搜档网
当前位置:搜档网 › 解析几何知识点总结.doc

解析几何知识点总结.doc

解析几何知识点总结.doc
解析几何知识点总结.doc

抛物线的标准方程、图象及几何性质:p0

标准方程图形

顶点对称轴焦点离心率准线通径焦点在 x 轴上,

焦点在 x 轴上,

开口向右开口向左

y 2 2 px y 2 2 px

l

y P P y

l

x x

O F F O

x轴

F (

p

,0) F (

p

,0)

2 2

x

p p

2

x

2

焦点在 y 轴上,焦点在 y 轴上,

开口向上开口向下

2 2

x2 py x2 py

l y

y

O

P x

F x F

P

l

O

O( 0,0)

y 轴

F( 0,

p

)

p

F(0,)

2 2

e 1

y

p

y

p

2 2

2 p

焦半径焦点弦

p

| PF | | y0

p | PF | | x0 | |

2 2

x1 x2 p

2 p (当时,为 2 p ——通径)

2

2

sin

焦准距p

关于抛物线知识点的补充:

1、定义:

2、几个概念:

① p的几何意义:焦参数p 是焦点到准线的距离,故p 为正数;

1

②焦点的非零坐标是一次项系数的4;

③方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。

④通径: 2p

3、如:AB是过抛物线y 2 2 px ( p 0) 焦点F的弦,M是AB的中点,l是抛物线的准线,MN l , N 为垂足, BD l , AH l , D , H 为垂足,求

证:

(1)HF DF ;l

y

(2)AN BN ;

H A

(3)FN AB ;

Q M

N x O

( 4)设MN交抛物线于Q,则Q平分MN;

FE D B

( 5)设 A( x 1 , y 1 ), B(x 2 , y 2 ) ,则 y 1 y 2

p 2 , x 1 x 2 1 p 2 ;

4

(6)

1

1

2 ; |FA | |FB |

p

( 7) A, O, D 三点在一条直线上

(8)过 M 作 ME

AB , ME 交 x 轴于 E ,求证: | EF |

1

|AB|,|ME |2

|FA | |FB|;

2

关于双曲线知识点的补充:

1、

双曲线的定义:

平面内与两个定点

F 1 , F 2 的距离的差的绝对值等于常数(小于

| F 1F 2 |)的点的轨迹。

第二定义: 平面内与一个定点的距离和到一条定直线的距离的比是常数

e(e 1) 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。

注意: | PF 1 | | PF 2 | 2a 与 | PF 2 | | PF 1 | 2a ( 2a | F 1F 2 | )表示双曲线的一支。

2a | F 1 F 2 | 表示两条射线; 2a | F 1F 2 |没有轨迹;

2、 双曲线的标准方程

①焦点在

x 2 y 2 1 ( a>0, b>0); y 2 x 2

1 ( a>0, b>0);

x 轴上的方程:

b 2

②焦点在 y 轴上的方程:

b 2

a 2

a 2 ③当焦点位置不能确定时,也可直接设椭圆方程为:

2

2

mx-ny =1(m ·n<0)

④双曲线的渐近线:改

1 为 0, 分解因式则可得两条渐近线之方程

.

3、双曲线的渐近线:

x 2

y 2

2

2

①求双曲线

x

2

y 2

1 的渐近线,可令其右边的

2

2

0 ,因式分解得到。②与双曲线

1 共渐近线的双曲线系方程是

x

y

1 为 0,即得

x

y

a 2

b 2

a 2

b 2

a

2

b 2

a 2

b 2

4、等轴双曲线:

为 x 2

y 2 t 2 ,其离心率为

2

5、共轭双曲线:

6、几个概念:

b2 2b2

③等轴双曲线 2 2 ∈ R, ≠0) :渐近线是 y=±x, 离心率为: 2 ;④x2 y2

1焦点三角形的面积: 2

①焦准距: ; ②通径:; x -y = (

a2 b2 b cot( 其中∠

c a 2

1 2

F PF= );

⑤弦长公式: |AB|= (1 k 2 ) [( x x )2 4x x ] ;⑥注意;椭圆中: c 2=a2-b 2, 而在双曲线中 :c 2=a2+b2,

1 2 1 2

双曲线的图象及几何性质:

标准方程图形

顶点对称轴焦点焦距离心率准线中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上2

y

2

y

2

x

2 x

1(a b 0)

2 2

1(a b 0)

a 2

b 2 a b

y

P

2 y F P 2

x

B

x F1 1 O A2 2 O

A F 1

B

F1 A1 ( a,0), A2 ( a,0) B1(0, a), B2 (0, a)

x 轴,y轴;虚轴为2b ,实轴为 2a

F1 ( c,0), F2 ( c,0) F1(0, c), F2 (0, c)

| F1F2 | 2c(c 0) c 2 a 2 b2

e

c

(e 1)(离心率越大,开口越大)

a

a 2

x 2

y

c c

渐近线通径

焦半径P在左支|PF1| a ex

|PF2| a ex0

y

b

x a

2b 2

a

P在右支 | PF1 | a ex

|PF2| a ex0

2 ep( p 为焦准距)

P在下支|PF1 | a ey

|PF2 | a ey0

y

a

x b

P 在上支| PF1| a ey0

|PF2| a ey0

焦准距p c a2b2 c c

7、直线与双曲线的位置关系:讨论双曲线与直线的位置关系时通常有两种处理方法:①代数法:②、数形结合法。

8、双曲线中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法是直接推理、计算;并在计算的过程中

消去变量,从而得到定点(定值)。

② 关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体

现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。

关于椭圆知识点的补充:

1、椭圆的标准方程:

①焦点在 x 轴上的方程:x2 y2 1 ( a>b>0);②焦点在 y 轴上的方程:y 2 x2 1 ( a>b>0);

a2 b2 a2 b2

③当焦点位置不能确定时,也可直接设椭圆方程为: 2 2 x a cos

mx+ny =1(m>0,n>0) ;④、参数方程:

b sin

y

2、椭圆的定义:平面内与两个定点F1, F2的距离的和等于常数(大于| F1F2 |)的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e(0 e 1 椭圆的焦半径公式: |PF 1|=a+ex 0, |PF 2|=a-ex 0)

1) 的点的轨迹。|PF |=e (

d

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。常数叫做离心率。

注意:2a | F1F2 | 表示椭圆; 2 a | F1 F2 | 表示线段F1F2;2a | F1 F2 |没有轨迹;

3、焦准距:b2 、通径:2b2 5 、点与椭圆的位置关系; 6 、x 2 y2 1焦点三角形的面积:

2 ( 其中∠ FPF= );

; 4 ; b tan

c a a2 b2 2

1 2

7、弦长公式: |AB|= (1 k 2 ) [( x1 x2 ) 2 4x1x2;8 、椭圆在点 P( x0, y0) 处的切线方程:x0 x y

y 1;

a2 b2

9、直线与椭圆的位置关系:

凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x 或 y,得到关于 y 或 x 的一元二次方程,再利用根与系数的关系及根的判别式等知识来解决,需要有较强的综合应用知识解题的能力。

10、椭圆中的定点、定值及参数的取值范围问题:

①定点、定值问题: 通常有两种处理方法:第一种方法

是从特殊入手,先求出定点(或定值) ,再证明这个点(值)与变量无关;第二种方法 是直接推

理、计算;并在计算的过程中消去变量,从而得到定点(定值)

②关于最值问题 :常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;

若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要

不等式法、函数的单调性法等。

③ 参数的取值范围问题 :此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法

根据题意结合图形列出所讨论的参数适合的不等式(组) ,通

过解不等式(组)得出参数的变化范围;第二种

是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围

椭圆图象及几何性质:

中心在原点,焦点在

x 轴上

中心在原点,焦点在

y 轴上

标准方程

x 2

y 2

1 ( a

b

0 )

y 2

x 2

1( a b

0 )

a 2

b

2

a 2

b 2

参数方程

x

acos

( 为参数 ) x b cos

( 为参数)

y bsin

y a sin

B 2 y

y

P B

P

F

2

x

2

1

A 1

A 2

A

A 2 x

1

O

2

O

F

B 1 F

F

B

1

A 1 ( a,0), A 2 (a,0)

A 1 ( b,0), A 2 (b,0)

B 1 (0, b), B 2 (0, b)

B 1 (0, a), B 2 (0, a)

对称轴

x 轴, y 轴;短轴为 2b ,长轴为 2a

焦 点

F 1 ( c,0), F 2 ( c,0)

F 1 (0, c), F 2 (0, c)

焦距离心率准线通径焦半径焦点弦焦准距

| F1F2 | 2c( c 0) c 2 a2 b2

e

c

(0 e 1)(离心率越大,椭圆越扁)

a

x

a 2

y

a 2

c c

2 b 2 2 ep( p 为焦准距)

a

| PF1 | a ex0 | PF1 | a ey0

| PF2 | a ex0 | PF2 | a ey0

| AB | 2a e( x A x B ) 仅与它的中点的横坐标有关|AB| 2a e( y A y B ) 仅与它的中点的纵坐标有关

p

a2

c

b 2

c c

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

第二章平面解析几何初步章末总结附解析苏教版必修

第二章平面解析几何初步章末总结(附解 析苏教版必修2) 【金版学案】2015-2016高中数学第二章平面解析几何初步章末知识整合苏教版必修2 一、数形结合思想的应用 若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且 ∠POQ=120°(其中O为原点),则k的值为________. 解析:本小题考查直线与圆的位置关系和数形结合的方法. y=kx+1恒过点(0,1),结合图知,直线倾斜角为120°或60°. ∴k=3或-3. 答案:3或-3 规律总结:根据数学问题的条件和结论之间的内在联系,将抽象的数学语言和直观的图形相结合,使抽象思维和 形象思维相结合. 1.以形助数,借助图形的性质,使有关“数”的问题直接形象化,从而探索“数”的规律.比如,研究两曲线 的位置关系,借助图形使方程间关系具体化;过定点的 直线系与某确定的直线或圆相交时,求直线系斜率的范

围,图形可帮助找到斜率的边界取值,从而简化运算;对于一些求最值的问题,可构造出适合题意的图形,解题中把代数问题几何化. 2.以数助形,借助数式的推理,使有关“形”的问题数量化,从而准确揭示“形”的性质. ►变式训练 1.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是________. 解析:∵x2+4x+y2-5=0,∴(x+2)2+y2=9是以(-2,0)为圆心,以3为半径的圆.如图所示:令x=0得y=±5. ∴点C的坐标为(0,5). 又点M的坐标为(-1,0), ∴kMC=5-00-(-1)=5. 结合图形得0k5. 答案:(0,5) 2.当P(m,n)为圆x2+(y-1)2=1上任意一点时,若不等式m+n+c≥0恒成立,则c的取值范围是________.解析:方法一∵P(m,n)在已知圆x2+(y-1)2=1上,且使m+n+c≥0恒成立,即说明圆在不等式x+y+c≥0

必修二平面解析几何初步知识点及练习带答案(全)

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ) . 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. (3)指出此时直线的方向向量:),(A B -,),(A B -,) , ( 2 2 2 2 B A A B A B +-+ (单位向量); 直线的法向量:),(B A ;(与直线垂直的向量) (6)参数式:?? ?+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,) ,(2222b a b b a a ++; a b k = ; 22||||b a t PP o += ;

解析几何常用知识点总结

“解析几何”一网打尽 (一)直线 1.[)?? ? ??≠≠--= =∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα 2.直线的方程 (1)点斜式 11() y y k x x -=- (直线l 过点 111(,) P x y ,且斜率为k ). (2)斜截式 y k x b =+(b 为直线l 在y 轴上的截距). (3)一般式 0A x B y C ++=(其中A 、B 不同时为0). 特别的:(1)已知直线纵截距,常设其方程为或;已知直线横截距,常设其方程为 (直线斜率k 存在时,为k 的倒数)或.知直线过点,常设其方程为 或 (2)直线在坐标轴上的截距可正、可负、也可为0. 直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等 直线的斜率为或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式 (1)两点间距离公式: 1122(,)(,)A x y B x y A B =点点 (2)00(,)x y P 到直线0A x B y C ++= 的距离为d = 特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L 的距离0d y y =-. (3). 两平行线间的距离公式:设1122:0,:0,l A x B y C l A x B y C d ++=++==则4.两直线的位置关系:; ;重合 5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A (x ,y )、22B (x ,y )、33C (x ,y ),则△ABC 的重心的坐标是123 123 (, )3 3 x x x y y y G ++++. b y k x b =+0x =0x x m y x =+m 0y =00(,) x y 00 ()y k x x y =-+0 x x =???1±1 2121212121()0 l l k k k k A A B B ⊥?=-?+=、都存在时{ { 12 1221121212 1221 //()k k A B A B l l k k b b A C A C ==? ? ≠≠、都存在时

平面解析几何初步(知识点 例题)

个性化简案 个性化教案(真题演练)

个性化教案

平面解析几何初步 知识点一:直线与方程 1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在. 2. 直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 3.直线方程的五种形式 【典型例题】 例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2 3.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 【举一反三】 1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150° 2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3 3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( ) A .7 B .- 77 C .77 D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上. 练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0. 例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2 3 ++x y 的最大值与最小值.

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

苏教版《第二章平面解析几何初步综合小结》word教案

苏教版《第二章平面解析几何初步综合小结》 w o r d教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学同步测试—第二章章节测试 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把 正确答案的代号填在题后的括号内(每小题5分,共50分). 1.方程x 2 + 6xy + 9y 2 + 3x + 9y –4 =0表示的图形是 ( ) A .2条重合的直线 B .2条互相平行的直线 C .2条相交的直线 D .2条互相垂直的直线 2.直线l 1与l 2关于直线x +y = 0对称,l 1的方程为y = ax + b ,那么l 2的方程为 ( ) A .a b a x y -= B .a b a x y += C .b a x y 1+= D .b a x y += 3.过点A (1,-1)与B (-1,1)且圆心在直线x+y -2=0上的圆的方程为 ( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .4(x +1)2+(y +1)2=4 D .(x -1)2+(y -1)2= 4.若A(1,2),B(-2,3),C(4,y )在同一条直线上,则y 的值是 ( ) A .2 1 B .23 C .1 D .-1 5.直线1l 、2l 分别过点P (-1,3),Q (2,-1),它们分别绕P 、Q 旋转,但始终保持平 行,则1l 、2l 之间的距离d 的取值范围为 ( ) A .]5,0( B .(0,5) C .),0(+∞ D .]17,0( 6.直线1x y a b +=与圆222(0)x y r r +=>相切,所满足的条件是 ( ) A .ab r =B .2222()a b r a b =+ C .22||ab r a b =+ D .22ab r a b =+ 7.圆2223x y x +-=与直线1y ax =+的交点的个数是 ( ) A .0个 B .1个 C .2个 D .随a 值变化而变化

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan πα≠=a k ,R k ∈ 斜率公式:经过两点),(1 1 1 y x P ,),(2 2 2 y x P ) (21 x x ≠的直线的斜率公 式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式

能力提升 斜率应用 例1.已知函数) 1(log )(2+=x x f 且0>>>c b a ,则c c f b b f a a f ) (, )(,)(的大小关系 例2.已知实数y x ,满足) 11(222 ≤≤-+-=x x x y ,试求2 3++x y 的最大值和最小值

的夹角α:)2(πθθα≤=或)2 (π θθπα>-=; 距离问题 1.平面上两点间的距离公式 ) ,(),,(222111y x P y x P 则 )()(1 2 1 2 2 1y y x x P P -+-= 2.点到直线距离公式 点),(0 y x P 到直线0:=++C By Ax l 的距离为:2 2 00B A C By Ax d +++= 3.两平行线间的距离公式 已知两条平行线直线1 l 和2 l 的一般式方程为1 l :0 1 =++C By Ax , 2 l :0 2 =++C By Ax ,则1 l 与2 l 的距离为2 2 21B A C C d +-= 4.直线系方程:若两条直线1 l :011 1 =++C y B x A ,2 l :0 2 2 2 =++C y B x A 有交点,则过1 l 与2 l 交点的直线系方程为)(1 1 1 C y B x A +++ )(222=++C y B x A λ或 ) (222C y B x A +++0)(1 1 1 =++C y B x A λ (λ为常数) 对称问题 1.中点坐标公式:已知点),(),,(2 2 1 1 y x B y x A ,则B A ,中点),(y x H 的坐标公式为 ??? ??? ? +=+=222121y y y x x x 点),(0 y x P 关于),(b a A 的对称点为)2,2(0 y b x a Q --,直线关于点对 称问题可以化为点关于点对称问题。 2.轴对称: 点),(b a P 关于直线)0(0≠=++B c By Ax 的对称点为

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

平面解析几何初步典型例题整理后

平面解析几何初步 §7.1直线和圆的方程 经典例题导讲 [例1]直线l 经过P (2,3),且在x,y 轴上的截距相等,试求该直线方程. 解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:2 3 0203=--= k , ∴直线方程为y= 2 3x 综上可得:所求直线方程为x+y-5=0或y= 2 3 x . [例2]已知动点P 到y 轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P 的轨迹方程. 解: 接前面的过程,∵方程①化为(x-52 )2+(y-3)2 = 214 ,方程②化为(x+12 )2+(y-3)2 = - 34 , 由于两个平方数之和不可能为负数,故所求动点P 的轨迹方程为: (x-52 )2+(y-3)2 = 214 (x ≥ 0) [例3]m 是什么数时,关于x,y 的方程(2m 2+m-1)x 2+(m 2-m+2)y 2 +m+2=0的图象表示一个 圆? 解:欲使方程Ax 2+Cy 2 +F=0表示一个圆,只要A=C ≠0, 得2m 2+m-1=m 2-m+2,即m 2 +2m-3=0,解得m 1=1,m 2=-3, (1) 当m=1时,方程为2x 2+2y 2 =-3不合题意,舍去. (2) 当m=-3时,方程为14x 2+14y 2=1,即x 2+y 2=1 14 ,原方程的图形表示圆. [例4]自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2 -4x-4y+7=0相切,求光线L 所在的直线方程. 解:设反射光线为L ′,由于L 和L ′关于x 轴对称,L 过点A(-3,3),点A 关于x 轴的对称点A ′(-3,-3), 于是L ′过A(-3,-3). 设L ′的斜率为k ,则L ′的方程为y-(-3)=k [x-(-3)],即kx-y+3k-3=0, 已知圆方程即(x-2)2+(y-2)2 =1,圆心O 的坐标为(2,2),半径r =1 因L ′和已知圆相切,则O 到L ′的距离等于半径r =1 即 1 1k 5 k 51k 3 k 32k 22 2 =+-= +-+- 整理得12k 2 -25k+12=0 解得k = 34或k =4 3 L ′的方程为y+3=34(x+3);或y+3=4 3 (x+3)。 即4x-3y+3=0或3x-4y-3=0 因L 和L ′关于x 轴对称 故L 的方程为4x+3y+3=0或3x+4y-3=0. [例5]求过直线042=+-y x 和圆01422 2 =+-++y x y x 的交点,且满足下列条件之一的圆的方程:

解析几何初步

解析几何初步复习提纲 一、直线方程 1、 倾斜角:当直线l 与x 轴相交时,x 轴的正方向与直线l 向上的方向所成的角,叫直线l 的倾斜角;当直线l 与 x 轴平行或重合时,倾斜角等于00 。倾斜角的取值范围是____[)π,0________。 2、 直线的斜率 (1).定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率; (2).斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为 ()212 12 1x x x x y y k ≠--=; (3).应用:证明三点共线: AB BC k k =。 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 注:1、直线Ax+By+C=0(B ≠0)的斜率k=___。 2、几种特殊的直线方程 平行与x 轴的直线___ _; x 轴___________ y b =;0y = 平行与y 轴的直线___ __;y 轴_______ _____ x a =;0x = 经过原点(不包括坐标轴)的直线________________ y kx = 4.设直线方程的一些常用技巧: 1.知直线纵截距b ,常设其方程为y kx b =+; 2.知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =; 3.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 4.与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 5、过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ?R )注:该线系不含l 2.

必修二平面解析几何初步知识点及练习带答案

1直线的倾斜角与斜率: (1 )直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做 直线的倾斜角? 倾斜角[0,180 ), 90斜率不存在■ (2)直线的斜率:k y2 X2 —^(为X2), k X1 tan . ( R(X1, yj、巳佑y:)) 2 ?直线方程的五种形式: (1)点斜式: 注:当直 y y1 k(x X1)(直线1过点R(X1,y1),且斜率为k ). 1■线斜率不存在时,不冃匕用点斜式表示,此时万程为X X0 . (2)斜截式:y kx b ( b为直线1在y轴上的截距). (3)两点式: y y1 x X1 ( (% y2, X1 X2). y2 y1 X2 X1 注:①不能表示与x轴和y轴垂直的直线; ②方程形式为:(x2 x1)(y y1) (y2y1 )(x x1) 0时,方程可以表示任意直线. (4)截距式: X y 1 ( a,b分别为x轴y轴上的截距,且a 0,b 0). a b 注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线. (5) —般式:Ax By C 0 (其中A、B不同时为0). AC A 一般式化为斜截式:y x ,即,直线的斜率:k B B B 注:(1)已知直线纵截距b,常设其方程为y kx b或x 0. 已知直线横截距x0,常设其方程为x my x0(直线斜率k存在时,m为k的倒数)或y 0 . 已知直线过点(X。,y°),常设其方程为y k(x x°) y或x x°. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1 )直线在两坐标轴上的截距相等直线的斜率为1或直线过原点. (2 )直线两截距互为相反数直线的斜率为1或直线过原点. (3 )直线两截距绝对值相等直线的斜率为1或直线过原点. 4.两条直线的平仃和垂直: (1 )若11 : y k1x b1,12 : y k2X b2 ① 11//12k1k2,b1 b2 ;② 1112k1k2 1 (2 )若11 : A1x B1y C1 0, 1 2 : A Q X B2 y C2 0,有 ① 11 //12 A i B2 A2 B i 且 A C? A2C1.② 11 12 A i A2 B i B2 0 . 5.平面两点距离公式:

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

1、定义: 2、几个概念: ① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1 4 ; ③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p 3、如:AB 是过抛物线)0(22 >=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证: (1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥; (4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2 21p y y -=,2 214 1p x x =; (6)p FB FA 2| |1 | |1= +; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2 1||AB EF =,||||||2 FB FA ME ?=;

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 注意: a PF PF 2|||| 21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; 2、 双曲线的标准方程 ①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22 221y x a b -= (a>0,b>0); ③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2 -ny 2 =1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线: ①求双曲线12 2 22 =-b y a x 的渐近线,可令其右边的1为0,即得022 22=-b y a x ,因式分解得到。②与双曲线122 2 2 =-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x ; 4、等轴双曲线: 为2 22t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念: ①焦准距:b 2 c ; ②通径:2b 2 a ; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐近线是y=±x,离心率为:2 ;④22 221x y a b -=焦点三角形的面积:b 2 cot θ2 (其中∠F 1PF 2=θ); ⑤弦长公式:c 2 =a 2 -b 2 ,而在双曲线中:c 2 =a 2 +b 2 ,

(完整word版)平面解析几何初步复习课教学设计.doc

平面解析几何初步复习课教学设计 (一)教材分析 解析几何的主要内容为直线与圆,圆锥曲线,坐标系与参数方程。根据课程标准要 求,在必修 2 解析几何初步中,学生学习的最基本内容为直线与直线方程,圆与圆的方 程,并初步建立空间坐标系的概念。这一内容是对全体学生设计的,大部分学生在选修 中还将进一步学习圆锥曲线,坐标系与参数方程等有关内容。因此,本章要求学生掌握 解析几何最基本的思想方法--------用代数的方法研究曲线的几何性质,并学习最基本 的直线,圆的方程,并通过方程研究他们的图形性质。这样的安排,一方面降低了解析 几何的难度,多次反复又逐步提高学生对解析几何的认识,另一方面对部分在解析几何 学习上有较高要求的学生,可以在选修部分拓广加强。 因此教学中,要体会必修 2 的 4 个特点①是学习立体几何与解析几何的初级阶段②仅 仅是初步③是螺旋式上升的开始④ . 感性认识到理性认识的过渡期。 ( 二 )课程内容标准(教学大纲与课程标准比较) 《教学大纲》《课程标准》主要变化点 直线和圆的方程 (22 课时 ) 平面解析几何初步 ( 约 18 课时 ) 1.平面解析几何分 直线的倾斜角和斜率。直线(1) 直线与方程层为三块:初步(必 方程的点斜式和两点式。直①在平面直角坐标系中,结合具体修)、圆锥曲线(必 线方程的一般式。图形,探索确定直线位置的几何要选)和坐标系与参数 两条直线平行与垂直的条素。方程(自选)。 件。两条直线的交角。点到②理解直线的倾斜角和斜率的概2.线性规划问题移 直线的距离。念,经历用代数方法刻画直线斜率到《数学 5》“不等 用二元一次不等式表示平面的过程,掌握过两点的直线斜率的式”部分;原立几 B 区域。简单线性规划问题。计算公式。教材“空间直角坐 实习作业。③能根据斜率判定两条直线平行标系”移至解几初 曲线与方程的概念。由已知或垂直。步。 条件列出曲线方程。④根据确定直线位置的几何要素,3.注重过程教学,

高中数学必修2解析几何公式知识点总结

高中数学必修2解析几何知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

2019-2020年高中数学 第二章 平面解析几何初步章末归纳总结(含解析)新人教B版必修2

2019-2020年高中数学 第二章 平面解析几何初步章末归纳总结(含 解析)新人教B 版必修2 一、选择题 1.下列说法中,正确说法的个数是( ) ①任何一条直线都有惟一的倾斜角; ②任何一条直线都有惟一的斜率; ③倾斜角为90°的直线不存在; ④倾斜角为0°的直线只有一条. A .0 B .1 C .2 D .3 [答案] B [解析] ①正确;对于②,当直线的倾斜角为90°时,该直线的斜率不存在;对于③,倾斜角为90°的直线与x 轴垂直,有无数条;对于④,倾斜角为0°的直线与x 轴平行或重合,这样的直线有无数条,故选B. 2.斜率为3的直线经过(2,1)、(m,4)、(3,n )三点,则m +n =( ) A .5 B .6 C .7 D .8 [答案] C [解析] 由题意得3=4-1m -2=n -1 3-2, ∴m =3,n =4, ∴m +n =7. 3.已知直线l 1∥l 2,它们的斜率分别记作k 1、k 2.若k 1、k 2是方程x 2 +2ax +1=0的两个根,则a 的值为( ) A .1 B .-1 C .1或-1 D .无法确定 [答案] C [解析] ∵直线l 1∥l 2,∴它们的斜率相等,即k 1=k 2.又k 1、k 2是方程x 2 +2ax +1=0的两个根, ∴该方程有两个相等的实数根, ∴Δ=(2a )2 -4×1×1=0,即a 2 =1, ∴a =1或-1,故选C . 4.方程x 2 +y 2+4x -2y +5m =0不表示圆,则m 的取值范围是( )

A .(1 4,1) B .(-∞,1) C .(-∞,1 4) D .[1,+∞) [答案] D [解析] 由题意知42+(-2)2 -20m ≤0,解得m ≥1,故选D. 5.已知过点P (2,2)的直线与圆(x -1)2 +y 2 =5相切,且与直线ax -y +1=0垂直,则 a =( ) A .-12 B .1 C .2 D .1 2 [答案] A [解析] 圆的圆心为(1,0),由(2-1)2 +22 =5知点P 在圆上,所以切线与过点P 的半径垂直,且k =2-02-1=2,∴a =-1 2 .故选A . 6.(xx·全卷Ⅱ理,7)过三点A (1,3)、B (4,2)、C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( ) A .2 6 B .8 C .4 6 D .10 [答案] C [解析] 解法一:由已知得k AB =3-21-4=-13,k CB =2+7 4-1=3,∴k AB ·k CB =-1,∴AB ⊥CB , 即△ABC 为直角三角形,其外接圆圆心为(1,-2),半径为5,∴外接圆方程为(x -1)2 +(y +2)2 =25,令x =0,得y =±26-2,∴|MN |=46,故选C . 解法二:设圆的方程为x 2 +y 2 +Dx +Ey +F =0,则有 ???? ? 1+9+D +3E +F =016+4+4D +2E +F =01+49+D -7E +F =0 ,解得???? ? D =-2 E =4 F =-20 . ∴圆的方程为x 2 +y 2 -2x +4y -20=0,令x =0,得 y =±26-2, ∴|MN |=4 6. 二、填空题 7.过两点(1,2)和(3,1)的直线在y 轴上的截距为________.

相关主题