搜档网
当前位置:搜档网 › 对遗传学诊断的分析思考

对遗传学诊断的分析思考

对遗传学诊断的分析思考
对遗传学诊断的分析思考

对遗传学诊断的分析思考

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

近二十年来,分子遗传学的一系列成就,不仅推动了分子生物学和基础医学的发展,而且对遗传疾病的诊断和治疗,也应用了分子遗传学的新技术如分子杂交、内切酶、DNA重组等进行了探索,并获得了有意义的结果。生物遗传的基本单位是基因,其遗传信息贮存在DNA(去氧核糖核酸)分子的碱基序列之中。结构基因就是决定特殊蛋白质遗传密码的DNA的一个片段。

一、运用单细胞双重巢式PCR和MDA技术方法行性连锁遗传病诊断

方法1、提取男女单个淋巴细胞各150例,共300个细胞。随机分成3组,每组男女细胞各50个,双重巢式PCR技术在单细胞水平同时扩增X-类固醇硫酸脂酶基因(steroid sulfatase gene,STS)/Y-假基因和牙釉质基因(Amelogenin,AMEL),对照组用单重巢式PCR技术在单细胞水平分别扩增两基因,比较单、双

重巢式PCR技术在单细胞水平的扩增率及性别诊断正确率。2、应用MDA扩增5个单个淋巴细胞和10个单个卵裂球全基因组DNA,1%的琼脂糖电泳检测扩增效率,通过普通PCR即上述巢式PCR的第二轮的PCR条件检测细胞性别来判断扩增产物的均一性。结果1、单重巢式PCR扩增男性细胞STS和AMEL 的扩增率和细胞性别诊断的正确率分别是84%、76%和84%、84%;而双重巢式PCR技术同时扩增上述基因的扩增率和性别诊断正确率分别为98%、96%。后者与前两者相比扩增率和性别诊断正确率均明显提高,差异均有统计学意义(P经济、便捷,值得临床进一步推广。2、初步预实验可知MDA可以克服单细胞的模板量少和不可重复实验的缺点。但由于此次预实验的样本量太小,其稳定性、可靠性还需进一步摸索,才可以用于单基因病的着床前遗传学诊断和产前诊断。

二、利用孕妇外周血浆中小片段游离胎儿DNA 进行无创性地中海贫血产前基因诊断的研究

方法:收集157例孕妇的外周血,利用柱吸收的方法提取血浆中的cffDNA,经琼脂糖凝胶电泳分离富

集小片段cffDNA,使用二重PCR反应(dulex-PCR)检测SRY基因和磷酸甘油醛脱氢酶(glycerol-dehyde-phosphatedehydrogenase,GAPDH)基因。结果来源于86例孕男胎的孕妇血浆标本的小片段cffDNA均检出SRY和GAPDH基因,来源于71例孕女胎的孕妇血浆标本的小片段cffDNA只检出GAPDH基因。与绒毛/羊水标本检测结果以及产后随访结果相符。特异性和敏感性分别为100%(157/157)和100%(86/86)。结论利用琼脂糖凝胶电泳,切胶回收,可以选择性富集孕妇外周血中的小片段cffDNA,相对地提高胎儿DNA的含量,结合二重PCR扩增SRY基因技术可用于无创性产前性连锁遗传疾病和单基因突变疾病的产前诊断。第二部分利用孕妇外周血浆中cffDNA进行STR-PCR检测胎儿基因型目的:利用小片段cffDNA进行D5S818、D7S820、D13S317三个短串联重复序列(short tandem repeat,STR)基因型的分析,观察提取出来的小片段cffDNA中母源性DNA背景对实验的影响。方法:收集了62例孕妇外周血标本,提取小片段游离胎儿DNA,利用多重PCR(mutilplex-PCR)的方法分析胎儿的STR基因型,并与父母基因型相比对。结果:62例小片段cffDNA 的扩增结果中,49例标本的扩增结果完全与父母基因

型相匹配,未发现母源性DNA的污染。其余13例在D13S317基因座的扩增中出现了母源性DNA的污染。结论:经过对小片段cffDNA进行富集后,仍有可能出现母源性DNA对实验的影响,并且可能影响对实验结果的判读。使用多重PCR反应结合多基因座的扩增,可能可以有助于减少母源性DNA的影响,有助于结果的判读。第三部分利用孕妇外周血浆中小片段游离胎儿DNA进行β-地中海贫血无创性产前基因诊断目的:利用cffDNA对胎儿进行广西、广东地区常见的17种β-地中海贫血基因型的检测,与传统创伤性产前诊断相比较,探讨该方法的准确性和可行性。方法:针对广西、广东地区常见的β-地中海贫血突变的基因型设计三对不同引物,并用生物素标记。对cffDNA进行二次PCR反应后,使用反向斑点杂交(revert dot-blot hybridization,RDB)检测胎儿的β-珠蛋白基因型,与创伤性产前诊断结果比较,观察准确率。结果:37例cffDNA标本检测中,检出重型β-地中海贫血19例,轻型β-地中海贫血11例,正常7例,与创伤性产前诊断结果相比较出现3例误诊,准确率为%(34/37)。结论:利用cffDNA进行β-地中海贫血的检测,可能出现母源性DNA背景的污染,当胎儿基因型与母亲基因型相同时,必须提高警惕,进一步

分析或者复查。因为该技术取样容易,对孕妇胎儿无风险,不受孕期时间影响,易为与孕妇接受,因此进一步改进该技术后有望可用于β-地中海贫血的诊断。第四部分利用孕妇外周血浆中小片段游离胎儿DNA 进行巴氏水肿胎儿检测目的:通过检测cffDNA以及母源性cfDNA在PCR反应中扩增效率的不同,进行检测巴氏水肿胎儿(Hb Bart’s hydrops foetus)的方法学研究。方法:对来源于拟诊孕水肿胎儿孕妇的小片段cffDNA,进行荧光PCR(Fluorescence PCR)扩增,利用毛细管电泳(capillary electrophoresis,CE)技术判断两种产物峰面积比(peak area ratio)来检测巴氏水肿胎儿。结果:30例拟诊巴氏水肿胎儿的小片段cffDNA扩增结果提示,巴氏水肿胎儿两种产物锋面积比远远<1。而其他原因所致的水肿胎儿的cffDNA模板扩增结果显示两种产物封面值比近似等于1。结论:通过荧光PCR和毛细管电泳的方法,有望利用cffDNA进行巴氏水肿胎儿的无创性产前诊断。

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

《医学遗传学》复习思考题

《医学遗传学》复习思考题 第一章绪论单基因病染色体病 一、填空 1.遗传病指的是细胞中()发生改变而导致的疾病,包括()、()、()和()四大类。 2.先天性聋哑(AR)呈位点异质性遗传,若某夫妇双方基因型分别是AAbb和aaBB,他们的子女基因型应为(),发病率是()。 二、选择填空 1. 在舞蹈病(AD)遗传中,Aa通常在25-55岁才发病,请问这种现象叫做()。 A.完全显性 B.不完全显性 C.外显不全 D.延迟显性 2.46,XY,inv(2)(p23q32)表示2号染色体发生了()。 A.缺失 B.倒位 C.重复 D.易位 三、名词解释 1.医学遗传学 2.遗传背景 3.环状染色体 四、问答 1.简要回答遗传病与先天性疾病和家族性疾病的相互关系。 2.指关节僵直症(AD)的外显率是75%,请问两个杂合子之间婚配,子女发病率应为多少? 3.经染色体检查,某个体细胞中13号染色体与14号染色体之间发生罗伯逊易位,染色体断裂点分别在13p11和14q11,写出其核型的简式和详式。

第二章线粒体遗传病 一、填空 1.线粒体基因组呈双链()状,共有()个结构基因。 2.线粒体遗传病的共同特征是()、()和()。 二、选择填空 1. 线粒体DNA的双链碱基组成情况是()。 A.H链G含量较多,L链C含量较多 B.H链C含量较多,L链G含量较多 C.H链与L链G含量相同,C含量不同 D.H链与L链C含量相同,G含量不同 2.线粒体H链编码()种tRNA。 A.11 B.14 C.17 D.19 3.线粒体病多表现在()。 A.肌肉系统 B.骨骼系统 C.消化系统 D.生殖泌尿系统 4.“Leber遗传性视神经病”患者体内线粒体基因组的突变表达式为 MTND4*LHON11778A,其中ND4指()。

医学遗传学名词解释(遗传病的诊断)

医学遗传学名词解释(遗传病的诊断) 1、携带者(carrier)是指表现型正常,但携带有致病遗传物质的个体。其体指:①携带有隐性致病基因,本人表现正常的个体;②携带有显性致病基因,但没有外显的正常个体;③携带有致病基因,迟发个体;④染色体平衡易位或倒位的个体。 2、系谱分析(pedigree analysis)家系分析是一诊断遗传疾病的重要步骤,根据系谱图,对家系进行回顾性分析,以便确定所发现的某一特定性状或疾病在这个家族中是否有遗传因素的作用及其可能的遗传方式。 3、产前诊断(prenatal diagnosis)产前诊断称为宫内诊断,是对胚胎或胎儿在出生前是否患有某种遗传病或先天畸形做出准确的诊断。 4、绒毛取样法(chorionic sampling)绒毛取样法又称为绒毛吸取术,是通过特制的取样器,经孕妇阴道、宫颈进入子宫,达到胎盘处后吸取一定数量的胎儿绒毛组织。 5、基因诊断(gene diagnosis)应用分子生物学方法检测患者体内遗传物质的结构或表达水平的变化而做出的或辅助临床诊断的技术,称为基因诊断,又称为分子诊断。 6、聚合酶链反应(polymerase chain reaction, PCR)它是模拟体内条件卜应用DNA酶反应特异性扩增某一DNA片段的技术。 7、遗传标志(genetic marker)所谓遗传标志是群体中存在多态性而遗传上遵循孟德尔规律的,同时不受环境影响而改变的特征物,如染色体上的某些结构、HLA类型以及特征性的DNA序列等。 8、核酸杂交(nuclear hybridization)是从核酸分子混合液中检测特定大小的核酸分子的传统方法。其原理是核酸变性和复性理论。即双链的核酸分子在某些理化因素作用下双链解开,而在条件恢复后又可依碱基配对规律形成双链结构。 9、基因芯片技术(gene chip technique)基因芯片技术是大规模、高通量分子检测技术。将许多特定的寡核苷酸片段或基因片段作为探针,有规律地排列固定于支持物上,形成矩阵点。样品DNA/RNA按碱基配对原理进行杂交,再通过荧光检测系统等对芯片进行扫描,并配以计算机系统对每一探针的荧光信号做出比较和检测,得出所要的信息。 10、PCR- RFLP将聚合酶链反应与RFLP方法结合的一种检测技术。由于DNA序 列的差异,造成了内切酶位点的变化,或是新的酶切位点的产生;或是原酶切位点的 消失等,通过酶切后电泳图谱的判断,达到确定检测结果。 11、基因探针(Probe)是一段带有标记的,与待测基因有关的核酸序列。 12、荧光原位杂交技术(fluorescent in situ hybridization,FISH)是以细胞遗传学为基础建立起来的分子细胞遗传学新技术。该方法使用荧光素标记探针,以检测探针和分裂中期的染色体或分裂间期的染色质的杂交。 13、症状前诊断(pre-symptomatic diagnosis)是针对一些常染色体显性(AD)遗传病的杂合子个体的一种诊断方法。 14、新生儿筛查(neonatal screening )也是一种症状前的诊断。是对己出生的新生儿进行某些遗传病的诊断,是出生后顶防和治疗某些遗传病的有效方法。 15、植入前遗传学诊断(preimplantation genetic diagnosis,PSD)是指用分子或细胞遗传学技术对体外受精的胚胎进行遗传学诊断,确定正常后再将胚胎植入子宫。

本科医学遗传学复习题答案复习课程

遗传学复习题 一、名词解释 遗传病:指由于遗传物质结构或功能改变所导致的疾病。 核型:一个细胞内的全部染色体所构成的图像。 染色体显带:通过现带染色等处理,分辨出染色体更微细的特征,如带的位置、宽度和深浅等技术,常见有G带、Q带、C带和N带。 基因突变:指基因内的碱基组成或顺序发生了可遗传的改变,并且常能导致表型的改变。断裂基因:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,启动子:位于转录起始点上游约100bp左右,是与RNA聚合酶特异结合使转录开始的DNA 序列。 系谱:指从先证者入手,追溯调查其所有家族成员(包括直系亲属和旁系亲属)某种遗传病(或性状)的分布等资料,将调查的资料按一定的格式绘制成的简图。 复等位基因:在同源染色体相对应的基因座位上存在两种以上不同形式的等位基因。 共显性:如果双亲的性状同时在F1个体上表现出来,即一对等位基因的两个成员在杂合体中都表达的遗传现象。 交叉遗传:男想X染色体(及其连锁基因)只能从母亲传来,并且必定传给女儿,不能传给儿子的这种遗传方式。 染色体畸变:在不同因素作用下产生的染色体数目及结构异常。 嵌合体:指具有两种或两种以上染色体组成的细胞系的个体。 易患性:一个个体在遗传基础和环境因素共同作用下患某种多基因病的风险。 遗传度:人体性状或者疾病由基因决定程度,一般用百分比表示。 二、问题 1. 遗传病有什么特点?可分为几类?对人类有何危害? 答:遗传病一般具有先天性、家族性、垂直传递等特点,在家族中的分布具有一定的比例;部分遗传病也可能因感染而发生。①先天性:许多遗传病的病症是生来就有的,如白化病是一种常染色体隐性遗传病,婴儿刚出生时就表现有“白化”症状;②家族性:许多遗传病具有家族聚集性,如Hutington舞蹈病患者往往具有阳性家族史。③垂直传递:具有亲代向子代垂直传递的特点,但不是所有遗传病的家系中都可以观察到这一现象,有的患者是家系中的首例,还有些遗传病患者未活到生育年龄或未育。 分类:单基因病、染色体病、体细胞遗传病。 危害:①遗传病是造成人类死亡的重要因素。资料显示,我国15岁以下死亡的儿童中,约40%是由遗传病和先天畸形所致,遗传病已经成为当前危害人类健康最为严重、病死率最高之一,而且有些肿瘤和心血管疾病也属于遗传病。 ②遗传病总数占人类疾病总数的四分之一,其中有很多属于常见病和多发病,一部分严重危害健康的常见病、多发病都与遗传病有关。 ③遗传病不仅影响患者本身的生活和生存,同时也给家庭及其他成员带来许多精神和经济负担,既影响家庭幸福,又给社会造成许多负面影响,并且还直接影响民族的健康素质和国家的兴旺发达。 2. 简述基因概念的沿革,基因的现代概念。 答:①.19世纪:生物性状——遗传因子 ②.20世纪初:染色体学说:基因位于染色体上,遗传功能单位、突变单位、交换单位 ③.20世纪中:基因是有遗传功能单位的DNA片段,由“一个基因,一种酶”发展到“一

基因诊断试题

基因诊断试题

————————————————————————————————作者:————————————————————————————————日期:

(一)选择题 A型题 1.判定基因结构异常最直接的方法是 A.PCR法 B.核酸分子杂交 C.DNA序列测定 D.RFLP分析 E.SSCP分析 2.不符合基因诊断特点的是 A.特异性强 B.灵敏度高 C.易于做出早期诊断 D.样品获取便利 E.检测对象仅为自体基因 3.遗传病基因诊断的最重要的前提是 A.了解患者的家族史 B.疾病表型与基因型关系已被阐明 C.了解相关基因的染色体定位 D.了解相关的基因克隆和功能分析等知识 E.进行个体的基因分型 4.若要采用Southern或Northern印迹方法分析某特定基因及其表达产物,需要 A.制备固定在支持物上的组织或细胞

B.收集组织或细胞样品,然后从中提取总DNA或RNA C.利用PCR技术直接从标本中扩增出待分析的片段D.收集组织或细胞样品,然后从中提取蛋白质 E.收集培养细胞的上清液 5.目前基因诊断常用的分子杂交技术不包括哪一项A.Southern印迹 B.Western印迹 C.Northern印迹 D.DNA芯片技术 E.等位基因特异性寡核苷酸分子杂交 6.SNP的实质是 A.碱基缺失 B.碱基插入 C.碱基替换 D.移码突变 E.转录异常 7.DNA指纹的遗传学基础是 A.连锁不平衡 B.DNA的多态性 C.串联重复序列 D.MHC的限制性 E.MHC的多样性

8.在对临床病例进行基因诊断时,若遇到不能检测出已知类型突变的情况,如果表型明确指向某种疾病,适用下列哪一类筛查技术 A.PCR法 B.ASO分子杂交 C.反向点杂交 D.变性高效液相色谱(DHPLC) E.STR拷贝异常的诊断 9.生殖细胞若发生基因结构突变可引起哪种疾病 A.肿瘤 B.高血压 C.糖尿病 D.遗传病 E.传染病 10.PCR技术容易出现 A.假阴性结果 B.假阳性结果 C.灵敏度不高 D.适用不广 E.操作繁冗 11.目前检测血清中乙肝病毒最敏感的方法是 A.斑点杂交试验 B.等位基因特异性寡核苷酸分子杂交 C.Southern印迹

遗传学课后习题答案

遗传学复习资料 第一章绪论 1、遗传学:是研究生物遗传和变异的科学 遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆” 变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。 2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗 传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。 3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构 模式理念,这是遗传学发展史上一个重大的转折点。 第二章遗传的细胞学基础 原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为: (1)DNA合成前期(G1期);(2)DNA合成期(S期); (3)DNA合成后期(G2期);(4)有丝分裂期(M期)。 同源染色体:生物体中,形态和结构相同的一对染色体。 异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。 无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。 有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。

医学遗传学试题及答案(三)

郑州大学现代远程教育《医学遗传学》 1. DNA 损伤后的修复机制有哪些? 答:(1)光复活修复又称光逆转。这是在可见光(波长3000~6000 埃)照射下由光复活酶识别并作用于二聚体,利用光所提供的能量使 环丁酰环打开而完成的修复过程。 (2)切除修复。在 DNA 多聚酶的作用下以损伤处相对应的互补 链为模板合成新的 DNA 单链片断进行修复。 (3)重组修复。在重组蛋白的作用下母链和子链发生重组,重组后 原来母链中的缺口可以通过DNA 多聚酶的作用,以对侧子链为模板合 成单链DNA 片断来填补进行修复。 (4)SOS 修复。DNA 受到损伤或脱氧核糖核酸的复制受阻时的一种 诱导反应。 2. 下图为某个遗传病的系谱,根据系谱简要回答下列问题: 1)判断此病的遗传方式,写出先证者的基因型。 答: 此病的遗传方式常染色体隐性遗传。先证者的基因型为aa 。 2)患者的正常同胞是携带者的概率是多少? 答:患者的正常同胞是携带者的概率是2/3。 Ⅰ Ⅱ Ⅲ

3)如果人群中携带者的频率为1/100,问Ⅲ4随机婚配生下患者的 概率为多少? 答:如果人群中携带者的频率为1/100,问Ⅲ4随机婚配生下患者的概率为1/100*1/2*2/3*1/2=1/600。 3.简述多基因遗传假说的论点和遗传特点。 答:(1)多基因遗传假说的论点: ①数量性状的遗传基础也是基因,但是两对以上的等位基因; ②不同对基因之间没有显性隐形之分,都是共显性; ③每对基因对性状所起的左右都很微小,但是具有累加效应; ④数量性状的受遗传和环境双重因素的作用。 (2)多基因遗传特点: ①两个极端变异个体杂交后,子1代都是中间类型,也有一定变异范围;②两个子1代个体杂交后,子2代大部分也是中间类型,将形成更广范围的变异③在随机杂交群体中变异范围广泛,大多数个体接近中间类型,极端变异个体很少。 4.请写出先天性卵巢发育不全综合征的核型及主要临床表现。答:(1)先天性卵巢发育不全综合征又称先天性性腺发育不全综合征,其核型为45,XO。 (2)主要临床表现:表型为女性,身材较矮小,智力正常或稍低,原发闭经,后发际低,患者有颈蹼;二,患者具有女性的生殖系统,

细胞遗传学复习资料

细胞遗传学复习资料 第二章染色体的形态结构 Chromosome: A molecular of DNA, and associated protein bound together. Each chromosome contains: Centromere, Kinetochore, Telomere, Euchromatin and Heterochromatin. 染色质(Chromatin):在尚未分裂的细胞核中,显微镜下可见的可被碱性染料染色较 深的、纤细的网状物。 染色体(Chromosome): 细胞分裂时,由染色质卷缩(螺旋化)而形成的呈现为一定数目 和形态的细胞结构,是遗传物质的最主要的载体。 研究染色体形态最适合的时期: ?有丝分裂中期 ?减数分裂第一次分裂前期I的粗线期 第一节有丝分裂中期染色体 大小:不同物种间染色体的大小差异很大,长度的变幅为(0.20-50 μm),宽度的变幅为(0.20-2.00 μm)。(显微镜的最小分辨率δ=0.61λ/ NA ,λ=0.55 μm NA=1.4,δ约为0.25 μm。NA为物镜的数值孔径) 同一物种不同染色体宽度大致相同,其染色体大小主要对长度而言。 小麦:染色体平均长度11.2 μm,总长235.4 μm。 在细胞周期中,染色体处于动态的收缩过程中。 绝对长度:实际测量值。 相对长度:特定染色体的长度在单倍染色体组总长度中所占的比例。 染色体大、数目少的物种是细胞遗传学研究的优良实验材料,如果蝇(2n=8)、玉米、蚕豆、洋葱、麦类。 着丝粒(Centromere):A specialized chromosome region to which spindle fibers attach during cell division. 着丝粒是细胞分裂时,纺锤丝附着(attachment)的区域,又称为着丝点。 着丝粒不会被染料染色,所以在光学显微镜下表现为染色体上一缢缩部位(无色间隔点),所以又称为主缢痕(primary constriction)。 着丝粒所连接的两部分称为染色体臂(arm)。 着丝点:具有聚合微管蛋白的作用,是微管组织中心(microtubule organized center, MTOC),因而与细胞分裂过程中牵引染色体移动的驱动力有关系。 1.按着丝粒位置将染色体分为几种类型: 1)中着丝粒染色体 2)近中着丝粒染色体 3)亚中着丝粒染色体 4)亚端着丝粒染色体 5)近端着丝粒染色体 6)端着丝粒染色体 臂比(arm ratio,A)=长臂/短臂(q/p或L/S) 着丝粒指数(Centromeric Index,C)=短臂长度(p)/染色体长度(p+q)×100% 动粒(Kinetochore): 为着丝粒的外层结构,是细胞分裂时纺锤体微管附着部位。 动粒的类型: ?固定位置动粒( localized kinetochore)

胚胎植入前遗传学诊断

胚胎植入前遗传学诊断 (PreimplantationGeneticDiagnosis,PGD) 一、定义 胚胎种植前遗传学诊断(PGD) 是指在体外受精过程中,对具有遗传风险患者的胚胎进行种植前活检和遗传学分析,以选择无遗传学疾病的胚胎植入宫腔,从而获得正常胎儿的诊断方法,可有效地防止有遗传疾病患儿的出生。 植入前遗传学诊断是随着人类辅助生殖技术,即“试管婴儿” 技术发展而开展起来的一种新技术,它是产前诊断的延伸,遗传学诊断的又一更有希望的新技术。 二、意义 (一)对高龄孕妇和高危妇女进行PGD 可以有效地避免遗传病患儿的出生。 (二)可以有效地避免传统的产前诊断技术,对异常胚胎进行治疗性流产,避免中期妊娠遗传诊断及终止妊娠所致的危险及痛苦。 (三)PGD技术的产生与完善可以排除遗传病携带者胚胎,阻断致病基因的纵向传递, 从而降低人类遗传负荷。 三、适应征 理论上只要有足够的序列信息,PGD能针对任何遗传条件进行诊断,即凡是能够被诊 断的遗传病都可以通过PGD来防止其患儿出生。 进行PGD 的主要对象是可能有遗传异常或高危遗传因素,需要产前诊断的病例,尤其是可能同时具有两种以上不同的遗传异常情况。 PGD现已用于一些单基因缺陷的特殊诊断,包括Duche nne 型肌营养不良、脆性X 综合征、黑朦性白痴(TaySachsdiseade) 、囊性纤维病(cysticfibrosis) 、Rh 血型、甲型血友病、镰型细胞贫血和地中海贫血、进行性营养不良、新生儿溶血、21 抗蛋白缺乏症,、粘多糖贮积症(MPS )、韦霍二氏脊髓性肌萎缩(WerdingHofmandisease) ,还有染色体异常如Down 'S 综合征、18 三体,罗氏易位等。

遗传学课后答案

一) 名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题: 1.1900年(2))规律的重新发现标志着遗传学的诞生。 (1)达尔文(2)孟德尔(3)拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学称之(4) (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学 3.遗传学中研究基因化学本质及性状表达的内容称( 1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)细胞遗传学 4.通常认为遗传学诞生于(3)年。 (1)1859 (2)1865 (3)1900 (4)1910 5.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 6.公认细胞遗传学的奠基人是(2): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表: 有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义: 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。 例如,水稻n=12,其非同源染色体分离时的可能组合数为212 = 4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2. 水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3. 用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示 4. 某生物有两对同源染色体,一对是中间着丝粒,另一对是端部着丝粒,以模式图方式画出:

医学遗传学及答案

医学遗传学试卷 姓名 __________ 分数 _______________ 一、名词解释(每题3分,共18分) 1. 核型: 2. 断裂基因: 3. 遗传异质性: 4. 遗传率: 5. 嵌合体; 6. 外显率和表现度: 二、填空题(每空1分,共22分) 1. 人类近端着丝粒染色体的随体柄部次缢痕与( )形成有关,称为( ) )表示,近亲婚配后代基因纯合的可能性用 )和( )两类。 )。核型为46, XX, deL (2)(q35)的个体表明其体内 )或( )变化。 6.细胞分裂早中期、前中期、晚前期或更早时期染色体的带纹,称为( 2. 近亲的两个个体的亲缘程度用( ( )表示。 3. 血红蛋白病分为( 4. Xq27 代表( 的染色体发生了( )。 )-

)和( )的变化。 )造成的( )结构或合成量异常所引起的疾病。 )异常或缺失,使( )的合成受到抑制而引起 的溶血性贫血。 10. 在基因的置换突变中同类碱基卩密喘与卩密喘、瞟吟与瞟吟)的替换称( )-不同类型 碱基(P 密喘与瞟吟)间的替换称为( )<. 11. 如果一条X 染色体XQ27 — Xq28之间呈细丝样结构,并使其所连接的长臂末端形似随体, 则这条X 染色体被称为( )。 12. 多基因遗传病的再发风险与家庭中患者( )以及( )呈正相关。 三、选择题(单选题,每题1分,共25分) 1. 人类1号染色体长臂分为4个区,靠近着丝粒的为()。 A. O 区 B. 1区 C. 2区 D. 3区 E. 4区 2. DNA 分于中碱基配对原则是指( )A. A 配丁,G 配C B. A 配G, G 配T C. A 配 U, G 配 C D. A 配 C, G 配 T E. A 配 T, C 配 U 3. 人类次级精母细胞中有23个()<, A.单价体 B.二价体 C.单分体 D.二分体 E.四分体 4. 46, XY, t (2; 5)(Q21; q31)表示( )<,A —女性体内发生了染色体的插入B. 一男性体 内发生了染色体的易位 C 一男性带有等臂染色体 D. 一女性个体带有易位型的畸变染 色体 E. 一男性个体含有缺失型的畸变染色体 5. MN 基因座位上,M 出现的概率为o. 38,指的是()- A 基因库 B.基因频率 C 基因型频率 D 亲缘系数E.近婚系数 6. 真核细胞中的RNA 来源于( )<,A. DNA 复制 B. DNA 裂解 C. DNA 转化 D. DNA 转录 E .DNA 翻译 7. 脆性X 综合征的临床表现有()。A 智力低下伴眼距宽、鼻梁塌陷、通贯手、趾间距宽 B 智力低下伴头皮缺损、多指、严重唇裂及膊裂C .智力低下伴肌张力亢进。特殊握拳姿势、 摇椅足 D.智力低下伴长脸、大耳朵、大下颁、大睾丸E.智力正常、身材矮小、肘外 翻、乳腺发育差、乳间距宽、颈蹊 8. 基因型为P '邙'的个体表现为( )。A 重型9地中海贫血 B.中间型地中海贫血 C 轻型地中海贫血 D 静止型。地中海贫血E.正常 9. 慢性进行性舞蹈病属常染色体显性遗传病,如果外显率为90%, —个杂合型患者与正常人 结婚生下患者的概率为()<■ A. 50% B. 45% C. 75% D. 25% E. 100% 7. 染色体数日畸变包括( 8. 分子病是指由于( 9. 地中海贫血,是因(

胚胎植入前遗传学诊断技术专题

胚胎植入前遗传学诊断技术专题 生物探索编者按自世界首例试管婴儿诞生以来,相继出现了三代试管婴儿技术。技术的发展以及现实需求使第三代试管婴儿技术应用越来越广泛,患者受益越来越显著。然而,第三代试管婴儿技术在临床上应用如何?面临着哪些困境?在全面二孩时代,企业是如何推动我国第三代试管婴儿技术的发展?世界首例“试管婴儿”于1978年7月25日诞生于英国奧德海姆总医院,我国首例试管婴儿于1988年诞生于北 京大学第三医院,迄今为止,全世界已有超过600万例的试管婴儿。自世界首例试管婴儿诞生以来,相继出现了三代试管婴儿技术。技术的发展以及现实需求使第三代试管婴儿技术应用越来越广泛,患者受益越来越显著。然而,第三代试管婴儿技术在临床上应用如何?面临着那些困境?在全面 二孩时代,企业是如何推动我国第三代试管婴儿技术的发展? 1概述三十多年来,辅助生殖技术的发展经历了常规的“试管婴儿”(体外受精和胚胎移植)、卵胞浆内单精子显微注射(ICSI)、胚胎移植前基因(遗传学)诊断,再到囊胚培养、卵子和精子冷冻、卵母细胞体外成熟技术等,这些技术是现代科学的一项重大成就,开创了胚胎研究和生殖控制的新纪元。试管婴儿的三大时代试管婴儿技术出现后经历不断发展

的过程,相继出现三代试管婴儿技术。“第一代试管婴儿”也 称常规试管婴儿技术,是为了解决女性因素导致的不孕问题,如输卵管、内分泌、宫腔问题等而诞生的。这种技术将精子与卵子放在体外共同培养,靠精子和卵子的自由结合来实现受精过程。“第二代试管婴儿”是为了解决由于男性因素导致 的不育问题,它又称卵母细胞胞浆内单精子显微注射,通过直接将精子注射入卵母细胞胞浆内,来达到助孕目的。如果男方精子数量稀少或没有足够的活动量,或即使有了足够的活动量,精子也不愿意与卵子结合,这种情况下第二代试管婴儿技术可以大显身手。“第三代试管婴儿”也称胚胎植入前 遗传学诊断,指在胚胎移植前,取胚胎的遗传物质进行分析,诊断胚胎是否有异常,然后筛选健康胚胎移植。技术发展所需,现实所迫——PGD/PGS技术应运而生 2012年中国人口协会发布的调查结果显示,目前我国不孕 不育患者已经超过4000万,占育龄人口的12.5%。据“2009中国不孕不育现状调研报告”:不孕不育的发病率达15%, 病因有上百种、治愈率仅34%,试管婴儿平均成功率为 20-30%,不孕不育患者治疗失败约占66%,而这些病因中 有50%以上的遗传因素导致。近年来,随着进行辅助生殖助孕的患者越来越多,临床发现在辅助生殖过程中部分高风险夫妇的胚胎易出现反复种植失败或者不明原因流产的情况,试管婴儿的总体活产率不到30%。而研究发现胚胎染色体异

医学遗传学试题及答案大全(一)

《医学遗传学》答案 第1章绪论 一、填空题 1、染色体病单基因遗传病多基因遗传病线粒体遗传病体细胞遗传病 2、突变基因遗传素质环境因素细胞质 二、名词解释 1、遗传因素而罹患的疾病成为遗传性疾病或遗传病,遗传因素可以是生殖细胞或受精卵 内遗传物质结构和功能的改变,也可以是体细胞内遗传物质结构和功能的改变。 2、主要受一对等位基因所控制的疾病,即由于一对染色体(同源染色体)上单个基因或 一对等位基因发生突变所引起的疾病。呈孟德尔式遗传。 3、染色体数目或结构异常(畸变)所导致的疾病。 4、在体细胞中遗传物质的改变(体细胞突变)所引起的疾病。 第2章遗传的分子基础 一、填空题 1、碱基替换同义突变错义突变无义突变 2、核苷酸切除修复 二、选择题1、A 三、简答题 1、⑴分离律 生殖细胞形成过程中,同源染色体分离,每个生殖细胞中只有亲代成对的同源染 色体中的一条;位于同源染色体上的等位基因也随之分离,生殖细胞中只含有两 个等位基因中的一个;对于亲代,其某一遗传性状在子代中有分离现象;这就是 分离律。 ⑵自由组合律 生殖细胞形成过程中,非同源染色体之间是完全独立的分和随机,即自由组合 定律。 ⑶连锁和交换律 同一条染色体上的基因彼此间连锁在一起的,构成一个连锁群;同源染色体上 的基因连锁群并非固定不变,在生殖细胞形成过程中,同源染色体在配对联会 时发生交换,使基因连锁群发生重新组合;这就是连锁和交换律。 第3章单基因遗传病

一、填空题: 1、常染色体显性遗传、常染色体隐性遗传、X连锁隐性遗传、X连锁显性遗传 2、系谱分析法 3、具有某种性状、患有某种疾病、家族的正常成员 4、高 5、常染色体、无关 6、1/4、2/3、正常、1/2 7、半合子 8、Y伴性遗传9、环境因素10、基因多效性 11、发病年龄提前、病情严重程度增加12、表现型、基因型 二、选择题——A型题 1、B 2、A 3、C 4、D 5、D 6、A 7、D 8、B B型题 1、A 2、D 3、B 4、C 5、D 6、C 7、B 8、C 三、名词解释: 1、所谓系谱(或系谱图)是从先证者入手,追溯调查其所有家族成员(直系亲属和 旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布资料绘制而成的图解。 2、先证者是指某个家族中第一个被医生或遗传学研究者发现的罹患某种遗传病的患 者或具有某种性状的成员。 3、表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体 的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。 4、外显率是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的 百分率。 5、由于环境因素的作用使个体的表型恰好与某一特定基因所产生的表型相同或相似, 这种由于环境因素引起的表型称为拟表型。 6、遗传异质性指一种性状可由多个不同的基因控制。 7、一个个体的同源染色体(或相应的一对等位基因)因分别来自其父放或母方,而表 现出功能上的差异,因此所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记。 8、杂合子在生命的早期,因致病基因并不表达或虽表达但尚不足以引起明显的临床症 状,只有达到一定年龄后才才表现出疾病,这一显性形式称为延迟显性。 9、也称为半显性遗传,指杂合子Dd的表现介于显性纯合子和隐性纯合子dd的表现 型之间,即在杂合子Dd中显性基因D和隐性基因d的作用均得到一定程度的表现。

2013细胞遗传学试题

一、名词解释 细胞遗传学(Cytogenetics)是建立在遗传学(genetics) 和细胞学(cytology) 相结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律。是遗传学中最早发展起来的学科,也是最基本的学科。 染色体数目:不同种类的动植物染色体数目是相对恒定的,在动植物的体细胞中,染色体往往是成对存在的,以2n表示;而性细胞中的染色体则为体细胞中的一半,以n表示。 三体(trisomic):是指在双体(2n)染色体中某同源染色体多了一条额外的染色体。2n+1,2m+1+1(双三体)三体一般都能存活、都能繁殖,都会表现与其亲本性状有所不同的变异。 初级三体(primary trisomy)添加的染色体和染色体组中的一对染色体完全同源 次级三体(Secondary trisomy)添加的一条是等臂染色体(两臂组成一样)。 补偿三体(compensating trisomic)一个个体缺少一条染色体,而在遗传上为另外2条分别涉及该染色体2个臂的易位染色体所补偿。用2n-1+c+c表示染色体组成(c代表易位染色体)。 平衡隐性致死:各个复合组内含有一个隐性致死基因。纯合时合子死亡,但v和g组内的致死基因并不是等位的,在杂结合的情况下可以互补,合子得以成活,这种现象叫平衡隐性致死 1、附着X染色体:指两条X染色体在着丝粒一端连在一起的染色体,在减数分裂中部发生分离,像一条染色体一样,其性连锁和性决定行为与一般果蝇不同。 2、交叉一面说:F.A Janssens 等认为在显微镜下观察到的细胞学交叉是遗传学交叉的直接结果,双线期看到的圆环是由姐妹染色单体构成的,二价体中只有一个减数面,因此成为交叉一面说。其要点是:⑴交叉等于交换,认为交叉就表示交换,是非姐妹染色单体间交换的结果。⑵先有交换,后有交叉。⑶双线期所看到的圆环(减数面)都是姐妹染色单体在一起。 3、舒尔兹·雷德菲尔德效应:在倒位杂合体中,倒位二价体自身交换频率的下降,往往会导致其它二价体交换频率的提高,使细胞中整个染色体的交换频率维持不变。 4、B染色体:在有些真核生物中除常染色体(也称为A染色体)外,还存在一些形态较小、类型和数量多样的额外染色体,我们称之为B染色体,也可称之为副染色体、额外的染色体或超数染色体。 5、核仁组织区:在大多数生物中,次缢痕通常出现在核仁所在的区域,在前期与核仁联系在一起,并参与末期核仁的形成,因此此区域被成为核仁组织区。 6、新着丝粒:是一种次级着丝粒(secondary centromere),它是细胞分裂时除了正常的着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 7、G带:是在染色体的全部长度上显示丰富的带纹。现也叫高分辨G带,高分辩带。 8、单端单体:缺失一对同源染色体,但保留由该对同源染色体中的1条染色体臂形成的端着丝粒染色体,染色体组成为2n-2+t。9、染色体消减:指多倍体或混倍体组织回复到二倍体亲本之一原来的染色体数目的趋势。 10、二体异代换系:染色体代换也可以发生在不同的染色体组之间,被代换的个体称为异源染色体代换系或称异代换系,涉及1对外源染色体代换的个体称二体异代换系。 11、灯刷染色体:两栖类卵母细胞减数分裂前期Ⅰ中形成的巨大染色体。由纤细的DNA中轴和许多成对的DNA侧袢组成,形似灯刷状。灯刷染色体是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。 12、双减数:对于四价体来说,同一区段的分离在减数分离之后,仍然可能发生后减数分离,结果是原来为姐妹染色单体的两个区段,最后同时进入一个子细胞中,这就是双减数。 13、交叉两面说:该学说认为平常所见到的交叉,并不代表一个染色体的实质交换,而是先在交叉处发生断裂,由断裂端重接才产生交换。要点:(1)交叉步等于交换。因为染色体向两极移动时,交叉产生断裂后再重接,如果非姐妹染色单体连在一起,就发生交换。(2)交叉是因,交换是果。(3)均等面与减数面总是交替排列。 二、染色体组分析(genome analysis):是阐明生物的染色体组的构成,特别是指利用染色体配对,了解染色体之间的同源性,分析染色体组的演变以及物种起源和进化的情况。从而为物种起源和进化的研究提供客观根据,为调查异源染色体的附加、代换乃至易位提供细胞学证明。常用的染色体组分析方法:①研究杂种F1减数分裂时染色体的联会行为。②单倍体减数分裂时染色体的联会行为。 ③原位杂交法。 要想对这一植物进行染色体组来源的分析,其方法可为:将此物种(被测种)与可能的物种A、B、C(基本种)分别进行杂交。然后观察杂交子代在减数分裂过程中染色体的配对行为。 ◆如果被测种与基本种的杂交子代减数分裂过程中发现相当于基本种染色体基数的二价体,便说明异源多倍体的一个染色体组来源于这一基本种。 ◆当有几个物种符合时,染色体联会最广泛最紧密的那个物种就被认为是真正的祖先。 ◆分析是否正确,还要做检验:就是把视为祖先的几个基本种进行人工合成多倍体,当合成的和天然的异源多倍体彼此非常相似,并具有可孕的后代时,就可确定分析是正确的。 三多线染色体的形态特征与结构特点? ⑴多线性:染色体(染色单体,DNA)反复进行纵向分裂,数目增加,但不分离,成为平行的一束染色体,这样在间期核内染色体增加了很多倍而形成多线的现象,称为多线性。每条多线染色体的纤丝数目是种特异的,最多可达4000多。 ⑵巨大性:正常的染色体只有在细胞分裂时才能看到,在细胞间期只能看到染色质,而多线染色体在间期唾液腺细胞里就可以看到。 ⑶体细胞联会:即体细胞中的同源染色体进行联会。在果蝇的幼虫唾液腺体细胞中,经过多次DNA的复制形成的染色体通过染色体配对聚合在一起,形成4条多线染色体,此时细胞内染色体的数目为正常体细胞染色体数目的一半,即单倍体数。但每一条多线染色体实际上代表着两条紧密联会的同源染色体,从而使得两条同源染色体从外观上看起来像是独立的一条染色体,4条多线染色体在染色中心通过着丝粒区域结合在一起。植物的多线染色体在形态与动物总的有一些差异。最明显的差异是同源染色体的不配对,除偶尔在泻根中有配对的情况外。

什么是胚胎植入前基因检测

什么是胚胎植入前基因检测(PGT) 植入前的基因测试可以筛查遗传疾病和染色体异常,增加试管婴儿患者成功怀孕的几率,生一个健康的宝宝。 为了增加怀孕和拥有一个没有遗传疾病和染色体疾病的健康婴儿的几率,爱嗣国际合作的生殖中心提供植入前基因测试,以配合IVF治疗。随着父母年龄的增长,孩子患唐氏综合症或染色体异常等遗传疾病导致流产的可能性会增加。另外,如果患者是遗传疾病的携带者,那么有可能遗传给孩子或者影响生育能力。植入前基因检测解决了这些挑战,防止遗传疾病和染色体异常的遗传。 原理: 植入前基因检测筛选能够让医生选择最健康的胚胎植入。传统的体外受精会导致多胎妊娠,比如双胞胎甚至三胞胎,而胚胎植入前的基因测试使我们能够只移植一个胚胎,帮助患者一次只怀上一个孩子。 植入前基因检测有两种形式,分别称为植入前基因诊断(PGD)和植入前基因筛查(PGS)。 植入前基因诊断(PGD)

如果患者有已知的遗传疾病,如地中海贫血或血友病,那么就可以考虑PGD,有的生殖中心采用更先进的PGD技术,称为核型定位,来选择没有遗传的胚胎,这样患者就可以拥有一个健康的宝宝。 马来西亚的生殖中心尤其重视对地中海贫血(Thalassemia)进行筛查。地中海贫血是一种严重的血液疾病,每20名马来西亚人中就有一人是携带者,主要是华裔。当父母双方都是携带者时,有25%的孩子会患上严重的地中海贫血。PGD有效地阻止了地中海贫血基因遗传给后代。 植入前基因筛查(PGS) PGS是一种使用作下一代试管治疗的一部分的技术,以确保患者的胚胎有正常的染色体数目,以提高试管婴儿患者成功怀孕的机会,并有一个健康的宝宝。 统计数据显示,五分之一的妊娠以流产告终,超过50%的流产是由染色体异常引起的。染色体异常还会导致遗传疾病,如唐氏综合症、爱德华综合症、帕托综合症、特纳综合症和任何与性别有关的疾病。 通过PGS,我们筛选,选择和转移最强壮的胚胎免于染色体异常。它可以防止多胎妊娠,因为我们可以移植单个胚胎,而不是移植多个质量不一的胚胎。 基于这个原因,我们推荐NextGen IVF技术用于年龄较大的夫妇、有流产史或试管受精失败的夫妇、或希望避免多次怀孕但同时提高成功率的夫妇。

细胞遗传学复习资料

第一章绪论 一、细胞遗传学的研究对象和任务 细胞遗传学是遗传学与细胞学相互交叉与结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律的一门基础科学。 细胞遗传学的研究对象、任务和内容: 以高等动植物为主要研究对象。研究任务:揭示染色体与生物遗传、变异和进化的关系。内容包括:染色体的数目、形态、结构、功能与运动等特征以及这些特征的各类变异对遗传传递、重组、表达与调控的作用和影响。 第二章染色体的形态特征和结构 §1.染色体的一般形态特征 一、染色体数目不同种类动植物染色体数目是相对恒定的。 二、染色体大小不同染色体之间大小有很大差异是染色体最明显的形态特征。 ●影响染色体大小变异的因素 1.与物种亲缘关系有关一般是亲缘关系越远,大小变异越明显。 科间﹥属间﹥种间﹥种内 2.与生长发育有关 3.与外界环境条件有关如化学试剂、温度影响 三、着丝粒及其超微结构 ●定义:着丝粒是一个细长的DNA片段(染色体主缢痕部位的染色质),不紧密卷曲,连接两个染色单体,是染色体分离与运动装置。缺少着丝粒的染色体不能分离并导致染色体丢失。 ●功能:着丝粒又称动原体,是染色体的运动器官,也是姐妹染色单体在分开前相互连接的部位。两侧为异染色质区,由短的DNA串联重复序列构成。着丝粒断裂、缺失,会使染色体运动受阻,造成染色体丢失。 ●类型根据着丝粒在染色体上的位置和分布,分为: 1.有固定位置的着丝粒在染色体上着丝粒具有永久性的固定区域。 2.新着丝粒细胞分裂时除了正常着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 3.无固定位置的着丝粒指纺锤体附着点在染色体上没有固定的位置。 (1)多着丝粒在一个染色体上可附着多个纺锤丝,且着丝粒被非着丝粒片段隔开。 (2)全身性着丝粒染色体的每一点都表现有着丝粒的活性,即整个染色体上均有着丝粒分布现象,又称为分散型着丝粒。 四、次缢痕、核仁组织区和随体 ●次缢痕和核仁组织区 在一个染色体组中,除了主缢痕外,任何其他的缢痕都属于次缢痕。次缢痕与末期核仁的形成有关,并在间期和前期与核仁联系在一起,又被称为核仁组织区。 核仁的超显微结构: 1)纤维中心2)致密纤维组分3)颗粒组分 ●随体是指位于染色体末端的球形或圆柱形染色体片段,通过次缢痕区与染色体主体部分相连。 根据随体在染色体上的位置,分为两大类: ?端随体位于染色体末端,被一个次缢痕隔开。 ?中间随体位于两个次缢痕之间。 根据随体形状和大小分为四类:小随体、大随体、线状随体和串联随体。 五、染色粒 染色粒:是指局部染色质在减数分裂粗线期的染色体上形成的、染色较深的呈线性排列的念球状突起,是在核小体组装成染色体过程中,连续的DNA丝局部螺旋化产生的结构,是DNA和蛋白质的复合体,是染色体上重复DNA顺序密集的区域。 六、染色纽 染色纽:或染色质结或疖,是粗线期染色体上一种染色特别深的大染色粒。位置和数量对特定物种是恒定的。位置多在染色体的末端或亚末端。主要是由结构异染色质组成,遗传活性很低。

相关主题