搜档网
当前位置:搜档网 › 解析几何立体几何基本知识点20180116

解析几何立体几何基本知识点20180116

解析几何立体几何基本知识点20180116
解析几何立体几何基本知识点20180116

高中解析几何知识点总结

第一部分:直线与圆

基本要求 ①.掌握两条直线平行、垂直的条件,能根据直线方程判断两条直线的位置关系;

②.掌握两条直线的夹角公式、到角公式和点到直线的距离公式。 ③.掌握圆的标准方程和一般方程.

④.掌握圆的方程的两种形式,并能合理合理运用; ⑤.灵活运用圆的几何性质解决问题.

1直线方程的五种形式

点斜式:)(00x x k y y -=-, (斜率存在) 斜截式:b kx y += (斜率存在) 两点式:

1

21

121x x x x y y y y --=

--,(不垂直坐标轴) 截距式:

1=+b

y

a x (不垂直坐标轴,不过原点) 一般式:0=++C By Ax 2.直线与直线的位置关系:

(1)有斜率的两直线l 1:y=k 1x+b 1;l 2:y=k 2x+b 2; 有:

①l 1∥l 2?k 1=k 2且b 1≠b 2;②l 1⊥l 2?k 1·k 2=-1;

③l 1与l 2相交? k 1≠k 2 ④l 1与l 2重合?k 1=k 2 且b 1=b 2。

(2)一般式的直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0 有:①l 1∥l 2?A 1B 2-A 2B 1=0;且B 1C 2-B 2C 1≠0

②l 1⊥l 2?A 1A 2+B 1B 2=0 ③l 1与l 2相交? A 1B 2-A 2B 1≠0 ④l 1与l 2重合? A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0。 3.点与直线的位置关系:

点P (x 0,y 0)到直线Ax+By+C=0的距离:2

2

00B

A C

By Ax d +++=

平行直线Ax+By+C 1=0与Ax+By+C 2=0之间的距离为2

2

21B

A C C d +-=

两点间距离公式:12||PP =4、直线系方程

①过直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0交点的直线系方程为:A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0(λ∈R )(除l 2外)。

②过定点00(,)M x y 的直线系方程为)(00x x k y y -=-(其中不包括直线0x x =) ③和直线0=++C By Ax 平行的直线方程为'0Ax By C ++=(')C C ≠ ④和直线0Ax By C ++=垂直的直线方程为'0Bx Ay C -+=

5.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫圆.

在平面直角坐标系内确定一个圆需要三个独立条件:如三个点,半径和圆心(两个坐标)等. 6.圆的方程

(1)标准式:(x-a)2+(y-b)2=r 2(r>0),其中r 为圆的半径,(a ,b)为圆心。 (2)一般式:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0),其中圆心为(,)22

D E

-

-,半径为

7. 点P(x 0,y 0)与圆的位置关系:

代入方程222()()()f x x a y b r =-+--(或22()f x x y Dx Ey F =++++)看符号.

①点P 在圆上00(,)0f x y ?= ②点P 在圆外

00(,)0f x y ?>③点P 在圆内00(,)0f x y ?<

8.直线与圆的位置关系:相离、相切和相交。有两种判断方法:(用几何法更具有直观性)

(1)代数法(判别式法):Δ>、=、<0时分别相离、相交、相切。 (2)几何法,圆心到直线的距离d>、=、

圆222x y r +=上点M (x 0,y 0)的切线方程:200x x y y r +=(或

0000()()0x x x y y y -+-=)

过圆(x-a)2+(y-b)2=r 2上点M (x 0,y 0)的切线方程:(x 0-a )(x-a)+(y 0-b)(y-b)=0.(或

0000()()()()0x a x x y b y y --+--=)

10、弦长求法:(1)几何法:弦心距d ,圆半径r ,弦长l ,则d 2+(l /2)2=r 2.

(2)解析法:用韦达定理,弦长公式。

11.圆与圆的位置关系:看|O 1O 2|与r 1+r 2和|r 1-r 2|的大小关系。特别提示:解直线与圆的问题,要尽量充分地利用平面几何中圆的性质,利用几何法解题要比解析方法来得简捷.

12.点(线、圆)与圆的距离的最值问题

min max ;d d r d d r =-=-=+=+心距半径心距半径

心距指点(直线或圆心)与圆心之间的距离

第二部分:圆锥曲线

椭圆图象及几何性质:

关于椭圆知识点的补充: 1、椭圆的标准方程:

① 焦点在x 轴上的方程:22

221x y a b += (a>b>0);

② 焦点在y 轴上的方程:22

221y x a b

+= (a>b>0);

③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2+ny 2=1(m>0,n>0); 2、椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。

注意: ||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; 3、 通径:2b

2

a

; 4、点与椭圆的位置关系;

5、22221x y a b

+=焦点三角形的面积:b 2

tan θ2 (其中∠F 1PF 2=θ);

6、弦长公式:;

7、 椭圆在点P (x 0,y 0)处的切线方程:

00221x x y y

a b

+=; 8、直线与椭圆的位置关系:

凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x 或y ,得到关于y 或x 的一元二次方程,再利用根与系数的关系及根的判别式等知识来解决,需要有较强的综合应用知识解题的能力。

双曲线的图象及几何性质:

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的

轨迹。 注意: a PF PF 2||||

21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;

2、 双曲线的标准方程

①焦点在x 轴上的方程:22

221x y a b -=(a>0,b>0);

②焦点在y 轴上的方程:22

221y x a b

-= (a>0,b>0);

③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2-ny 2=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线:

①求双曲线12

2

22=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b

y a x ,因式分解

得到。

②与双曲线122

22=-b y a x 共渐近线的双曲线系方程是λ=-2222b

y a x ;

4、等轴双曲线: 为222t y x =-,其离心率为2

5、几个概念:①焦准距:b 2c ; ②通径:2b 2

a

; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐

近线是y=±x,离心率为: 2 ;④22221x y a b

-=焦点三角形的面积:b 2

cot θ2 (其中∠

F 1PF 2=θ);

⑤弦长公式:⑥注意;椭圆中:c 2=a 2-b 2

,而在双

曲线中:c 2=a 2+b 2,

6、直线与双曲线的位置关系:讨论双曲线与直线的位置关系时通常有两种处理方法:①代数法:②、数形结合法。

抛物线的标准方程、图象及几何性质:0>p

关于抛物线知识点的补充: 1、定义: 2、几个概念:

① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1

4

③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。

④ 通径:2p

3、如:AB 是过抛物线)0(22>=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证: (1)DF HF ⊥; (2)BN AN ⊥;

(3)AB FN ⊥;

(4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则221p y y -=,2

214

1p x x =

; (6)p

FB FA 2|

|1|

|1=+;

(7)D O A ,,三点在一条直线上

(8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2

1||AB EF =,

||||||2FB FA ME ?=;

高中立体几何知识点总结

一 、空间几何体

(一) 空间几何体的类型 1 多面体; 2 旋转体

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征

1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类

棱柱

四棱柱平行六面体直平行六

面体长方体

正四棱柱

正方体

性质:

Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;

1.3 棱柱的面积和体积公式

ch S 直棱柱侧(c 是底周长,h 是高)

S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h

2 、棱锥的结构特征

2.1 棱锥的定义

棱长都相等

底面是正方形

底面是矩形

侧棱垂直于底面

底面是平行四边形 底面是四边形

图1-1 棱柱

(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征

Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距

离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;

Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;

正棱锥侧面积:1

'2

S ch =

正棱椎(c 为底周长,'h 为斜高) 体积:1

3

V Sh =

棱椎(S 为底面积,h 为高)

正四面体:

对于棱长为a 正四面体的问题可将它补成一个边长为a 2

2

的正方体问题。 对棱间的距离为

a 2

正四面体的高

a 6(正方体体对角线l 3

2

=) 正四面体的体积为

3122a (正方体小三棱锥正方体V V V 3

1

4=-) 正方体体对角线正方体体对角线:l l 2

1

61=

) 3 、棱台的结构特征

A

B

C D P

O

H

3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

3.2 正棱台的结构特征

(1)各侧棱相等,各侧面都是全等的等腰梯形;

(2)正棱台的两个底面和平行于底面的截面都是正多边形;

(3)正棱台的对角面也是等腰梯形;

(4)各侧棱的延长线交于一点。

4 、圆柱的结构特征

4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

4.2 圆柱的性质

(1)上、下底及平行于底面的截面都是等圆;

(2)过轴的截面(轴截面)是全等的矩形。

4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。

4.4 圆柱的面积和体积公式

S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)

S圆柱全= 2π r h + 2π r2

V圆柱 = S底h = πr2h

5、圆锥的结构特征

5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。 5.2 圆锥的结构特征

(1) 平行于底面的截面都是圆,截面直径与底面

直径之比等于顶点到截面的距离与顶点到底面的距离之比; (2)轴截面是等腰三角形;

(3)母线的平方等于底面半径与高的平方和: l 2 = r 2 + h 2

5.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

6、圆台的结构特征

6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间

的部分称为圆台。 6.2 圆台的结构特征

⑴ 圆台的上下底面和平行于底面的截面都是圆; ⑵ 圆台的截面是等腰梯形;

⑶ 圆台经常补成圆锥,然后利用相似三角形进行研究。 6.3 圆台的面积和体积公式

S 圆台侧 = π·(R + r)·l (r 、R 为上下底面半径) S 圆台全 = π·r 2 + π·R 2 + π·(R + r)·

l

图1-5 圆锥

V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)

7 球的结构特征

7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。

7-2 球的结构特征

⑴球心与截面圆心的连线垂直于截面;

⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2

★7-3 球与其他多面体的组合体的问题

球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:

⑴根据题意,确定是内接还是外切,画出立体图形;

⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;

⑶将立体问题转化为平面几何中圆与多边形的问题;

⑷注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;

球外切正方体,球直径等于正方体的边长。

7-4 球的面积和体积公式

S球面= 4 π R2 (R为球半径)

V球= 4/3 π R3

(三)空间几何体的表面积与体积 空间几何体的表面积

棱柱、棱锥的表面积:各个面面积之和

圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S

rl r ππ=+

圆台的表面积:22

S rl r Rl R ππππ=+++

球的表面积:2

4S R π=

扇形的面积公式2211=36022

n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度)

空间几何体的体积

柱体的体积 :V S h =?底

锥体的体积 :1

3

V S h =?底

台体的体积 : 1

)3

V S S h =+

+?下上(

球体的体积:

343

V R π= (四)空间几何体的三视图和直观图

正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 ★画三视图的原则:

正俯长相等、正侧高相同、俯侧宽一样

注:球的三视图都是圆;长方体的三视图都是矩形

直观图:斜二测画法

斜二测画法的步骤:

(1)平行于坐标轴的线依然平行于坐标轴;

(2)平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3)画法要写好

用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

二、点、直线、平面之间的关系

(一)、立体几何网络图:

1、线线平行的判断:

(1)、平行于同一直线的两直线平行。

(2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(4)、垂直于同一平面的两直线平行。

2、线线垂直的判断:

(1)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(2)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(3)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:

(1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(2)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:

性质定理:

★判断或证明线面平行的方法

I,则l∥α (用于判断);

⑴利用定义(反证法):lα=?

⑵利用判定定理:线线平行线面平行 (用于证明);

⑶ 利用平面的平行:面面平行线面平行 (用于证明);

⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。 2 线面斜交和线面角:l ∩ α = A

2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°]

注意:当直线在平面内或者直线平行于平面时,θ=0°;

当直线垂直于平面时,θ=90° 4、线面垂直的判断:

⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 判定定理:

性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

即:

图2-3 线面角

(2)垂直于同一平面的两直线平行。 即:

★判断或证明线面垂直的方法 ⑴ 利用定义,用反证法证明。 ⑵ 利用判定定理证明。

⑶ 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。 ⑷ 一条直线垂直于两平行平面中的一个,则也垂直于另一个。

⑸ 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直

于另一平面。

★1.5 三垂线定理及其逆定理

⑴ 斜线定理:从平面外一点向这个平面所引的所有线段中,

斜线相等则射影相等,斜线越长则射影越长,垂线段最短。

如图:

⑵ 三垂线定理及其逆定理

已知PO ⊥α,斜线PA 在平面α内的射影为OA ,a 是平面

α内的一条直线。

① 三垂线定理:若a ⊥OA ,则a ⊥PA 。即垂直射影则垂直斜线。

② 三垂线定理逆定理:若a ⊥PA ,则a ⊥OA

。即垂直

图2-7 斜线定理

斜线则垂直射影。

⑶三垂线定理及其逆定理的主要应用

图2-8 三垂线定理

①证明异面直线垂直;

②作出和证明二面角的平面角;

③作点到线的垂线段。

5、面面平行的判断:

⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

6、面面垂直的判断:

⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

判定定理:

性质定理:

⑴若两面垂直,则这两个平面的二面角的平面角为

(2)

(3)

(4)

(二)、其他定理:

(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;

直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ;

平面与平面的位置关系: 相交 ;; 平行 ;

(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;

如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;

(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线

段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射

影所成的角。

图2-10 面面垂直性质

2

图2-11 面面垂直性质 3

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

必修二平面解析几何初步知识点及练习带答案(全)

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ) . 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. (3)指出此时直线的方向向量:),(A B -,),(A B -,) , ( 2 2 2 2 B A A B A B +-+ (单位向量); 直线的法向量:),(B A ;(与直线垂直的向量) (6)参数式:?? ?+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,) ,(2222b a b b a a ++; a b k = ; 22||||b a t PP o += ;

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

解析几何常用知识点总结

“解析几何”一网打尽 (一)直线 1.[)?? ? ??≠≠--= =∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα 2.直线的方程 (1)点斜式 11() y y k x x -=- (直线l 过点 111(,) P x y ,且斜率为k ). (2)斜截式 y k x b =+(b 为直线l 在y 轴上的截距). (3)一般式 0A x B y C ++=(其中A 、B 不同时为0). 特别的:(1)已知直线纵截距,常设其方程为或;已知直线横截距,常设其方程为 (直线斜率k 存在时,为k 的倒数)或.知直线过点,常设其方程为 或 (2)直线在坐标轴上的截距可正、可负、也可为0. 直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等 直线的斜率为或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式 (1)两点间距离公式: 1122(,)(,)A x y B x y A B =点点 (2)00(,)x y P 到直线0A x B y C ++= 的距离为d = 特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L 的距离0d y y =-. (3). 两平行线间的距离公式:设1122:0,:0,l A x B y C l A x B y C d ++=++==则4.两直线的位置关系:; ;重合 5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A (x ,y )、22B (x ,y )、33C (x ,y ),则△ABC 的重心的坐标是123 123 (, )3 3 x x x y y y G ++++. b y k x b =+0x =0x x m y x =+m 0y =00(,) x y 00 ()y k x x y =-+0 x x =???1±1 2121212121()0 l l k k k k A A B B ⊥?=-?+=、都存在时{ { 12 1221121212 1221 //()k k A B A B l l k k b b A C A C ==? ? ≠≠、都存在时

平面解析几何初步(知识点 例题)

个性化简案 个性化教案(真题演练)

个性化教案

平面解析几何初步 知识点一:直线与方程 1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在. 2. 直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 3.直线方程的五种形式 【典型例题】 例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2 3.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 【举一反三】 1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150° 2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3 3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( ) A .7 B .- 77 C .77 D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上. 练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0. 例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2 3 ++x y 的最大值与最小值.

高中数学立体几何知识点归纳总结60996

高中数学立体几何知识点归纳总结 一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 棱柱——有两个面互相平行,其余各面都是四边形,并且每相 邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫 做棱柱。 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ① ? ? ??????→ ?? ?????→? ? ?? ?L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 侧棱垂直于底面底面为矩形 侧棱与底面边长相等 棱柱的性质:

①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】2222 11AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所 成 的 角 分 别 是 αβγ ,,,那么 222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则2 2 2 cos cos cos 2αβγ++=,2 2 2 sin sin sin 1αβγ++=. 侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 面积、体积公式: 2S c h S c h S S h =?=?+=?直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱 柱的高) 2.圆柱 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 面积、体积公式: 侧面 母线

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

高中立体几何基础知识

高中立体几何基础知识 1. 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2. 平面的画法及其表示方法: ①常用平行四边形表示平面通常把平行四边形的锐角画成45,横边 画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画 ②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对 角顶点的字母来表示如平面AC. 3. 空间图形是由点、线、面组成的 点、线、面的基本位置关系如下表所示: α a ?

a α α//a 直线a 与平面α平行 a A α a A α= 直线a 与平面α交于 点A l α β= 平面α、β相交于直 线l 注意:直线与平面平行(α//a )和直线与平面相交(a A α=)两种情 形,统称为直线在平面外,记为α?a . 4. 平面的基本性质 (1)公理1:如果一条直线的两点在一个平面内,那么这条直线上的 符号表示: ααα??∈∈a B A ,. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是 否是平面. 公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平 面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法. (2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且 所有这些公共点的集合是一条过这个公共点的直线 B A α

符号表示: A l A ααββ∈? ?=?∈? 且A l ∈且l 唯一 如图示: 应用:①确定两相交平面的交线位置;② 判定点在 直线上 公理2揭示了两个平面相交的主要特征,是判定两平面相交的依 据,提供了确定两个平面交线的方法. (3)公理3: 经过不在同一条直线上的三点,有且只有一个平面 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合 注意:“有且只有一个”的含义分两部分理解,“有”说明图形存在, 但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. (4)推论1 :经过一条直线和直线外的一点有且只有 一个平面 推理模式:A a ??存在唯一的平面α,使得A α∈,α?l (5)推论2: 经过两条相交直线有且只有一个 平面

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan πα≠=a k ,R k ∈ 斜率公式:经过两点),(1 1 1 y x P ,),(2 2 2 y x P ) (21 x x ≠的直线的斜率公 式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式

能力提升 斜率应用 例1.已知函数) 1(log )(2+=x x f 且0>>>c b a ,则c c f b b f a a f ) (, )(,)(的大小关系 例2.已知实数y x ,满足) 11(222 ≤≤-+-=x x x y ,试求2 3++x y 的最大值和最小值

的夹角α:)2(πθθα≤=或)2 (π θθπα>-=; 距离问题 1.平面上两点间的距离公式 ) ,(),,(222111y x P y x P 则 )()(1 2 1 2 2 1y y x x P P -+-= 2.点到直线距离公式 点),(0 y x P 到直线0:=++C By Ax l 的距离为:2 2 00B A C By Ax d +++= 3.两平行线间的距离公式 已知两条平行线直线1 l 和2 l 的一般式方程为1 l :0 1 =++C By Ax , 2 l :0 2 =++C By Ax ,则1 l 与2 l 的距离为2 2 21B A C C d +-= 4.直线系方程:若两条直线1 l :011 1 =++C y B x A ,2 l :0 2 2 2 =++C y B x A 有交点,则过1 l 与2 l 交点的直线系方程为)(1 1 1 C y B x A +++ )(222=++C y B x A λ或 ) (222C y B x A +++0)(1 1 1 =++C y B x A λ (λ为常数) 对称问题 1.中点坐标公式:已知点),(),,(2 2 1 1 y x B y x A ,则B A ,中点),(y x H 的坐标公式为 ??? ??? ? +=+=222121y y y x x x 点),(0 y x P 关于),(b a A 的对称点为)2,2(0 y b x a Q --,直线关于点对 称问题可以化为点关于点对称问题。 2.轴对称: 点),(b a P 关于直线)0(0≠=++B c By Ax 的对称点为

必修立体几何复习知识点习题

一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就 和交线平行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平 面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 90角 1、定义:成 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线 垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影 垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

解析几何初步

解析几何初步复习提纲 一、直线方程 1、 倾斜角:当直线l 与x 轴相交时,x 轴的正方向与直线l 向上的方向所成的角,叫直线l 的倾斜角;当直线l 与 x 轴平行或重合时,倾斜角等于00 。倾斜角的取值范围是____[)π,0________。 2、 直线的斜率 (1).定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率; (2).斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为 ()212 12 1x x x x y y k ≠--=; (3).应用:证明三点共线: AB BC k k =。 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 注:1、直线Ax+By+C=0(B ≠0)的斜率k=___。 2、几种特殊的直线方程 平行与x 轴的直线___ _; x 轴___________ y b =;0y = 平行与y 轴的直线___ __;y 轴_______ _____ x a =;0x = 经过原点(不包括坐标轴)的直线________________ y kx = 4.设直线方程的一些常用技巧: 1.知直线纵截距b ,常设其方程为y kx b =+; 2.知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =; 3.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 4.与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 5、过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ?R )注:该线系不含l 2.

高中文科数学立体几何知识点总结

γm βα l l α β立体几何知识点整理(文科) 一. 直线和平面的三种位置关 系: 1. 线面平行 α l 符号表示: 2. 线面相交 α A l 符号表示: 3. 线在面内 α l 符号表示: 二. 平行关系: 1. 线线平行: 方法一:用线面平行实 现。 m l m l l ////??? ? ??=??βαβ α 方法二:用面面平行实现。 m l m l ////??? ? ?? =?=?βγαγβα 方法三:用线面垂直实现。 若αα⊥⊥m l ,,则m l //。 方法四:用向量方法: 若向量l 和向量m 共线且l 、m 不重合,则 m l //。 2. 线面平行: 方法一:用线线平行实现。 ααα////l l m m l ??? ? ?? ?? 方 法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若n 为平面α的一个法向量, l n ⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',',' //'//????? ??? ??且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ?? ?且相交m l m l m l α n α l m'l'l α βm m β α l l m β α

三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): AC AB AC AB ??= θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 A B C αl l β α m l β α m α l θ c b a A B C θn A O θ P αl A O P α

必修二平面解析几何初步知识点及练习带答案

1直线的倾斜角与斜率: (1 )直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做 直线的倾斜角? 倾斜角[0,180 ), 90斜率不存在■ (2)直线的斜率:k y2 X2 —^(为X2), k X1 tan . ( R(X1, yj、巳佑y:)) 2 ?直线方程的五种形式: (1)点斜式: 注:当直 y y1 k(x X1)(直线1过点R(X1,y1),且斜率为k ). 1■线斜率不存在时,不冃匕用点斜式表示,此时万程为X X0 . (2)斜截式:y kx b ( b为直线1在y轴上的截距). (3)两点式: y y1 x X1 ( (% y2, X1 X2). y2 y1 X2 X1 注:①不能表示与x轴和y轴垂直的直线; ②方程形式为:(x2 x1)(y y1) (y2y1 )(x x1) 0时,方程可以表示任意直线. (4)截距式: X y 1 ( a,b分别为x轴y轴上的截距,且a 0,b 0). a b 注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线. (5) —般式:Ax By C 0 (其中A、B不同时为0). AC A 一般式化为斜截式:y x ,即,直线的斜率:k B B B 注:(1)已知直线纵截距b,常设其方程为y kx b或x 0. 已知直线横截距x0,常设其方程为x my x0(直线斜率k存在时,m为k的倒数)或y 0 . 已知直线过点(X。,y°),常设其方程为y k(x x°) y或x x°. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1 )直线在两坐标轴上的截距相等直线的斜率为1或直线过原点. (2 )直线两截距互为相反数直线的斜率为1或直线过原点. (3 )直线两截距绝对值相等直线的斜率为1或直线过原点. 4.两条直线的平仃和垂直: (1 )若11 : y k1x b1,12 : y k2X b2 ① 11//12k1k2,b1 b2 ;② 1112k1k2 1 (2 )若11 : A1x B1y C1 0, 1 2 : A Q X B2 y C2 0,有 ① 11 //12 A i B2 A2 B i 且 A C? A2C1.② 11 12 A i A2 B i B2 0 . 5.平面两点距离公式:

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

立体几何基础知识

立体几何基础知识 1. 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2. 平面的画法及其表示方法: ①常用平行四边形表示平面通常把平行四边形的锐角画成45 ,横边画成邻边的两倍画两个平面相交时, 当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画 ②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC . 3. 空间图形是由点、线、面组成的 为α?a . 4. 平面的基本性质 (1)公理1:如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内

符号表示:ααα??∈∈a B A ,. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面. 公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延 伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法. (2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这 个公共点的直线 符号表示:A l A ααββ∈? ?=?∈? 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上 公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法. (3)公理3: 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合 注意:“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图 形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. (4)推论1 :经过一条直线和直线外的一点有且只有一个平面 推理模式:A a ??存在唯一的平面α,使得A α∈,α?l (5)推论2: 经过两条相交直线有且只有一个平面 推理模式:P b a = ?存在唯一的平面α,使得αα??b a , (6)推论3 :经过两条平行直线有且只有一个平面 推理模式://a b ?存在唯一的平面α,使得αα??b a , 5. 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形特别注意空间四边形是平面图形而不是平面图形. 6. 空间两直线的位置关系 (1)相交——有且只有一个公共点; (2)平行——在同一平面内,没有公共点; (3)异面——不在任何.. 一个平面内,没有公共点; 7. 公理4 :平行于同一条直线的两条直线互相平行推理模式://,////a b b c a c ?.

相关主题