搜档网
当前位置:搜档网 › 中科大FLUENT讲稿 第四章,湍流流动的近壁处理

中科大FLUENT讲稿 第四章,湍流流动的近壁处理

中科大FLUENT讲稿 第四章,湍流流动的近壁处理
中科大FLUENT讲稿 第四章,湍流流动的近壁处理

第四章,湍流流动的近壁处理

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。

实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。

图4-1,边界层结构

第一节,壁面函数与近壁模型

近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。

对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。

如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT 提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数

FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。

4.1.1.1 标准壁面函数

根据平均速度壁面法则,有:

**1

ln()U Ey k

=

4-1 其中,1/41/2

*

/p p

w U C k U μτρ

,1/41/2

*

p p

C k y y μρμ

≡,并且

k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。

通常,在*

30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*

11.225y >。

当网格出来*

11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**

U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +

(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。

根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。

温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。

1/41/2

*

()w p p P T T c C k T q

μρ-≡'' 4-2

=()1/41/2

*2

*1/41/2

22

1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p

t c C k y U q Ey P k

C k U U q μμρρ?+?''?

????++??????????+-??''??

**

**()()T T y y y y <> 4-3

其中P 的计算采用下列公式[L93]

1/4

1/2Pr /41sin(/4)Pr Pr t t A Pr P k ππ??????=- ? ? ????

??? 4-4

其中,f k 是流体导热系数;ρ是流体密度;p c 是流体定压比热;q

'' 壁面热流;p T 近邻壁面控制体温度;w T 壁面温度;Pr /p f c k μ=为分子普朗特数;Pr t 是湍流普朗特数,壁面取

0.85;A =26,是Van Dries 常数;k =0.42,是V on Karman 常数;E =9.793,是壁面函数常数;

c U 是**

T y y =时的平均速度大小。

Fluent 中,当选择了流体介质后,就可以根据流体介质的物理性质,计算出分子普朗特数,热导子区厚度*

T y ,存储备用。在求解的时候,根据*y 与已经存储的*

T y 之间大小关系,判断是

采用线性法则还是对数法则来计算壁面温度W T 或热流率q

'' 。 在采用雷诺应力模型或ε-k 双方程模型时,包括壁面近邻的控制体的湍动能都要计算,其边界条件为湍动能在壁面法向方向上梯度为零。

湍动能产生项k G 及耗散率是湍动能输运方程的源项组成部分,根据局部平衡假设来计算。根据这一假设,与壁面毗邻的控制体种湍动能及其耗散率是相同的。则湍动能产生率为:

p

p w w w

k y k C k y U

G 2/14/1μρτττ=??≈ 4-5 耗散率不需要求解输运方程,直接用如下公式计算:

p

p

p ky k C 2/34/3με=

4-6

以上所介绍的标准壁面函数是FLUENT 程序的默认设置。标准壁面函数包含了定常剪切和局部平衡假设条件,如果壁面有很强的压力梯度,并且很强的非平衡性,则我们可以选择非平衡壁面函数方法。

4.1.1.2 非平衡壁面函数

在非平衡壁面函数方法中,平均温度的壁面法则与标准壁面函数中相同。而对数分布的平均速度对压力梯度更加敏感:

???

? ??=μρρ

τμμy k C E

k k

C U w 2

/14/12/14/1ln 1/~ 4-7 式中,??????+-+???? ??-=μρρνννν22/1*2/1*ln 21~

y k

k y y y y k k y dx dp U U 4-8 νy 是物理粘性底层厚度,用下式计算:

2/14

/1*p

k

C y y μννρμ≡

4-9

其中,225.11*

=νy 。

非平衡壁面函数在计算近壁控制体湍动能时采用了双层的概念,并且需要求解湍动能k 。假定与壁面毗邻的控制体积是由粘性底层和完全湍流构成,则湍流量由如下公式得到:

?????=w t ττ0

ννy y y y >< ?????=p

p k k y y k 2)(ν ννy y y y >< ???????=y

C k y k

l 2/322νε ννy y y y >< 4-10 式中,4

/3-=μ

kC C l ,νy 是有量纲的粘性底层厚度,2

/14

/1*p

k

C y y μννρμ≡

利用上面的公式,近壁控制体里面的控制体平均湍动能产生率及其耗散率就可以计算出来。这里我们可以看出,非平衡壁面函数抛弃了标准壁面函数中的局部平衡假设,从而可以考虑非平衡的影响。

标准壁面函数对于高雷诺数流动问题,有壁面作用的流动过程等有较好的计算结果;

非平

衡壁面函数则把壁面函数方法推广到有压力梯度和非平衡的流动过程中。但是,如果流动情况偏离了壁面函数的理想条件,则壁面函数就不合适了。如:高粘度流体流过狭窄的通道,壁面由渗透的流动,大压力梯度并导致边界层分离的流动,由强体积力的流动,近壁区域三维性很强的流动问题。如果要成功解决上述问题,必须采用改进模型的方法来模拟近壁流动。FLUENT 提供了双层区模型(Two-Layer Zonal Model )。

4.1.1.3双层区模型

在双层区模型中,认为近壁流动只分两个区域,即粘性影响的区域和完全湍流,用基于到壁面距离y 的雷诺数y Re 来区分两个区域。

μ

ρy

k y ≡

Re 4-11 其中,y 是计算网格到壁面的垂直距离;FLUENT 中,y 是到最近壁面的距离:

w r r r y w

w

-≡Γ∈min 4-12

式中,r

是点在流场中的位置矢量;w r

是在边界上的位置矢量;w Γ是所有壁面边界的集合;这样,我们可以去处理流场里有复杂边界的问题。而且,这样定义y 跟网格的形状没有关系,对非结构网格也同样适合。

在完全湍流区域(200Re >y ),采用雷诺应力模型或者ε-k 模型;在粘性影响区域(200Re

u t l k C μρμ=

耗散率计算

ε

εl k 2/3= 4-13

上面的长度尺度根据参考文献[L29]的方法计算:

]1[Re u

y A l u e

y c l -

-= 4-14

]1[Re ε

εA l y e

y c l -

-= 4-15

如果所有的计算区域都在粘性影响的区域以内(200Re

要求解,而是用上面的代数方程来就得。上面长度尺度计算过程中的模型常数采用Chen and Pater [L29]的结果。

4

/3-=μkC c l , 70=u A , l c A 2=ε

第二节,湍流计算中近壁处理对网格的要求

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。

你可以用后处理面板去画出+

y ,*

y 和y Re 的值来检查网格是否满足自己的计算要求。需要指出的是计算出来的+

y ,*

y 和y Re 并不是只与几何参数有关的固定量,它们也和最后的收敛解解有关系。所以,如果你把网格加密一倍(到壁面的距离减少一半),计算得到的+

y 并不一定是加密前计算的+

y 的一半。

对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。

采用壁面函数时候的近壁网格:

第一网格到壁面距离要在对数区内。通常计算的距离为+y (μρτ/y u ≡或*

y 。如果网格在对数区内,+

y 和*

y 的值差不多大小。

我们知道,对数区的+

y >30~60。FLUENT 在+

y <12.225时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层更本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。

壁面函数处理时网格划分

采用双层模型时近壁网格要求

当采用双层模型时,网格衡量参数是+y ,并非*

y 。最理想的网格划分是需要第一网格在

+y =1位置。如果稍微大点,比如+y =4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(200Re

内的平均速度和湍流量。

采用双层区模型时网格划分

采用Spalart-Allmaras 模型时的近壁网格要求

该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。

采用大涡模拟的近壁网格要求

对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在+

y =1的量级上。

第三节,用FLUENT 求解湍流问题设定

1, 击活粘性模型面板上的湍流模型(Spalart-Allmaras, k-epsilon, Reynolds Stress or

Large Eddy Simulation ),如果选择k-epsilon 模型,将需要继续选择采用标准ε-k 模型、重整化群ε-k 模型或可实现ε-k 模型中的一种。

2, 如果流动问题中包含壁面,选择ε-k 或者雷诺应力模型,在粘性模型面板上选择

近壁处理方式。近壁处理方式包括:标准壁面函数;非平衡壁面函数和双层区模型。

3, Option 选项设置 4, 变量的边界条件设置 5, 全场变量赋初始值

任意选项设置

如果选择Spalart-Allmaras 模型,会出现如下选项: . V orticity-based production

. Strain/vorticity-based production

. Viscous heating (always activated for the coupled solvers)

如果选择标准ε-k 模型或可实现ε-k 模型,会出现如下选项: . Viscous heating (always activated for the coupled solvers ) . inclusion of buoyancy effects on ε

如果选择重整化群ε-k 模型,出现的选项为: . Differential viscousity model . Swirl modification

. Viscous heating (Always activated for the coupled solvers ) . Inclusion of buoyancy effects on ε

如果选择雷诺应力模型,会有如下选项: . Wall reflection effects on Reynolds stresses

. wall boundary conditions for the Reynolds stresses from equation . Quadratic pressure-strain model

. Viscous heating (always activated for the coupled solvers ) . Inclusion of buoyancy effects on ε 如果选择大涡模拟,则选择项为:

. Smagoringsky-Lilly model for the subgrid-scale viscosity . RNG model for the subgrid-scale viscosity

. Viscous heating (always activated for the coupled solvers ) 可以更改里面的模型系数,但很多时候不需要这么做。

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

第四章 层流流动与湍流流动

第四章层流流动及湍流流动 由于实际流体有粘性,在流动时呈现两种不同的流动形态:层流流动及湍流流动,并在流动过程中产生阻力。 对可压缩流体,阻力使流体受压缩。 对不可压缩流体,阻力使流体的一部分机械能转化为热能散失,这个转变过程不可逆。散失的热量称为能量损失。 单位质量(或单位体积)流体的能量损失,称为水头损失(或压力损失),并以h w(或Δp)表示。 本章首先讨论流体的流动状态,再对粘性流体在两种流动状态下的能量损失进行分析。 第一节流动状态及阻力分类 一、流体的流动状态 1.雷诺试验:1882年雷诺作了如教材45页图4-1所示的流体流动形态试验。 试验装置:在圆管的中心用细玻璃管向圆管的水流中引入红色液体的细流。 试验情况: (1)当水的流速较小时(图4-1a),红色液体细流不与周围水混和,自己保持直线形状与水一起向前流动。 (2)如把水的流速逐渐增大,至一定程度时,红色细流便开始上下振荡,呈波浪形弯曲(如图4-1b)。 (3)当再把水流速度增大,红色细流的振荡加剧,至水的流速增大至某一速度后,圆管中红色细流消失,红色液体混入整个圆管的水中(如图4-1c)。 试验的三种不同状况说明: (1)对(图4-1a)所示,表明水的质点只有向前流动的位移,没有垂直水流方向的移动,即各层水的质点不相互混和,都是平行地移动的,这种流动称为层流; (2)对(图4-1b)所示,说明流动的水质点已开始有垂直水流方向的位移,离开圆管轴线较远的部位水的质点仍保持平行流动的状态; (3)对(图4-1c)所示,说明流动中水的质点运动已变得杂乱无章,各层水相互干扰,这种流动形态称为紊流或湍流。

2.雷诺数: 流体之所以出现不同的流动形态,主要由流体质点流动时其本身所具有的惯性力和所受的粘性力的数值比例决定。 惯性力相对较大时,流体趋向于作紊流式的流动; 粘性力则起限制流体质点作纵向脉动的作用,遏止紊流的出现。 雷诺根据此原理提出了一个判定流体流动状态的无量纲参数——雷诺数(Re): 对在圆管中流动的流体而言,雷诺数的表现形式为 v:圆管内流体的平均流速(m/s);ε:动力粘度(Pa·s)。 D:圆管直径(m);ν:运动粘度(m2/s)。 实验确定,流体开始由层流形态向紊流转变时,称为下临界雷诺数, Re=2100~2320;当Re>10000~13800时流体的流动形态为稳定的紊流,称上临界雷诺数;当Re=(2100~2320)~(10000~13800),流动形态为过渡状态,可以是紊流或层流。临界雷诺数随体系的不同而变化,即使同一体系,它也会随其外部因素(如圆管内表面粗糙度和流体中的起始扰动程度等)的不同而改变,所以临界雷诺数为一个范围数。 对于非圆管中的流体流动,雷诺数的表现形式为 R:水力半径(m);A:流体的有效截面积(m2); x:截面上与流体接触的固体周长(湿周)(m)。 (但水力半径R不是圆截面的几何半径r,如充满流体圆管的水力半径为: ) 这里,取下临界雷诺数为500。对工程中常见的明渠水流,下临界雷诺数常取300。 当流体绕过固体(如绕过球体)流动时,出现层状绕流(物体后无旋涡)和紊状绕流(物体后形成旋涡)的现象,此时雷诺数用下式计算:

壁湍流猝发过程中速度分量的相位差对雷诺应力影响的实验研究

第23卷 第1期2008年2月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.23 No.1 Feb.2008 文章编号:100124888(2008)0120017210 壁湍流猝发过程中速度分量的相位差 对雷诺应力影响的实验研究3 刘薇,赵瑞杰,姜楠 (天津大学机械工程学院力学系天津市现代工程力学重点实验室,天津300072) 摘要:用IFA300恒温热线风速仪和×形二分量热线探针,以采样间隔小于最小湍流时间尺度的分辨率,精细测量了风洞中平板湍流边界层不同法向位置的瞬时流向、展向速度分量的时间序列信号。用子波分析辨识壁湍流相干结构猝发事件的能量最大准则,确定壁湍流相干结构猝发事件的时间尺度;用条件相位平均技术提取了相干结构猝发过程中流向、展向脉动速度分量条件相位平均波形,用互相关方法研究了相干结构猝发过程中流向、展向脉动速度分量条件相位平均波形的相位差关系及其对雷诺应力的影响,发现在缓冲层和对数律区,展向脉动速度与流向脉动速度的条件相位平均波形具有不同的相位;当两者相位基本一致时,雷诺应力达到正的最大值,此时湍流相干结构的产生非常活跃;当两者相位差分别集中在90°和270°附近时,雷诺应力的幅值减小并接近于零,此时湍流相干结构的产生和猝发都得到了抑制。 关键词:壁湍流;相干结构;猝发;雷诺应力;相位差 中图分类号:O357 文献标识码:A 0 引言 1967年,美国斯坦福大学的Kline小组[1]对湍流近壁区条纹结构进行的全面细致的观测工作,标志着开始对湍流近壁区相干结构进行系统的研究,并将这一系列的过程称为相干结构的猝发。湍流猝发现象不仅产生和输运大部分的湍动能,而且与Reynolds应力的产生以及被动标量的输运有着密切关系[2]。Wallace et al(1972)[3]、L u&Willmart h(1973)[4]、Raupach(1981)[5]的实验均表明在湍流边界层和槽道流中猝发现象对Reynolds应力的产生起着重要作用。几乎90%的湍动能或者Reynolds应力产生于近壁区域,而猝发中上抛事件和下扫事件产生的Reynolds应力分别占全部的60%~70%[6]。 开展相干结构研究的最终目的是通过研究相干结构的动力学行为和规律,建立符合相干结构机理的数学模型和湍流模式,在工程中更加准确地预报湍流,探索在工程中通过控制相干结构控制湍流的有效途径[7]。著名流体力学家Liep mann[8]在1979年就曾经预言,可以通过控制相干结构控制湍流。现在控制相干结构已成为控制湍流的有效途径,在减小壁面摩擦阻力、降低流动噪声方面具有重要的应用前景,对于提高管道和飞行器的运输效率、降低能耗,提高空中飞行器和水下兵器的隐身性能方面具有重要的工程应用价值。 子波变换是新近发展起来的一种数学方法[9],通过信号与一个被称为子波的解析函数进行卷积将3收稿日期:2007207223;修订日期:2008201216 基金项目:国家自然科学基金资助项目10472081;教育部中国高等学校新世纪优秀人才计划资助项目;天津市科技发展计划资助项目06TXTJJ C13800 通讯作者:姜楠(1968-),男,教授,博士生导师。E2mail:nanj@https://www.sodocs.net/doc/954648728.html,

湍流流动的近壁处理详解

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。 如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1 ln()U Ey k = 4-1 其中,1/41/2 * /p p w U C k U μτρ ≡ ,1/41/2 * p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在*30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2 * ()w p p P T T c C k T q μρ-≡ '' 4-2 =()1/41/2 *2*1/41/222 1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''? ????++???? ??????+-??''?? ** **()()T T y y y y <> 4-3

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

近壁面函数的简单理解

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。采用壁面函数时候的近壁网格:第一网格到壁面距离要在对数区内。对数区的y+ >30~60。FLUENT在y+ <时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层更本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。壁面函数处理时网格划分采用双层模型时近壁网格要求当采用双层模型时,网格衡量参数是y+ ,并非y* 。最理想的网格划分是需要第一网格在y+ =1位置。如果稍微大点,比如=4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(Rey<200 )至少有十个网格,以便可以计算粘性区域内的平均速度和湍流量。采用双层区模型时网格划分采用Spalart-Allmaras 模型时的近壁网格要求该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。采用大涡模拟的近壁网格要求对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在 y+=1的量级上。 for Hexa mesh, ==>Y+是第一层高度一半和 viscous length scale 的比值 for Tetra mesh==>Y+是第一层高度1/3和 viscous length scale 的比值 y+就是Yplus,它跟你在湍流模型里采用的近壁面函数选取有关,若Yplus为个位数,选增强型壁面函数,若在两位数以上,选标准或非平衡的壁面函数。 y+的意思是底层网格必须划分在对数率成立的区域内。 一般应使y+的值为15~300,但是y+是模拟完成后才知道的。 而且同一个模型不同地方不同流速y+不一样,所以不是很精确。如果模拟传热应注意y+对结果的影响。

FLUENT中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L 关系可以表示为: l = 0.07L (8-3)

第三章_湍流模型

第三章 湍流模型 第一节 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 Direct Numerical Simulation 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

湍流的产生和解释

湍流的产生和解释 湍流是如何产生的有哪些模型可以预测和解释湍流现象 关于第一个问题,可以先从流体的流动讲起。假设有这样一根管道,我在一头加上一个水龙头,然后通过调节水龙头的大小来控制水的速度。一开始,水龙头开度比较小,这时候是层流(如下图)。 细致地调节细管中红水的流速,当它与主流管内水流速度相近时,可以看到清水中有稳定而清晰的红色水平流线,表明这时主流管中各水层互不干扰地流动。逐渐加大水龙头的开度,层流就慢慢的变成湍流了。这时流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生(如下图)

所以我们现在可以说,层流与湍流的最大区别就是流速了(单单对于上例来说)。流速较小的时候,流动比较规则,分层现象比较明显。流速大了之后就开始乱了,各种漩涡,滑动。 现在来看看究竟怎么区别层流和湍流,或者说究竟与哪些因素有关。这里我们先引入雷诺数的概念。雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数,以Re 表示,Re=ρvd/ η,其中v、ρ、η分别为流体的流速、密度与黏性系数,d 为一特征长度。黏性就是指当流体运动时,层与层之间有阻碍相对运动的内摩擦力。举个例子,假如有一群人手拉手的往前跑,大家开始跑得都很慢,突然有一个人不想跟他们一起玩这个脑残的游戏了,所以任性的加快了速度。如果手拉的不紧,他就很容易逃脱—这就是黏性比较小,相互之间摩擦力较小;如果手拉的越紧,他就越不容易逃脱—这就是黏性比较大,相互之间摩擦力较大。另一方面,要是不容易逃脱,他只要加快速度,终究是可以逃脱的。 这个例子或许不那么恰当,但是可以说明雷诺数的概念了。雷诺数其实是一个无量纲数,表示作用于流体微团的惯性力与粘性力之比。当雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。这里贴一张从层流发展为湍流的图(中间有一段过渡段,这也很容易理解,数值上的绝对反映到实际情况下,基本都有一段过渡段)。 再简单的概况一下,湍流就是当流体的惯性力影响大于黏滞力时,流动有 较规则分层明显的层流变为不规则的运动的情况。 对于第二个问题,有哪些模型可以预测和解释湍流现象 现在的模型大多都是近似的模型。如果硬要说说预测和解释的话,应该是连续方程和N-S方程,这两个方程基本上可以描述世界上所有的流动现象。但是由于各种原因(理论上,这个偏微分方程的求解是世界性的难题,计算流体力学方面,直接求解对计算机的

fluent模拟设置

一、模型 1、能量方程:开启能量方程 2、湍流模型:选用Realizable k-ε湍流模型和标准壁面函数Standard Wall Fn 3、辐射模型,采用离散坐标辐射(DO)模型模拟炉内辐射传热,并设置每进行两次迭代计算后更新一次辐射场,以加快计算收敛速度 4、组分输运+涡耗散化学反应模型(ED),对于碳氢化合物燃烧系统,燃烧反应可能包含有上百个中间反应,其计算工作量大,不便于工程应用。为满足工程问题的需要,目前常采用两步反应系统和四步反应系统。本文中研究的是甲烷燃烧,选用EDM模拟由燃烧引起的传热传质,考虑两步反应,即: 2CH+3O=2CO+4H O 422 2CO+O=2CO 22 按不可压缩理想气体性质确定气体密度,不考虑分子扩散和气体内部的导热影响,选用分段线性比定压热容。 二、混合物及其构成组分属性 在化学反应模拟过程中,需要定义混合物的属性,也需要对其构成成分的属性进行定义。重要的是在构成成分的属性设置前对混合物的属性进行定义,因为组分特性的输入可能取决于用户所使用的混合物数学定义方式。对于属性输入,一般的顺序是先定义混合物组分、化学反应,并定义混合物的物理属性,然后定义混合物中组分的物理属性。 1、定义混合物中的组分 2、定义化学反应 3、定义混合物的物理属性 4、定义混合物中组分的物理属性 三、边界条件 在仿真中需要设置每个组分的入口质量分数,另外在出口出现回流情况下,对于压力出口用户应该设置组分质量分数。 1、内/外环火孔出口为燃气与一次空气混合气入口,采用速度进口边界条件,重庆燃气的低热值为36.75MJ/m3,理论空气需要量为9.537m3/m3,实测燃气流量为0.42m3/h,实测一次空气系数为0.674,圆形火孔的总面积面积为453mm2,得到火孔出口流速大小为1.913m/s,速度方向垂直于边界。混合气温度为288K,混合气体发射率,各组分体积分数:甲烷13.06%,氧气18.18%,其余为氮气。

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

FLUENT多孔介质数值模拟设置

FLUENT多孔介质数值模拟设置 多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。 多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意味着FLUENT不会正确的描述通过介质的过渡时间。 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。 多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项: 其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: 其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a 和C_2其它项为零。 FLUENT还允许模拟的源项为速度的幂率: 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。 多孔介质的Darcy定律 通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy定律: 在多孔介质区域三个坐标方向的压降为:

最新fluent湍流设置

1 湍流边界条件设置 2 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在 3 FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需4 要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用5 户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界6 上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方7 法请参见相关章节的叙述。 8 在 9 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界10 上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布11 规律时,在边 12 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应13 该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规14 律的参数设置 15 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 16 在Turbulence Specification Method (湍流定义方法)下拉列表中,可17 以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水18 力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这19 些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:20 (1)湍流强度(Turbulence Intensity) 21 湍流强度I的定义为:22 I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg

24 (8-1) 25 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 26 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于27 10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用28 绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流29 的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由30 流的湍流强度通常低于0.05%。 31 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发32 展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,33 则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,34 则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的:35 I=u’/u_avg=0.16*Re_DH^-0.125 36 (8-2) 37 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷38 诺数是以水力直径为特征长度求出的。 39 (2)湍流的长度尺度与水力直径 40 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关41 的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是42 受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示43 为: 44 45 l =

相关主题