-=-=++)

()()

1()()()1(k k

ik k i k i k kj ik k ij k ij b m b b a m a a ;

Step2[回代]: 对i =n ,n -1,…,1

)(1

)

()(i ii

n

i j j

i ij i i

i a

x a b x ∑-=

+=

(高斯消去法的条件)

(1)

若A 的所有顺序主子式均不为0,则高斯消元无需换行即可进行到底,且得到唯一解.

(2)

若消元过程中允许对增广矩阵进行行交换,则方程组Ax =b 可用消去法求解的充要条件是A 可逆.

第二章 线性方程组的数值解法

第二章 线性方程组的数值解法 在科技、工程技术、社会经济等各个领域中很多问题常常归结到求解线性方程组。例如电学中的网络问题,样条函数问题,构造求解微分方程的差分格式和工程力学中用有限元方法解连续介质力学问题,以及经济学中求解投入产出模型等都导致求解线性方程组。 n 阶线性方程组的一般形式为 ?? ???? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L K K K K L L 22112 222212********* (1.1) 其矩阵形式为 b Ax = (1.2) 其中 ????? ???????=??? ?????????=? ? ????? ?????= n n nn n n n n b b b b x x x x a a a a a a a a a A M M L K K K K L L 2121212222111211 ),,2,1,(n j i a ij L =,),,2,1(n i b i L =均为实数,i b 不全为0,且A 为非奇异。 关于线性方程组的数值解法一般分为两类: 1.直接法 就是不考虑计算机过程中的舍入误差时,经有限次的四则运算得到方程组准确解的方法。 而实际中由于计算机字长的限制,舍入误差的存在和影响,这种算法也只能求得线性方程组的近似解。本章将阐述这类算法中最基本的消去法及其某些变形。这些方法主要用于求解低阶稠密系数矩阵方程组。 2.迭代法 从某个解的近似值出发,通过构造一个无穷序列,用某种极限过程去逐步逼近线性方程组的精确解的方法。本章主要介绍迭代法与迭代法。迭代法是解大型稀疏矩阵(矩阵阶数高而且零元素较多)的线性方程组的重要方法。 §1 高斯)(Gauss 消去法 1.1 Gauss 消去法 Gauss 消去法是将线性方程组化成等价的三角形方程组求解。首先举例说明Gauss

线性方程组的数值解法实验

线性方程组的数值解法 实验 题目 用Gauss消元法和Seidel迭代法求线性方程组的解。 实验目的 通过本次实验了解Gauss消元法和Seidel迭代法的基本原理,掌握其算法,学会用Matlab编程进行计算,并能用这些方法解决实际问题。 Gauss 顺序消元法的基本原理算法: (1)输入:,. A b (2)对1,2,,1 k n =???-做 1)if0 kk a=then输出算法失败信息,停机; 2)对1,, i k n =+???做 1/; ik ik ik kk a l a a ←= 2; i i ik k b b l b =- 3对1,, j k n =+???做; ij ij ik kj a a l a =- (3)if0 nn a=then输出算法失败信息,并停机else做 1)/; n n n nn b x b a ←= 2)对1,,2,1 i n =-???做 1 ()/; n i i i ij j ii j i b x b a x a =+ ←=-∑ (4)输出方程组的解.X

流程图见附页 Seidel 迭代法的基本原理算法: (1)输入:,; A b (2)输入:初始解向量 ;x (3)对1,2,, i n =???做 1) 1 ()/; n i i ij j ii j j i y b a x a = ≠ =-∑ 2); i i i e y x =- 3); i i x y = (4)if 1 {||} max i i n eε ≤≤ 时方程组无解,当RB RA n ==时方程组有唯一解,当RB RA n =<时,方程组有无穷多解; ②根据公式 (1)()() (1)()() (,1,,) (1,,) k k k ij ij ik kj k k k i i ik k a a l a i j k n b b l b i k n + + =-=+??? =-=+??? 将增广矩阵[,] B A b =化为上三角形矩阵; (2)建立. backsub m文件; (3)调用. backsub m文件,在Matlab命令窗口输入,A b矩阵,再输入[,,,](,) RA RB n X gaus A b =,进行Matlab实现得出方程的解。

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

数值分析讲义线性方程组的解法

数值分析讲义 第三章线性方程组的解法 §3.0 引言 §3.1 雅可比(Jacobi)迭代法 §3.2 高斯-塞德尔(Gauss-Seidel)迭代法 §3.3 超松驰迭代法§3.7 三角分解法 §3.4 迭代法的收敛性§3.8 追赶法 §3.5 高斯消去法§3.9 其它应用 §3.6 高斯主元素消去法§3.10 误差分析 §3 作业讲评3 §3.11 总结

§3.0 引言 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题. 分类:线性方程组的解法可分为直接法和迭代法两种方法. (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高. (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.

§3.1 雅可比Jacobi 迭代法 (AX =b ) 1 基本思想: 与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2 问题: (a) 如何建立迭代格式? (b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析: 考虑解方程组??? ??=+--=-+-=--2.453.82102 .72103 21321321x x x x x x x x x (1) 其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式: ??? ??++=++=++=84.02.01.083.02.01.072 .02.01.02 13312321x x x x x x x x x (2) 据此建立迭代公式: ?????++=++=++=+++84 .02.01.083.02.01.072.02.01.0)(2)(1)1(3 )(3 )(1)1(23)(2)1(1k k k k k k k k k x x x x x x x x x (3) 取迭代初值0) 0(3 )0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

线性方程组数值解法

. 计算法实验 题目:

班级:学号::

目录 计算法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (3) 3.1主程序部分 (3) 3.2多项式程部分 (3) 3.3核心算法部分 (3) 3.4数据结构部分 (3) 4运行结果 (3) 4.1列主元高斯消去法运行结果 (3) 4.2LU三角分解法运行结果 (3) 4.3雅克比迭代法运行结果 (3) 边界情况调试 (3) 5总结 (3) 输入输出 (3) 列主元高斯消元法 (3) 雅克比迭代法 (3) 6参考资料 (3)

1 实验目的 1.通过编程加深对列主元高斯消去法、LU三角分解法和雅克比迭代法等求解多 项式程法的理解 2.观察上述三种法的计算稳定性和求解精度并比较各种法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" #include 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因数组作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看便,故此程序选用二维顺序表保存系数。数据结构文件中写的是有关其的所有基本操作以供其他文件调用。 ●多项式程部分

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

线性方程组的直接解法 实验报告

本科实验报告 课程名称:数值计算方法B 实验项目:线性方程组的直接解法 最小二乘拟合多项式 实验地点:ZSA401 专业班级:学号:201000 学生姓名: 指导教师:李志 2012年4月13日

线性方程组的直接解法 一、实验目的和要求 实验目的:合理利用Gauss 消元法、LU 分解法或追赶法求解方程组。 实验要求:利用高斯消元法,LU 分解法或追赶法进行编程,求解题中所给的方程组。 二、实验内容和原理 实验内容:合理利用Gauss 消元法、LU 分解法或追赶法求解下列方程组: ① ?? ?? ? ?????=????????????????????13814142210321321x x x ②??? ? ?? ??????=????????????????????? ?? ? ??--?-2178.4617.5911212592.1121130.6291.513 14 .59103.043 2115x x x x ③?? ??? ??? ? ???????----=????????????????????????????????-55572112112112121 n n x x x x (n=5,10,100,…) 实验原理:这个实验我选用的是高斯消元法。高斯消元法:先按照 L ik =a ik^(k-1)/a kk^(k-1) , a ij^(k)=a ij^(k-1)-l ik a kj^(k-1) [其中k=1,2,…,n-1;i=k+1,k+2,…,n;j=k+1,k+2,…,n+1] 将方程组变为上三角矩阵,再经过回代,即可求解出方程组的解。 三.计算公式 通过消元、再回代的求解方法称为高斯消元法。特点是始终消去主对角线 下方的元素。 四、操作方法与实验步骤 #include "Stdio.h" #define N 3 main() { double a[N][N+1],b[N]; int i,j,k,x=0; for(i=0;i

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

线性方程组的数值解法

第三章线性方程组地数值解法 范数 (1> 常用范数 ① 向量 1- 范数: ② 向量 2- 范数: ③ 向量∞- 范数: ④ 向量 p- 范数: 向量1- 范数,向量2- 范数,向量∞- 范数实际上为任意 p- 范数地特例. (2> 矩阵范数 设,则 (1>,A地行范数 (2>,A地列范数 (3>,A地 2- 范数,也称谱范数 (4>, F- 范数 其中指矩阵地最大特征值 (3>谱半径(用于判断迭代法地收敛值> 设为矩阵A地特征值,则

称为A地谱半径 谱半径小于任何半径,若,则 (4>设A为非奇异矩阵,称 为A地条件数 矩阵地条件数与范数选取有关,通常有 显然当A对称时 直接法 Gauss消去法 ①Gauss顺序消去法 对线性方程组Ax=b,设,按顺序消元法,写出增广矩阵(A┆b>第一步,写出,将2~n行中地变为0 第k步,写出,将k+1~n行中地变为0 具体步骤可参照下面地例题 例5:用Gauss消去法解方程组

解: Guass列主元消去法 消去过程与Guass消元法基本相同,不同地是每一步消元时,都要将所选到地绝对值最大元素作为主元. 具体分析参见习题详解1 ②矩阵三角(LU>分解法 基本思想:将Ax=b化为LUx=b,令Ux=y 可得Ly=b,Ux=y,相当于先求出y,再求出x 其中,L,U分别为下三角矩阵和上三角矩阵 若L为单位下三角矩阵,则称为Doolittle分解。若U为单位上三角矩阵,则称为Crout分解. ③矩阵Doolittle分解法

计算公式 具体解题见习题详解2 注意计算顺序,先行再列,用简图表示为 虚线上地元素为对角元,划为行元. ④ 分解法 计算公式

线性方程组的直接解法

第4章 线性方程组的直接解法 本章主要内容 线性方程组的直接解法——消元法(高斯消元法、主元消元法). 矩阵的三角分解法( Doolittle 分解、Crout 分解、 LDU 分解) 紧凑格式 改进平方根法. 本章重点、难点 一、消元法(高斯消元法、列主元消元法) 本章求解的是n 阶线性方程组Ax=b 的(即方程的个数和未知量的个数相等的线性方程组) ?????????=+???++????????????? ??=+???++=+???++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 3222212111212111 1. 高斯消元法 ①高斯消元法的基本思想:通过对线性方程组Ax=b 的进行同解消元变换(也可以用矩阵的初等行变换法进行线性方程组的消元变换),将线性方程组化为上三角形方程组,然后用回代法求出此线性方程组的解。 ②高斯消元法计算公式: ????? ? ? ????????--=-=--==? ????? ????? ???? +=-=-=====-+=------------∑)1,..., 2,1()1,..., 2,1(,...,1,,,,...,2,1) ,...,2,1,(,) 1(1)1()1()1() 1() 1()1() 1()1()() 1()1()1()1()(,)0()0(n n i a x a b x n n i a b x n k j i b a a b b a a a a a n k n j i b b a a i ii n i j j i ij i i i n nn n n n k k k kk k ik k i k i k kj k kk k ik k ij k ij i i ij ij 对回代公式: 消元公式:

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

计算方法实验报告-线性方程组的数值解法

重庆大学 学生实验报告实验课程名称计算方法 开课实验室DS1421 学院年级专业 学生姓名学号 开课时间至学年第学期

1.实验目的 (1)高斯列主元消去法求解线性方程组的过程 (2)熟悉用迭代法求解线性方程组的过程 (3)设计出相应的算法,编制相应的函数子程序 2.实验内容 分别用高斯列主元消去法 ,Jacobi 迭代法,Gauss--Saidel 迭代法,超松弛迭代法求解线性方程组 ????? ???????-=????????????????????????------725101391444321131243301024321x x x x 3.实验过程 解:(1)高斯列主元消去法 编制高斯列主元消去法的M 文件程序如下: %高斯列主元消元法求解线性方程组Ax=b %A 为输入矩阵系数,b 为方程组右端系数 %方程组的解保存在x 变量中 format long;%设置为长格式显示,显示15位小数 A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13] b=[10,5,-2,7]' [m,n]=size(A); %先检查系数正确性 if m~=n error('矩阵A 的行数和列数必须相同'); return; end if m~=size(b) error('b 的大小必须和A 的行数或A 的列数相同'); return; end %再检查方程是否存在唯一解 if rank(A)~=rank([A,b]) error('A 矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解'); return; end c=n+1; A(:,c)=b; %(增广) for k=1:n-1

线性方程组的直接解法

实验五 线性方程组的直接解法 一、实验内容 1、用列主元素法求解方程组 15 123459.170.31059.43146.785.291 6.3112111.295221211x x x x -?????????????--??????=?????????????? ???? 并计算误差b-Ax ,分析结果的好坏; 2、 用改进Cholesky 方法求对称正定阵线性方程组 1234248.72171013.741090.7x x x -????????????-=????????????-?????? 并计算误差b-Ax ,分析结果的好坏; 3、 用追赶法解方程组 123421006132010121000351x x x x -????????????--??????=??????--??????-???? ?? 二、要求 1、 对上述三个方程组分别利用Gauss 列主元消去法;Cholesky 方法;追赶法求解(选择其一); 2、 应用结构程序设计编出通用程序; 3、 比较计算结果,分析数值解误差的原因; 三、目的和意义 1、通过该课题的实验,体会模块化结构程序设计方法的优点; 2、运用所学的计算方法,解决各类线性方程组的直接算法; 3、提高分析和解决问题的能力,做到学以致用; 4、 通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。 四、实验学时:2学时 五、实验步骤: 1.进入matlab 开发环境; 2.根据实验内容和要求编写程序; 3.调试程序; 4.运行程序; 5.撰写报告,讨论分析实验结果.

六、程序 1、Gauss列主元素消去法 function x=Gauss_pivot(A,b) %用Gauss列主元素法求解线性方程组Ax=b %x是未知向量 n=length(b); x=zeros(n,1); c=zeros(1,n); d1=0; %消元计算 for i=1:n-1 max=abs(A(i,i)); m=i; for j=i+1:n if max

相关主题