搜档网
当前位置:搜档网 › 8.6ANSYS非线性静力分析步骤帮助学习

8.6ANSYS非线性静力分析步骤帮助学习

8.6ANSYS非线性静力分析步骤帮助学习
8.6ANSYS非线性静力分析步骤帮助学习

8.6. Performing a Nonlinear Static Analysis

The procedure for performing a nonlinear static analysis consists of these tasks:

?Build the Model

?Set Solution Controls

?Set Additional Solution Options

?Apply the Loads

?Solve the Analysis

?Review the Results

?Terminating a Running Job; Restarting

8.6.1. Build the Model

This step is essentially the same for both linear and nonlinear analyses, although a nonlinear analysis might include special elements or nonlinear material properties. See Using Nonlinear (Changing-Status) Elements, and Modeling Material Nonlinearities, for more details. If your analysis includes large-strain effects, your stress-strain data must be expressed in terms of true stress and true (or logarithmic) strain. For more information on building models in ANSYS, see the Modeling and Meshing Guide.

After you have created a model in ANSYS, you set solution controls (analysis type, analysis options, load step options, and so on), apply loads, and solve. A nonlinear solution will differ from a linear solution in that it often requires multiple load increments, and always requires equilibrium iterations. The general procedure for performing these tasks follows. See Sample Nonlinear Analysis (GUI Method)for a sample problem that walks you through a specific nonlinear analysis.

8.6.2. Set Solution Controls

Setting solution controls for a nonlinear analysis involves the same options and method of access (the Solution Controls dialog box) as those used for a linear structural static analysis. For a nonlinear analysis, the default settings in the Solution Controls dialog box are essentially the same settings employed by the automatic solution control method described in Running a Nonlinear Analysis in ANSYS. See the following sections in Structural Static Analysis, with exceptions noted:

?Set Solution Controls

?Access the Solution Controls Dialog Box

?Using the Basic Tab

?The Transient Tab

?Using the Sol'n Options Tab

?Using the Nonlinear Tab

?Using the Advanced NL Tab

8.6.2.1. Using the Basic Tab: Special Considerations

Special considerations for setting these options in a nonlinear structural static analysis include:

?When setting ANTYPE and NLGEOM, choose Large Displacement Static if you are performing a new analysis. (But, keep in mind that not all nonlinear analyses will produce large deformations. See Using Geometric Nonlinearities for further discussion of large

deformations.) Choose Restart Current Analysis if you want to

restart a failed nonlinear analysis. You cannot change this setting after the first load step (that is, after you issue your first SOLVE

command). You will usually choose to do a new analysis, rather than

a restart. Restarts are discussed in the Basic Analysis Guide.

?When working with time settings, remember that these options can be changed at any load step. See "Loading" in the Basic Analysis Guide for more information on these options. Advanced

time/frequency options, in addition to those available on the

Solution Controls dialog box, are discussed in Advanced Load Step Options You Can Set on the Solution Controls Dialog Box.

A nonlinear analysis requires multiple substeps (or time steps; the

two terms are equivalent) within each load step so that ANSYS can apply the specified loads gradually and obtain an accurate solution.

The NSUBST and DELTIM commands both achieve the same effect

(establishing a load step's starting, minimum, and maximum step

size), but by reciprocal means. NSUBST defines the number of

substeps to be taken within a load step, whereas DELTIM defines the time step size explicitly. If automatic time stepping is off

[AUTOTS], then the starting substep size is used throughout the load step.

?OUTRES controls the data on the results file (Jobname.RST). By default, only the last substep is written to the results file in

a nonlinear analysis.

Only 1000 results sets (substeps) can be written to the results file, but you can use the command /CONFIG,NRES to increase the limit (see the Basic Analysis Guide).

8.6.2.2. Advanced Analysis Options分析选项You Can Set on the Solution Controls Dialog Box

The following sections provide more detail about some of the advanced analysis options that you can set on the Solution Controls dialog box.

8.6.2.2.1. Equation Solver

ANSYS' automatic solution control activates the sparse direct solver (EQSLV,SPARSE) for most cases. Other options include the PCG and ICCG solvers. For applications using solid elements (for example, SOLID92 or SOLID45), the PCG solver may be faster, especially for 3-D modeling.

If using the PCG solver, you may be able to reduce memory usage via the MSAVE command. The MSAVE command triggers an element-by-element approach for the parts of the model that use SOLID45, SOLID92, SOLID95, SOLID185, SOLID186, SOLID187SOLID272, SOLID273, and/or SOLID285 elements with linear material properties. (MSAVE does not support the layered option of the SOLID185 and SOLID186 elements.) To use MSAVE, you must be performing a static or a modal analysis with PCG Lanczos enabled. When using SOLID185, SOLID186, and/or SOLID187, only small strain (NLGEOM,OFF) analyses are allowed. Other parts of the model that do not meet the above criteria are solved using global assembly for the stiffness matrix. MSAVE,ON can result in a memory savings of up to 70 percent for the part of the model that meets the criteria, although the solution time may increase depending on the capabilities of your computer and the element options selected.

The sparse direct solver, in sharp contrast to the iterative solvers included in ANSYS, is a robust solver. Although the PCG solver can solve indefinite matrix equations, when the PCG solver encounters an

ill-conditioned matrix, the solver will iterate to the specified number of iterations and stop if it fails to converge. When this happens, it triggers bisection. After completing the bisection, the solver continues the solution if the resulting matrix is well-conditioned. Eventually, the entire nonlinear load step can be solved.

Use the following guidelines for selecting either the sparse or the PCG solver for nonlinear structural analysis:

?If it is a beam/shell or beam/shell and solid structure, choose the sparse direct solver.

?If it is a 3-D solid structure and the number of DOF is relatively large (that is, 200,000 or more DOF), choose the PCG solver.

?If the problem is ill-conditioned (triggered by poor element shapes), or has a big difference in material properties in different regions of the model, or has insufficient displacement boundary

constraints, choose the sparse direct solver.

8.6.2.3. Advanced Load Step Options载荷步选项 You Can Set on the Solution Controls Dialog Box

The following sections provide more detail about some of the advanced load step options that you can set on the Solution Controls dialog box.

8.6.2.3.1. Automatic Time Stepping

ANSYS' automatic solution control turns automatic time stepping on [AUTOTS,ON]. An internal auto-time step scheme ensures that the time step variation is neither too aggressive (resulting in many bisection/cutbacks) nor too conservative (time step size is too small). At the end of a time step, the size of the next time step is predicted based on four factors:

?Number of equilibrium iterations used in the last time step (more iterations cause the time step size to be reduced) ?Predictions for nonlinear element status change (time step sizes are decreased when a status change is imminent)

?Size of the plastic strain increment

?Size of the creep strain increment

8.6.2.3.2. Convergence Criteria

The program will continue to do equilibrium iterations until the convergence criteria [CNVTOL] are satisfied (or until the maximum number of equilibrium equations is reached [NEQIT]). You can define custom criteria if the default settings are not suitable.

ANSYS' automatic solution control uses L2-norm of force (and moment) tolerance (TOLER) equal to 0.5%, a setting that is appropriate for most cases. In most cases, an L2-norm check on displacement with TOLER equal to 5% is also used in addition to the force norm check. The check that the displacements are loosely set serves as a double-check on convergence.

By default, the program will check for force (and, when rotational degrees of freedom are active, moment) convergence by comparing the square root

sum of the squares (SRSS) of the force imbalances against the product of VALUE*TOLER. The default value of VALUE is the SRSS of the applied loads (or, for applied displacements, of the Newton-Raphson restoring forces), or MINREF (which defaults to 0.01), whichever is greater. The default value of TOLER is 0.005. If SOLCONTROL,OFF, TOLER defaults to 0.001 and MINREF defaults to 1.0 for force convergence.

You should almost always use force convergence checking. You can also add displacement (and, when applicable, rotation) convergence checking. For displacements, the program bases convergence checking on the change in deflections (Δu) between the current (i) and the previous (i-1)

iterations: Δu=u

i -u

i-1

.

Note: If you explicitly define any custom convergence criteria [CNVTOL], the entire default criteria will be overwritten. Thus, if you define displacement convergence checking, you will have to redefine force convergence checking. (Use multiple CNVTOL commands to define

multiple convergence criteria.)

Using tighter convergence criteria will improve the accuracy of your results, but at the cost of more equilibrium iterations. If you want to tighten (or loosen, which is not recommended) your criteria, you should change TOLER by one or two orders of magnitude. In general, you should continue to use the default value of VALUE; that is, change the convergence criteria by adjusting TOLER, not VALUE. You should make certain that the default value of MINREF= 0.001 makes sense in the context of your analysis. If your analysis uses certain sets of units or has very low load levels, you might want to specify a smaller value for MINREF.

Also, we do not recommend putting two or more disjointed structures into one model for a nonlinear analysis because the convergence check tries to relate these disjointed structures, often producing some unwanted residual force.

Checking Convergence in a Single and Multi-DOF System

To check convergence in a single degree of freedom (DOF) system, you compute the force (and moment) imbalance for the one DOF, and compare this value against the established convergence criteria (VALUE*TOLER). (You can also perform a similar check for displacement (and rotation) convergence for your single DOF.) However, in a multi-DOF system, you might want to use a different method of comparison.

The ANSYS program provides three different vector norms to use for convergence checking:

?The infinite norm repeats the single-DOF check at each DOF in your model.

?The L1 norm compares the convergence criterion against the sum of the absolute values of force (and moment) imbalance for all DOFs.

?The L2 norm performs the convergence check using the square root sum of the squares of the force (and moment) imbalances for all DOFs.

(Of course, additional L1 or L2 checking can be performed for a

displacement convergence check.)

Example

For the following example, the substep will be considered to be converged if the out-of-balance force (checked at each DOF separately) is less than or equal to 5000*0.0005 (that is, 2.5), and if the change in displacements (checked as the square root sum of the squares) is less than or equal to 10*0.001 (that is, 0.01).

CNVTOL,F,5000,0.0005,0

CNVTOL,U,10,0.001,2

8.6.2.3.3. Maximum Number of Equilibrium Iterations

ANSYS' automatic solution control sets the value of NEQIT to between 15 and 26 iterations, depending upon the physics of the problem. The idea is to employ a small time step with fewer quadratically converging iterations.

This option limits the maximum number of equilibrium iterations to be performed at each substep (default = 25 if solution control is off). If the convergence criteria have not been satisfied within this number of equilibrium iterations, and if auto time stepping is on [AUTOTS], the analysis will attempt to bisect. If bisection is not possible, then the analysis will either terminate or move on to the next load step, according to the instructions you issue in the NCNV command.

8.6.2.3.4. Predictor-Corrector Option

ANSYS' automatic solution control will set PRED,ON if there are no SOLID65 elements present. If the time step size is reduced greatly in the current substep, PRED is turned off. For transient analysis, the predictor is also turned off.

You can activate a predictor on the DOF solution for the first equilibrium iteration of each substep. This feature accelerates convergence and is particularly useful if nonlinear response is relatively smooth, as in the case of ramped loads.

8.6.2.3.5. VT Accelerator

This option selects an advanced predictor-corrector algorithm based on Variational Technology to reduce the overall number of iterations [STAOPT,VT for static analyses, TRNOPT,VT for transient]. This option requires an HPC license. It is applicable to analyses that include large deflection [NLGEOM], hyperelasticity, viscoelasticity, and creep nonlinearities. Rate-independent plasticity and nonlinear contact analyses may not show any improvement in convergence rates; however, you may choose this option with these nonlinearities if you wish to rerun the analysis with changes to the input parameters later.

8.6.2.3.6. Line Search Option

ANSYS' automatic solution control will toggle line search on and off as needed. For most contact problems, LNSRCH is toggled on. For most

non-contact problems, LNSRCH is toggled off.

This convergence-enhancement tool multiplies the calculated displacement increment by a program-calculated scale factor (having a value between 0 and 1), whenever a stiffening response is detected. Because the line search algorithm is intended to be an alternative to the adaptive descent option [NROPT], adaptive descent is not automatically activated if the line search option is on. We do not recommend activating both line search and adaptive descent simultaneously.

When an imposed displacement exists, a run cannot converge until at least one of the iterations has a line search value of 1. ANSYS scales the entire ΔU vector, including the imposed displacement value; otherwise, a "small" displacement would occur everywhere except at the imposed DOF. Until one of the iterations has a line search value of 1, ANSYS does not impose the full value of the displacement.

8.6.2.3.7. Cutback Criteria

For finer control over bisections and cutback in time step size, use [CUTCONTROL, Lab, VALUE, Option]. By default, for Lab= PLSLIMIT (maximum plastic strain increment limit), VALUE is set to 15%. This field is set to such a large value for avoiding unnecessary bisections caused by high plastic strain due to a local singularity which is not normally of interest

to the user. For explicit creep (Option= 0), Lab= CRPLIM (creep increment limit) and VALUE is set to 10%. This is a reasonable limit for creep analysis. For implicit creep (Option = 1), there is no maximum creep criteria by default. You can however, specify any creep ratio control. The number of points per cycle for second order dynamic equations (Lab = NPOINT) is set to VALUE = 13 by default to gain efficiency at little cost to accuracy.

8.6.3. Set Additional Solution Options

This section discusses additional options that you can set for the solution. These options do not appear on the Solution Controls dialog box because they are used infrequently, and their default settings rarely need to be changed. ANSYS menu paths are provided in this section to help you access these options for those cases in which you choose to override the ANSYS-assigned defaults.

8.6.3.1. Advanced Analysis Options You Cannot Set on the Solution Controls Dialog Box

The following sections describe some advanced analysis options that you can set for your analysis. As noted above in Set Additional Solution Options, you cannot use the Solution Controls dialog box to set the options described below. Instead, you must set them using the standard set of ANSYS solution commands and the standard corresponding menu paths.

8.6.3.1.1. Stress Stiffness

To account for buckling, bifurcation behavior, ANSYS includes stress stiffness in all geometrically nonlinear analyses. If you are confident of ignoring such effects, you can turn stress stiffening off (SSTIF,OFF). This command has no effect when used with several ANSYS elements; see the Element Reference for the description of the specific elements you are using.

Command(s):

SSTIF

GUI: Main Menu> Solution> Unabridged Menu> Analysis Type> Analysis Options 8.6.3.1.2. Newton-Raphson Option

ANSYS' automatic solution control will use the FULL Newton-Raphson option with adaptive descent off if there is a nonlinearity present. However, when node-to-node, node-to-surface contact elements are used for contact

analysis with friction, then adaptive descent is automatically turned on (for example, PIPE20, BEAM23, BEAM24, and PIPE60). The underlying contact elements require adaptive descent for convergence.

Command(s):

NROPT

GUI: Main Menu> Solution> Unabridged Menu> Analysis Type> Analysis Options Use this option only in a nonlinear analysis.This option specifies how often the tangent matrix is updated during solution.If you choose to override the default, you can specify one of these values: ?Program-chosen (NROPT,AUTO): The program chooses which of the options to use, based on the kinds of nonlinearities present in your model. Adaptive descent will be automatically activated, when

appropriate.

?Full (NROPT,FULL): The program uses the full Newton-Raphson procedure, in which the stiffness matrix is updated at every

equilibrium iteration.

If adaptive descent is on (optional), the program will use the

tangent stiffness matrix only as long as the iterations remain

stable (that is, as long as the residual decreases, and no negative main diagonal pivot occurs). If divergent trends are detected on an iteration, the program discards the divergent iteration and

restarts the solution, using a weighted combination of the secant and tangent stiffness matrices. When the iterations return to a

convergent pattern, the program will resume using the tangent

stiffness matrix. Activating adaptive descent will usually enhance the program's ability to obtain converged solutions for complicated nonlinear problems but is supported only for elements indicated

under "Special Features" in the Input Summary table (Table 4.n.1 for an element, where n is the element number) in the Element

Reference.

?Modified (NROPT,MODI): The program uses the modified

Newton-Raphson technique, in which the tangent stiffness matrix is updated at each substep. The matrix is not changed during

equilibrium iterations at a substep. This option is not applicable to large deformation analyses. Adaptive descent is not available.

?Initial Stiffness (NROPT,INIT): The program uses the initial stiffness matrix in every equilibrium iteration. This option can be less likely to diverge than the full option, but it often requires

more iterations to achieve convergence. It is not applicable to

large deformation analyses. Adaptive descent is not available.

?Full with unsymmetric matrix (NROPT,UNSYM): The program uses the full Newton-Raphson procedure, in which the stiffness matrix is

updated at every equilibrium iteration. In addition, it generates and uses unsymmetric matrices that you can use for any of the

following:

o If you are running a pressure-driven collapse analysis, an unsymmetric pressure load stiffness might be helpful in

obtaining convergence. You can include pressure load

stiffness using SOLCONTROL,INCP.

o If you are defining an unsymmetric material model using TB,USER, you would need NROPT,UNSYM to fully use the property

you defined.

o If you are running a contact analysis, an unsymmetric contact stiffness matrix would fully couple the sliding and the

normal stiffnesses. See Determining Contact Stiffness and

Allowable Penetration in the Contact Technology Guide for

details.

You should first try NROPT,FULL; then try NROPT,UNSYM if you

experience convergence difficulties. Note that using an

unsymmetric solver requires more computer time to obtain a solution, than if you use a symmetric solver.

?If a multistatus element is in the model, however, it would be updated at the iteration in which it changes status, irrespective of the Newton-Raphson option.

8.6.3.2. Advanced Load Step Options You Cannot Set on the Solution Controls Dialog Box

The following sections describe some advanced load step options that you can set for your analysis. As noted above in Set Additional Solution Options, you cannot use the Solution Controls dialog box to set the options described below. Instead, you must set them using the standard set of ANSYS solution commands and the standard corresponding menu paths.

8.6.3.2.1. Creep Criteria

If your structure exhibits creep behavior, you can specify a creep criterion for automatic time step adjustment [CRPLIM,CRCR, Option]. (If automatic time stepping [AUTOTS] is off, this creep criterion will have no effect.) The program will compute the ratio of creep strain increment , the change in creep strain in the last time step) to the elastic (Δε

cr

strain (ε

el

), for all elements. If the maximum ratio is greater than the criterion CRCR, the program will then decrease the next time step size; if it is less, the program might increase the next time step size. (The program will also base automatic time stepping on the number of equilibrium iterations, impending element status change, and plastic strain increment. The time step size will be adjusted to the minimum size calculated for any of these items.) For explicit creep (Option = 0), if

the ratio Δε

cr / ε

el

is above the stability limit of 0.25, and if the

time increment cannot be decreased, a divergent solution is possible and the analysis will be terminated with an error message. This problem can be avoided by making the minimum time step size sufficiently small [DELTIM and NSUBST]. For implicit creep (Option = 1), there is no maximum creep limit by default. You can however, specify any creep ratio control.

Command(s):

CRPLIM

GUI: Main Menu> Solution> Unabridged Menu> Load Step Opts> Nonlinear> Creep Criterion

Note: If you do not want to include the effects of creep in your analysis, use the RATE command with Option = OFF, or set the time steps to be longer than the previous time step, but not more than 1.0e-6 longer.

8.6.3.2.2. Time Step Open Control

This option is available for thermal analysis. (Remember that you cannot perform a thermal analysis using the Solution Controls dialog box; you must use the standard set of ANSYS solution commands or the standard corresponding menu paths instead.) This option's primary use is in unsteady state thermal analysis where the final temperature stage reaches a steady state. In such cases, the time step can be opened quickly. The default is that if the TEMP increment is smaller than 0.1 in three (NUMSTEP = 3) contiguous substeps, the time step size can be "opened-up" (value = 0.1 by default). The time step size can then be opened continuously for greater solution efficiency.

Command(s):

OPNCONTROL

GUI: Main Menu> Solution> Unabridged Menu> Load Step Opts> Nonlinear> Open Control

8.6.3.2.3. Solution Monitoring

This option provides a facility to monitor a solution value at a specified node in a specified DOF. The command also provides a means to quickly review the solution convergence efficiency, rather than attempting to gather this information from a lengthy output file. For instance, if an excessive number of attempts were made for a substep, the information contained in the file provides hints to either reduce the initial time step size or increase the minimum number of substeps allowed through the NSUBST command to avoid an excessive number of bisections.

Command(s):

MONITOR

GUI: Main Menu> Solution> Unabridged Menu> Load Step Opts> Nonlinear> Monitor

Additionally, the NLHIST command allows you to monitor results of interest in real time during solution. Before starting the solution, you can request nodal data such as displacements or reaction forces at specific nodes. You can also request element nodal data such as stresses and strains at specific elements to be graphed. Pair-based contact data are also available. The result data are written to a file named Jobname.nlh.

For example, a reaction force-deflection curve could indicate when possible buckling behavior occurs. Nodal results and contact results are monitored at every converged substep while element nodal data are written as specified via the OUTRES setting.

You can also track results during batch runs. To execute, either access the ANSYS Launcher and select File Tracking from the Tools menu, or type nlhist120in the command line. Use the supplied file browser to navigate to your Jobname.nlh file, and select it to invoke the tracking utilty. You can use this utilty to read the file at any time, even after the solution is complete.

Command(s):

NLHIST

GUI: Main Menu> Solution> Results Tracking

Note: Results tracking is not available with FLOTRAN analyses.

8.6.3.2.4. Birth and Death

Specify birth and death options as necessary. You can deactivate [EKILL] and reactivate [EALIVE] selected elements to model the removal or addition of material in your structure. As an alternative to the standard birth

and death method, you can change the material properties for selected elements [MPCHG] between load steps.

Command(s): EKILL,

EALIVE

GUI: Main Menu> Solution> Load Step Opts> Other> Birth & Death> Kill Elements

Main Menu> Solution> Load Step Opts> Other> Birth & Death> Activate Elem

The program "deactivates" an element by multiplying its stiffness by a very small number (which is set by the ESTIF command), and by removing its mass from the overall mass matrix. Element loads (pressure, heat flux, thermal strains, and so on) for inactive elements are also set to zero. You need to define all possible elements during preprocessing; you cannot create new elements in SOLUTION.

Those elements to be "born" in later stages of your analysis should be deactivated before the first load step, and then reactivated at the beginning of the appropriate load step. When elements are reactivated, they have a zero strain state, and (if NLGEOM,ON) their geometric configuration (length, area, and so on) is updated to match the current displaced positions of their nodes. See the Advanced Analysis Techniques Guide for more information on birth and death.

Another way to affect element behavior during solution is to change the material property reference number for selected elements:

Command(s):

MPCHG

GUI: Main Menu> Solution> Load Step Opts> Other> Change Mat Props> Change Mat Num

Note: Use MPCHG with caution. Changing material properties in a nonlinear analysis may produce unintended results, particularly if you change nonlinear [TB] material properties.

8.6.3.2.5. Output Control

In addition to OUTRES, which you can set on the Solution Controls dialog box, there are several other output control options that you can set for an analysis:

Command(s): OUTPR,

ERESX

GUI: Main Menu> Solution> Unabridged Menu> Load Step Opts> Output Ctrls> Solu Printout

Main Menu> Solution> Unabridged Menu> Load Step Opts> Output Ctrls> Integration Pt

Printed output [OUTPR] includes any results data on the output file (Jobname.OUT).

Extrapolation of results [ERESX] copies an element's integration point stress and elastic strain results to the nodes instead of extrapolating them, if nonlinear strains (plasticity, creep, swelling) are present in the element. The integration point nonlinear strains are always copied to the nodes.

See "Loading" in the Basic Analysis Guide for more information on these options.

8.6.4. Apply the Loads

Apply loads on the model. See Structural Static Analysis in this guide and "Loading"in the Basic Analysis Guide for load information. Remember that inertia and point loads will maintain constant direction, but surface loads will "follow" the structure in a large-deformation analysis. You can apply complex boundary conditions by defining a one-dimensional table (TABLE type array parameter). See Applying Loads Using TABLE Type Array Parameters in this guide for more information.

8.6.5. Solve the Analysis

You solve a nonlinear analysis using the same commands and procedure as you do in solving a linear static analysis. See Solve the Analysis in Structural Static Analysis. If you need to define multiple load steps, you must respecify time settings, load step options, and so on, and then save and solve for each of the additional load steps. Other methods for multiple load steps - the load step file method and the array parameter method - are described in the Basic Analysis Guide.

8.6.6. Review the Results

Results from a nonlinear static analysis consist mainly of displacements, stresses, strains, and reaction forces. You can review these results in POST1, the general postprocessor, or in POST26, the time-history postprocessor.

Remember that in POST1, only one substep can be read in at a time, and that the results from that substep should have been written to Jobname.RST. (The load step option command OUTRES controls which substep results are stored on Jobname.RST.) A typical POST1 postprocessing sequence is described below.

8.6.6.1. Points to Remember

?To review results in POST1, the database must contain the same model for which the solution was calculated.

?The results file (Jobname.RST) must be available.

8.6.6.2. Reviewing Results in POST1

1.Verify from your output file (Jobname.OUT) whether or not the

analysis converged at all load steps.

?If not, you probably will not want to postprocess the results, other than to determine why convergence failed.

?If your solution converged, then continue postprocessing.

2.Enter POST1. If your model is not currently in the database, issue

RESUME.

Command(s):

/POST1

GUI: Main Menu> General Postproc

3.Read in results for the desired load step and substep, which can

be identified by load step and substep numbers or by time. (Note, however, that arc-length results should not be identified by time.)

Command(s):

SET

GUI: Main Menu> General Postproc> Read Results> load step

4.You can also use the SUBSET or APPEND commands to read in or merge

results data for selected portions of the model only. The LIST

argument on any of these commands lists the available solutions on the results file. You can also limit the amount of data written from the results file to the database through the INRES command.

Additionally, you can use the ETABLE command to store result items for selected elements. See the individual command descriptions in the Command Reference for more information.

5.

Caution: If you specify a TIME value for which no results are available, the ANSYS program performs a linear

interpolation to calculate the results at that value of

TIME. Realize that this interpolation usually causes some

loss of accuracy in a nonlinear analysis (see

Figure 8.20: Linear Interpolation of Nonlinear Results

Can Introduce Some Error). Therefore, for a nonlinear

analysis, you should usually postprocess at a TIME that

corresponds exactly to the desired substep.

6.Figure 8.20: Linear Interpolation of Nonlinear Results Can

Introduce Some Error

7.

8.Display the results using any of the following options:

Option: Display Deformed Shape

Command(s):

PLDISP

GUI: Main Menu> General Postproc> Plot Results> Deformed Shape

In a large deformation analysis, you might prefer to use a true scale display [/DSCALE,,1].

Option: Contour Displays

Command(s): PLNSOL or

PLESOL

GUI: Main Menu> General Postproc> Plot Results> Contour Plot> Nodal Solu or Element Solu

Use these options to display contours of stresses, strains, or any other applicable item. If you have adjacent elements with different material behavior (such as can occur with plastic or multilinear elastic material properties, with different material types, or with adjacent deactivated and activated elements), you should take care to avoid nodal stress averaging errors in your results. Selecting

logic (described in the Basic Analysis Guide) provides a means of avoiding such errors.

The KUND field on PLNSOL and PLESOL gives you the option of overlaying the undeformed shape on the display.

You can also contour element table data and line element data:

Command(s): PLETAB,

PLLS

GUI: Main Menu> General Postproc> Element Table> Plot Element Table Main Menu> General Postproc> Plot Results> Contour Plot> Line Elem Res

Use PLETAB to contour element table data and PLLS to contour line element data.

Option: Tabular Listings

Command(s): PRNSOL (nodal results)

PRESOL (element-by-element results) PRRSOL (reaction data)

PRETAB

PRITER (substep summary data), and so on. NSORT

ESORT

GUI: Main Menu> General Postproc> List Results> Nodal Solution Main Menu> General Postproc> List Results> Element Solution Main Menu> General Postproc> List Results> Reaction Solution

Use the NSORT and ESORT commands to sort the data before listing them.

Other Capabilities

Many other postprocessing functions - mapping results onto a path, report quality listings, and so on - are available in POST1. See The General Postprocessor (POST1) in the Basic Analysis Guide for details. Load case combinations usually are not valid for nonlinear analyses.

8.6.6.3. Reviewing Results in POST26

You can also review the load-history response of a nonlinear structure using POST26, the time-history postprocessor. Use POST26 to compare one ANSYS variable against another. For instance, you might graph the displacement at a node versus the corresponding level of applied load, or you might list the plastic strain at a node and the corresponding TIME value. A typical POST26 postprocessing sequence might follow these steps:

1.Verify from your output file (Jobname.OUT) whether or not the

analysis converged at all desired load steps. You should not base design decisions on unconverged results.

2.If your solution converged, enter POST26. If your model is not

currently in the database, issue RESUME.

Command(s):

/POST26

GUI: Main Menu> TimeHist Postpro

3.Define the variables to be used in your postprocessing session. The

SOLU command will cause various iteration and convergence

parameters to be read into the database, where you can incorporate them into your postprocessing.

Command(s): NSOL, ESOL, RFORCE

GUI: Main Menu> TimeHist Postpro> Define Variables 4.Graph or list the variables.

Command(s): PLV AR (graph variables) PRV AR

EXTREM (list variables)

GUI: Main Menu> TimeHist Postpro> Graph Variables Main Menu> TimeHist Postpro> List Variables Main Menu> TimeHist Postpro> List Extremes

Other Capabilities

Many other postprocessing functions are available in POST26. See "The Time-History Postprocessor (POST26)" in the Basic Analysis Guide for details.

See the NLGEOM, SSTIF, NROPT, TIME, NSUBST, AUTOTS, KBC, CNVTOL, NEQIT, NCNV, PRED, OUTRES, and SOLU command descriptions for more information.

8.6.7. Terminating a Running Job; Restarting

You can stop a nonlinear analysis by creating an "abort" file (Jobname.ABT). See "Solution" in the Basic Analysis Guide for details. The program will also stop upon successful completion of the solution, or if a convergence failure occurs.

You can often restart an analysis if it successfully completed one or more iterations before it terminated. Restart procedures are covered in Restarting an Analysis in the Basic Analysis Guide.

非线性静力分析程序课堂教程

非线性静力分析程序课堂教程 第八章非线性静力分析程序Nonlinear Static Analysis Procedures 8.1 简介 本章将介绍用于评估已建结构性能或者检验抗震设计得分析方法。本章结构如下: 8.1 简介 8.2 简化非线性分析方法 8.2.1 确定能力(推覆)的步骤 8.2.2 确定需求(位移)的步骤 8.2.3 检查(确定)性能(点)的步骤 8.2.4 其它事项 8.3 程序示例 8.4 其它分析方法 8.5 结构动力学初步 不同的分析方法,包括弹性(线性)和非弹性(非线性),都可以用于分析已有结构。弹性分析方法适用于包括规规定的静侧向力程序(code static lateral force procedures),动侧向力程序(code dynamic lateral force procedures)和用需求能力比的弹性方法(elastic procedures using demand capacity ratios)。最基础的非线性分析方法是完全非线性时程分析方法,这种方法目前被认为是过于复杂且不切实际。简化的非线性分析方法,即非线性静力分析方法,包括能力谱方法(capacity spectrum method CSM),使用能力(推覆)曲线&折减的反应谱曲线的交点来估计(预测)最大位移;位移系数方法(例如,FEMA-273(ATC 1996a)),使用推覆分析&一个改进的等效位移估计方法来估计最大位移;割线方法(例如,洛杉矶 95(COLA 1995)),使用替代结构&割线刚度来估计最大位移。 本文着重讲述通用(in general)非线性静力(分析)方法,重点是能力谱方法。该方法之前从未被详细介绍,它提供了独特且严格的处理位移增大和地震需求折减的方法(??It provides a particularly rigorous treatment of the reduction of seismic demand for increasing displacement)。位移系数方法被作为另一个备选方法将在本章进行简要介绍。这些方法将在8.2节进行详细介绍,在8.3节将给出一个实例。其它可用的分析方法将在8.4节进行讨论。 尽管一个弹性分析可以就结构弹性能力给出一个很好的指标并且可以显示何处将首先发生屈服,但是它不能预测机构破坏也无法计算构件屈服后的结构力重分布(?)。非弹性分析方法通过确认模型破坏和累积倒塌的可能性(the potential for progressive collapse)帮助我们演示结构实际中是如何工作的。使用非弹性

认知心理学重点整理资料讲解

学习指导: 第一章:绪论 1、认知心理学的定义 认知心理学有广义和狭义两种涵义广义的认知心理学主要探讨人类内部心理活动过程、个体认知的发生与发展,以及对人的心理事件、心理表征和信念、意向等心理活动的研究。 狭义的认知心理学,是以信息加工理论观点为核心的心理学,又被称为信息加工心理学。本书中的内容以狭义为 主。 认知心理学产生的背景及重要事件 : 1956 年是认知心理学发展史中最为重要的一年。1967年,美国心理学家奈塞尔出版了《认知心理学》的专著标志着认知心理学的建立。 1、在麻省理工学院的一次会议上,乔姆斯基提交了他关于语言学理论的论文。 2、米勒报告了短时记忆容量为 7 这一重要结果。 3、纽维尔和西蒙讨论了后来极富影响的”通用问题解决者”模型。 4、布鲁纳等从认知加工的观点考察了概念形成的规律。 5、人工智能也在 Dartmouth 会议上创立 3、认知心理学的两种研究取向 : 认知心理学的两大范式 1、符号操作系统范式(信息加工学说):1968 年 S.Paert 的专著《感知器》出版成为符号操作系统范式诞生的标志。 完整符号操作系统的六个功能: 符号(模式)具有双重属性:一是具有表征外部事物的功能;二是其自身具有物理或形式上的特征,可以标志信息加工的操作。 一个完整的符号操作系统应该具有以下六种功能: 第一种功能,输入符号(输入)。 第二种功能,存储符号(存储)。 第三种功能,建立符号结构。 第四种功能,条件性迁移(条件传递)。 第五种功能,复制符号(复制)。 第六种功能,输出符号(输出)。 由符号操作系统范式得出三点推论 第一个推论,既然人具有智能,它就一定是一个完整的符号操作系统。第二个推论,既然计算机是一个完整的符号操作系统,它就能够表现出某种智能。第三个推论,既然人是一个完整的符号操作系统,计算机也是一个符号操作系统,那么,就能够用计算机来模拟人的认知活动过程。 2、联结主义范式(联结主义学说):20世纪80年代,联结主义范式逐渐形成,并对信息加工的认知心理学理论及其相关的元理论提出了许多不同看法。 联结主义认为,人类的认知活动的本质在于神经元之间的联结强度,以及它们之间不断发生的动态变化,即对信息进行的是并行分布的加工处理,这种联结与处理是连续变化的模拟计算,它不同于对物理符号的模拟计算。 联结主义理论模型有以下部分组成: 一组单元。亦称节点、认知单元、处理单元。激活状态。联结模式。节点激活规则。节点输出功能。学习规则。根 据以上联结主义理论的假设,可以概括出它所具有的四个明显的特点:内在并行性、分布式处理、容错性和自适应 性。 第二章:认知心理学的研究方法 1、反应时法在认知心理学研究中的地位: 一、涵义 反应时是指刺激作用于有机体后到其作出明显反应所需要的时间,即刺激与反应之间的时间间隔;又称为有机体反应潜伏期,

心理学复习提纲(第三章-认知过程)

心理学复习提纲(第三章-认知过程)

《心理学》公共课复习提纲 第二章认知过程 关键术语 认知:人脑反映客观事物的特性和联系,并揭露事物对于人的意义与作用的心理活动。现代心理学中的认知主要是指高级的认识过程,包括感觉、知觉、注意、记忆、思维、言语等。 感觉:是人脑对直接作用于感觉器官的客观事物个别属性的反映。 感受性:是指人对刺激物的感觉能力。 感觉阈限:是人感到某个刺激存在或刺激发生变化所需刺激强度的临界值。 绝对感觉阈限:刚刚能够引起感觉的最小刺激量叫绝对感觉阈限。人对这种最小刺激量的感觉能力叫绝对感受性。 差别感觉阈限:那种刚能引起差别感觉的两个刺激之间的最小差异量称为差别感觉阈限。觉察刺激之间微弱差别的能力称为差别感受性。 韦伯定律:19世纪德国生理学家韦伯发现,在一个刺激能量上发现一个最小可觉察的感觉差异所需要的刺激变化量与原有刺激能量的大小有固定的比例关系。这个固定比例对不同感觉是不同的,用K表示,通常称为韦伯常数或韦伯比率。 知觉:是人脑对直接作用于感觉器官的客观事物的各个部分和属性的整体的反映。 注意:是心理活动(意识)对一定对象的选择和集中。具有两种基本特征:选择性和集中性。 不随意注意(无意注意):是指没有预定目的、也不需要意志努力的注意。 随意注意(有意注意):是指有预定目的、需要一定意志努力的注意。 随意后注意(有意后注意):有预定目的、不需要意志努力的注意。 注意的广度:也称注意的范围,是指一个人在同一时间内清楚地观察到对象的数量。 注意的稳定性:是指注意保持在某一对象或某一活动上的时间久暂特性。 注意的起伏:注意短时间内周期性地不随意跳跃现象称为注意的起伏。 注意分散:是指注意不自觉地离开当前应当完成的活动而被无关刺激所吸引。 注意分配:是指人在进行两种或多种活动时能把注意指向不同对象的现象。 注意的转移:是指人有意地把注意从一个对象转移到另一个对象上,或从一种活动转移到另一种活动上。 记忆:是在头脑中积累、保存和提取个体经验的心理过程。

心理学《认知学习的过程》归纳总结

第二节认知学习的过程 认知心理学的学习理论 认知理论将学习的过程概念化,探讨信息是如何接收、组织、贮存和提取的,并探讨学习者内部心理结构的性质以及它们是如何变化的。 以过程为中心的教学方法 学习过程(learning process)可看作是信息的收集、加工、贮存和在需要时提取出来加以运用的过程。 学习过程涉及:刺激-> 感觉记忆-> 注意-> 知觉-> 短时记忆-> 长时记忆 认知学习的信息加工模型 认知学习过程 一、早期加工二、短时记忆三、长时记忆四、元认知 早期加工 一)感觉记忆 ?进入视线的=知觉的? ?进入视线的>知觉的? 感觉记忆的性质 ★感觉记忆也称瞬时记忆、感觉登记,是感觉刺激停止后所保持的瞬间映像,是记忆系统的开始阶段。 ★信息保存时间非常短暂,大约0.25-2s,大部分迅速消退。如果延迟回忆,成绩迅速下降。★是一种原始的感觉形式,是记忆系统在对外界信息进行进一步加工之前的暂时登记。 ★容量较大,但只有一部分信息进入短时记忆。 二)注意注意是心理活动或意识对一定对象的指向和集中。 特点:指向性集中性 注意的品质注意的稳定性;注意的选择性;注意的广度;注意的分配;注意的转移 注意的稳定性(持续性注意)指注意在一定时间内保持在某个认识的客体或活动上。 注意的选择性个体在同时呈现的两个或两个以上的刺激中选择一种进行注意,而忽略另外的刺激 注意的广度

注意的分配个体在同一时间对两种或两种以上的刺激进行注意,或将注意分配到不同的活动中。 注意的转移 ?注意离开了当前应当指向和集中的对象,而把注意指向于其他的对象上。 ?注意的分散(分心) 由无关刺激的干扰或单调刺激的长期作用引起的,使人发生兴趣的或强烈地影响情绪的刺激也会引起注意分散。 注意的类型: ?无意注意(不随意注意):事先没有预定的目的、也不需要作意志努力的注意。 ?有意注意(随意注意):有预定目的、需要做一定的意志努力的注意。 ?有意后注意:有目的,但不需要做意志努力的注意【无意注意转化为有意注意】。注意规律在教学中的应用: ?正确运用无意注意规律组织教学【避免分散注意、内容丰富、生动活泼】 ?运用有意注意规律进行教学【加深理解、了解任务、自我提醒、和命令、智力与外部活动结合】 ?根据不同年龄学生的注意发展特点组织教学 ·吸引注意的策略 (三)知觉学习者对从感觉记忆中获得刺激信息附加意义的加工,是客观事物直接作用于感官而在头脑中产生的对事物的整体的认识。 知觉的特征:对象性/选择性、整体性、理解性、恒常性、适应性 一、选择性/对象性 二、整体性(组织性) 知觉的对象有不同的属性,由不同的部分组成,但我们并不把它感知为个别孤立的部分,而总是把它知觉为一个有组织的整体。 三、理解性 人在知觉过程中,不是被动地把知觉对象的特点登记下来,而是以过去的知识经验为依据,力求对知觉对象作出某种解释,使它具有一定的意义 四、恒常性 当知觉对象的刺激输入在一定范围内发生了变化的时候,知觉形象并不因此发生相应的变化,而是维持恒定。 五、适应性 当视觉输入发生变化时,我们的视觉系统能够适应这种变化,使之恢复到变化前的状态。 ?斯特拉顿的研究 错觉指人在特定条件下对客观事物必然产生的某种有固定倾向的受到歪曲的知觉 感觉记忆向短时记忆的转换 ?感觉记忆中只有能够引起个体注意并被及时识别的信息,才有机会进入短时记忆。 ?与长时记忆无关的或者没有受到注意的信息,在感觉记忆中很快就消失了。 短时记忆 又称工作记忆,是我们当前能意识到的记忆,包含正在思考和操作的信息(20s-1min),短时记忆里的信息来自于感觉记忆和长时记忆,是信息从感觉记忆到长时记忆之间的一个过渡环节。 短时记忆的容量 短时记忆的容量是7±2个组块 组块(chunk)是指人们在过去经验中已变得相当熟悉的一个刺激独立体。

【结构设计】学习静力弹塑性分析方法总结

学习静力弹塑性分析方法总结 静力弹塑性分析(Push-over)方法最早是1975年由Freeman等提出的,以后虽有一定发展,但未引起更多的重视.九十年代初美国科学家和工程师提出了基于性能(Performance-based)及基于位移(Displacement-based)的设计方法,引起了日本和欧洲同行的极大兴趣,Push-over方法随之重新激发了广大学者和设计人员的兴趣,纷纷展开各方面的研究.一些国家抗震规范也逐渐接受了这一分析方法并纳入其中,如美国ATC-40、FEMA-273&274、日本、韩国等国规范.我国2001规范提出“弹塑性变形分析,可根据结构特点采用静力非线性分析或动力非线性分析”,这里的静力非线性分析,即主要即是指Push-over分析方法. 1、Push-over方法的基本原理和实施步骤 (1)基本原理 Push-over方法从本质上说是一种静力分析方法,对结构进行静力单调加载下的弹塑性分析.具体地说即是,在结构分析模型上施加按某种方式模拟地震水平惯性力的侧向力,并逐级单调加大,构件如有开裂或屈服,修改其刚度,直到结构达到预定的状态(成为机构、位移超限或达到目标位移).其优点突出体现在:较底部剪力法和振型分解反应谱法,它考虑了结构的弹塑性特性;较时程分析法,其输入数据简单,工作量较小. (2)实施步骤 (a)准备结构数据:包括建立结构模型、构件的物理参数和恢复力模型等; (b)计算结构在竖向荷载作用下的内力(将与水平力作用下的内力叠加,作为某一级水 平力作用下构件的内力,以判断构件是否开裂或屈服);

(c)在结构每层的质心处,沿高度施加按某种分布的水平力,确定其大小的原则是:水平力产生的内力与(b)步计算的内力叠加后,恰好 使一个或一批件开裂或屈服; (d)对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服; (e)不断重复(c)、(d)步,直到结构达到某一目标位移(对于普通Push-over方法)、或结构发生破坏(对于能力谱设计方法). 2、Push-over方法研究进展 (1)Push-over方法对结构性能评估的准确性 许多研究成果表明,Push-over方法能够较为准确(或具有一定的适用范围)反映结构的地震反应特征.Lawson和Krawinkler对6个 2~40层的结构(基本周期为0.22~2.05秒)Push-over分析结果与动力时程分析结果比较后,认为对于振动以第一振型为主、基本周期在2秒以内的结构,Push-over方法能够很好地估计结构的整体和局部弹塑性变形,同时也能揭示弹性设计中存在的隐患(包括层屈服机制、过大变形以及强度、刚度突变等).Fajfar通过7层框剪结构试验结果与Push-over方法分析结果的对比得出结论,Push-over方法能够反映结构的真实强度和整体塑性机制,因此适宜于实际工程的设计和已有结构的抗震鉴定.Peter对9层框剪结构的弹塑性时程分析结果与Push-over方法分析结果进行了对比,认为无论是框架结构还是框剪结构,两种方法计算的结构最大位移和层间位移均很一致.Kelly考察了一幢17层框剪结构和一幢9层框架结构分别在1994年美国Northridge地震和1995年日本神户地震中的震害,并采用Push-over方法对两结构进行分析,发现Push-over方法能够对结构的最大反应和结构损伤进行合理地估计.Lew对一幢7层框架结构进行了非线性静力分析和非线性动力分析,发现非线性静力分析估计的构件的变形与非线性动力分析多条波计算结果的平均值大致相同.笔者曾对6榀框架(层数为3~16,基本周期为0.59~2.22秒)进行了Push-over分析与动力时程分析,发现两

静力非线性方法用于桥梁高墩抗震性能分析

鬈碧攀,i背№㈣。,。,civ玑惫惫蕊。薷a}蕊煮i三蒜en。a。En舯。甜ngV丧i4裟.2520l2年10月JournalofCivil,Architectural&?EnVlronmentalEnglneerlng【)c‘?2ulz一一=———=———!————————#———=————!———=———!——————————!doi:10.3969厂j.issn.1674—4764.2012.05.007静力非线性方法用于桥梁高墩抗震性能分析李正英8b,党朋朋8,李竞涛8(重庆大学a.土木工程学院Ib.山地城镇建设与新技术教育部重点实验室,重庆400030)摘要:高墩桥梁由于结构本身的特点,墩高使得高阶振型的影响更明显,笔者基于“等效振型高度,,的概念对通常采用的MPA(ModalPushoverAnalysis)方法提出改进,并采用几种不同侧向力分布模式的Pushover以及动力时程分析对桥梁单墩进行对比分析,以研究改进的MPA法应用于桥梁高墩抗震性能分析的计算精度和有效性。分析结果表明,当地震动强度较小时,MPA法和改进MPA法可以较好的改善计算结果;随着地震动强度的增大,改进MPA法的计算精度优于MPA法。关键词:高墩;抗震性能;静力非线性分析;等效振型高度中图分类号:TU352.1;U448.22文献标志码:A文章编号:1674—4764(2012)05—0042一08ApplicationofPushoVerMethodtoSeismicPerformanceEValuationofTallPiersforBridgeLfZnengyfng。~,DANGPengpeng。,LfJ加gfa。。(a.Faculcy。fCivilEngmeering;I).KeyI,aborat。ry。fNewTechnol()gyf()rCostructionofCitlesinMountajnA。ea,MinistrvofEducation,Chong(1ingUniverslty,Chongqing400030,f’.R.(’hina)Abstract:Forbridgewithtal【piers,thcinfluenceofhighermodesonstructuralrcsponsesbec。mesm。reevident.ModifiedMPAmethod(MMPA)whichisbascdonMPAtheoryandthcconcepto{“equlValentmodeheight’’ispresented.ToverifytheeffectiVenessandthedegreeo{accuracyoithlsmethod,seVeralPushovermethodsincludingMPAandMMPAnlethodswercadoptedtoanalyzeta¨plerstorbrldge_andthencomparestheresultswiththatindynamictimchistoryanalyshItissh。wnthatMPAandMMPAmethodscanimprovec。mputati。nalaccuracyc。mparingwithothern。rmalPushoVermethodswhenselsmlcintensitvislower,whereasthecomputationalaccuracyforMMPAmetllodsissuperiort。thatinMPAanalyslswiththeseismicintensitybecominglarger.Kevwords:tallpier;seismicperformance;nonlinearstatlcanalysls;equlVaientmodehelgh‘非线性静力分析(Pushover)法是一种简化的非线性地震反应评估方法,其基本原理是:在结构分析模型上施加按某种方式分布的侧向荷载模拟地震作用下的侧向分布力.并逐级按比例增大,直到结构达到预定的状态(位移超限或位移达到目标位移),然后评估结构的性能。它提供了一种评估结构地震反应尤其是非线性地震反应的简单而有效的方法,因此Pusl、over分析法为各国规范所接受,中国建筑结构抗震设计规范也引入了PushoVer分析方法。1。Push。ver分析方法中,侧向荷载的分布模式直接影响分析结果,目前规范常用的侧向荷载分布模式有均匀分布荷载、倒三角荷载、一阶振型荷载等?收稿日期:20ll一11—29基金项目:国家自然科学基金资助项目(50908245);重庆市自然科学基金(csTC,20¨BB6072);中央高校基本科研业务费(CDJZRll200005)作者简介:李正英(1975一),女,博士,副教授,主要从事结构工程和工程振动控制研究,(E—mail)1izhengy@)rah。。?co“?。“。万方数据

心理学认知发展与教育

心理学第二章认知过程 第一节注意 一、注意概述: 注意是心理活动或意识对一定对象的指向和集中;特点:指向性和集中性 功能:选择功能;保持功能;调节和监督功能。 分类:(1)无意注意(不随意注意):没有预定目的、无需意志努力、不由自主地对一定事物所发生的注意;发生条件:客观条件是刺激物本身的特点(强度、对比关系、活动和变化、新异性);主观条件是人本身的状态(需要、情绪、兴趣等) (2)有意注意(随意注意):有预定目的、必要时需要意志努力、主动地对一定事物所发生的注意。维持条件:加深对目的任务的理解;合理组织活动;对兴趣的依从性;排除内外因素的干扰。 (3)有意后注意(随意后注意):特殊形式,有自觉目的,但不需要一直努力的注意。形成的条件:个体对活动浓厚的兴趣;活动的自动化。 二、注意的品质: (一)注意的广度(注意的范围):指在同一时间内,人们能够清楚地知觉出的对象的数目。与被知觉对象的特点有关;与人们当时的知觉任务有关;主要取决于个人已有知识经验。 (二)注意的稳定性:注意保持在某一对象或某一活动上的时间长短特性。 影响因素:注意对象的特点;有无坚定目的;个人的主观状态 短时间内注意周期性地不随意跳跃现象称为注意的起伏(注意的动摇)。 (三)注意的分配:在人进行两种或多种活动时能把注意指向不同对象的现象。主要有三种情况:(1)在同时进行的两种活动中,必须有一种是已经熟练的;(2)同时进行的几种活动都已熟练;(3)几种不同的活动已成为一套统一的组织。 (四)注意的转移:根据新的任务,主动地把注意从一个对象转移到另一个对象或由一种活动转移到另一种活动的现象。影响注意的转移快慢难易的条件:(1)原来注意的强度;(2)新的注意对象的特点;(3)大脑皮层神经兴奋和抑制过程相互转换的灵活性;(4)各项活动的目的性或第二信号系统的调节作用。 三、注意规律在教学中的运用 (一)根据注意的外部表现了解学生的听课状态; (二)运用无意注意的规律组织教学: 1.创造良好的教学环境:(1)教师应该注意教室外环境对课堂的干扰;(2)注意教室内的环境(干净、整齐、装饰简洁朴素);(3)教师的服饰、发型不宜过于耀眼;(4)在教学过程中要迅速妥善的处理偶发事件。 2.注重讲演、板书技巧和教具的使用:(1)教学过程中,教师应该音量适中,语音语调抑扬顿挫,重难点加强语气,配合手势表情;(2)板书是课堂教学的重要辅助手段,要运用有度,重点突出,必要时运用彩色笔、图和表格加以强调;(3)借助教具吸引学生 3.注重教学内容的组织和教学形式的多样化; 4.教师应该运用多种教学方法和灵活多样的教学手段。 (三)运用有意注意的规律组织教学: (四)1.提高活动的目的性;2.激发学习动机;3.训练良好的注意习惯; (五)运用无意注意和有意注意相互交替的规律组织教学活动 第二节感觉与知觉 一、感觉:人脑对直接作用于感觉器官的客观事物的个别属性的反映。

静力非线性分析pushover

pushover分析 2011-07-08 20:03:25| 分类:默认分类|举报|字号订阅 SAP2000高级应用: 1.基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具, 得到了重视和发展。 这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。 第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式; 第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应, 目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理 论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移 和结果评价的内容。本文中,将两方面的内容统称为“Pushover分析”。 基于结构行为设计使用Pushover分析可以得到能力曲线,并确定结构近似需 求谱与能力曲线的交点。其中需求曲线是基于反应谱曲线,能力谱是基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表 征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析) ■ 简介 Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算

非线性静力学分析

设置求解控制选项 Sol’n Options选项卡 1.程序选择求解器(Program Chosen Solver):ANSYS将根据求解问题的领域自动选择一个求解器。 2.稀疏矩阵直接求解器(Sparse Direct):对线性分析、非线性分析、静力分析,以及完全瞬态分析均可。 3.预条件共轭梯度求解器(Pre-Condition CG或PCG):对于大模型和巨型结构推荐使用。 4.自动迭代求解器(Iterative):只适用于线性静态/完全瞬态结构分析,或稳态温度分析。 5.波前直接求解器(Frontal Direct)。 根据以下几条准则选择稀疏矩阵求解器和PCG求解器来进行非线性机构分析 (1)对于包含梁或者壳的模型(有无实体单元均可),选择PCG 求解器。 (2)对于三维实体模型并且自由度数偏多(如200000或者更多),选择PCG求解器。 (3)如果矩阵方程的条件数很差,或者是模型不同区域的材料性质差别很大,或者是没有足够的约束条件,选择稀疏矩阵求解器。Nonlinear选项卡 1.线性搜索:Line Search。默认时,ANSYS程序会自动打开或者关闭线性搜索。对于多数接触问题,线性搜索自动打开“LNSRCH,

ON”;对于多数非接触问题,线性搜索自动关上“LNSRCH,OFF”。 2.DOF求解预测器:DOF solution predict。如果没有梁或壳单元,默认情况下,预测校正选项是打开的“PRED,ON”。如果当前子步的时间步长缩短很多,预测校正会自动关上。对于瞬态分析,预测校正也自动关上。 3.每个子步的最大迭代次数。选择菜单Maximum number of iterations,ANSYS程序默认设置方程最大迭代步数“NEQIT”为15~26,其准则是缩短时间步长以减少迭代步数。 4.选中“Creep Option”下的复选框用来包括蠕变计算。Advanced NL 选项卡 Advanced NL选项卡的选项一般不需要对此进行设置。 设置其他求解控制选项 1.应力刚化效应 如果确信忽略应力刚化对结果影响不大,可以设置关掉应力刚化(SSTIF,OFF),否则应该打开。 命令方式:SSTIF GUI方式:Main Menu-Solution-Unabridged Menu-Analysis Type-Analysis Options 2.Newton-Raphson选项 ANSYS通常选择全牛顿-拉普森方法,关掉自适应下降选项。但是,对于考虑摩擦的点-点接触、点-面接触单元,通常需要打开自适

认知心理学名词解释整理

认知心理学名词解释 认知心理学;认知心理学是研究人的高级心理活动过程的学科,即研究人接受、编码、操作、提取和利用知识的过程,这个过程包括知觉、语言、智能、表象、思维、推理、问题解决、概念形成和创造性。广义的认知心理学主要探讨人类内部的心理活动过程、个体认知的发生与发展,以及对人的心理事件、心理表征和信念、意向等心理活动的研究。狭义的认知心理学是以信息加工理论观点为核心的心理学,又称为信心加工心理学。 信息加工理论:20世纪50年代末、信息论、控制论、系统论推动了信息加工理论,用计算机对信息的输入、存储、加工过程来解释人的认知过程的理论。 信息装置:即把人视为一个接受信息、加工和处理信息的传递装置。 信息编码:即一套信息加工的特殊规则。(它把消息、信号、符号或事物的状态,理解为是由一种形式转换成另一种形式,由一种能量媒介物转换成另一种能量媒介物,或由一种物理状态转换成另一种物理状态的过程。) 通道容量:即在一定时间内一个通道所能传递的信息的有限性或极限性。 符号操作系统范式;符号操作系统范式(象征的系统)在认知心理学领域又被称为“信息处理模型”、“符号处理模型”、“串行处理模型”等。1968年佩泊特出版《感知器》成为符号操作系统范式诞生的标志。符号操作系统范式把人看作一个“信息处理系统”,或者称作“符号操作系统”。代表人物纽韦尔和西蒙等人。 符号:就是模式,任何一个模式只要它能和其他模式相区别,它就是一个符号。 信息加工系统:是指能够接收、存储、处理和传递信息的系统。由记忆装置、加工器、效应器和接受器组成。 联想记忆;安德森和鲍威尔提出:首先分析简单的命题句子,并把分析后的句子输入到存储器中保持,当出现新句子时,调动已经存储在“网络知识库”中的信息来回答或解决问题。 适应性控制;即思维的适应性控制。安德森提出的有关一般性知识存储的认知模型,用程序来说明知识的组织和表象概念的激活过程,并对陈述性知识和程序进行区分。 联结主义范式:20世纪80年代兴起,联结主义认为,人类的认知活动的本质在于神经元之间的联结强度,以及它们之间不断发生的动态变化,即对信息进行并行分布式的加工处理,这种联结与处理是连续变化的模拟计算。其实质是用数学与计算模型的说明人类心智的过程与特点。 通用问题解决程序;由纽韦尔和西蒙设计,采用启发式程序,用“手段一目标分析”方式,把问题的解决程序通过提出一些子目标的办法一步一步地缩小初始状态和最终目标状态之间的差异,最后解决问题。 计算机隐喻是指把计算机作为人脑功能的一种心理模型,从中引申出人的认知过程或心理活动是一种“计算”的观念。 抽象分析方法:又称为会聚性证明法,是指采用人与计算机之间的功能类比,并以其他实验分析为辅助,通过结合与抽象,以推理、判断的方式得出结论的研究方法。 计算机模拟方法:指用计算机来模拟、检验、发现人的认知活动及其行为表现的规律的研究方法。 流程图式是指以作业图或信息流程图的形式表示人的心理活动,并以此分析人的信息加工过程的研究方法。 信息加工流程模式:由于认知心理学把人视为计算机式的信息加工系统,因此经常采用流程图的方式来分析与概括人的信息加工过程,它是一种简明、扼要地说明人的心理上活动过程的具体方法。(图例39)

静力弹塑性分析方法

静力弹塑性分析方法(pushover法)的确切含义及特点 结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。 静力弹塑性分析方法,是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,从本质上说它是一种静力分析方法。具体地说,就是结构计算模型上施加按某种规则分布的水平侧向力,单调加载并逐级加大;一旦构件开裂(或屈服)即修改其刚度(或使其推出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),从而判断是否满足相应的抗震能力要求。 静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为: 第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等; 第二步:计算结构在竖向荷载作用下的内力。 第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。 第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服; 不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。 对于结构振型以第一周期为主、基本周期在2s以内的结构,pushover方法能够很好地估计结构的整体和局部弹塑性变形,同时也能揭示弹性设计中存在的隐患(包括层屈服机制、过大变形以及强度、刚度突变等)。 在实际计算中必须注意一下几个问题: (1)、计算模型必须包括对结构重量、强度、刚度及稳定性有较大影响的所有结构部件。 (2)对结构进行横向力增量加载之前,必须把所有重力荷载(恒载和参加组合的活荷载)施加在相应位置。

普通心理学:意志与认识过程情感过程的关系

普通心理学:意志与认识 过程情感过程的关系 The Standardization Office was revised on the afternoon of December 13, 2020

一、意志与认识过程的关系 认识过程是意志产生的前提和基础。首先,意志的重要特征是具有自觉目的性,而人们只有在认识了客观事物的发展规律,并运用规律去改造客观世界时,才能确定行动目的,并选定实现目的的计划和方法。列宁说:“人的目的是客观世界所产生的,是以它为前提的。”若没有对客观世界的认识,意志行动也无从产生。其次,意志行动还要随形势的变化不断调整,这也需要通过认识活动把握事态发展,分析主客观条件,以决定是加速意志行动过程,还是调整意志行动的进程和方向。再次,意志行动是与克服困难相联系的,而对困难性质和大小的估计,是离不开认识过程的。如果对困难的性质认识不清,严重性估计不足,就可能使人盲目地采取行动,付出了很多的意志努力却事与愿违,半途而废。 意志对认识过程也会产生重要影响。人对外部世界的认识活动,总是有目的、有计划的,离不开精细的观察、持久的注意和专注的思考,没有意志的参与,这些都是无法做到的。另外,在认识过程中常常还会遇到各种困难,要克服这些困难,也需要意志的努力。在认识过程中,一些意志薄弱、不能做到坚持不懈的人,学习和工作也缺乏成效,不能承担复杂而艰巨的任务。 二、意志和情感过程的关系 首先,情感过程推动或阻碍着意志行动的实现。积极的情感可以使人斗志旺盛,对人的行动起促进作用;消极的情感则会削弱人的斗志,阻碍人的意志行动的实现。热爱教育事业的教师会含辛茹苦,几十年如一日地投身于教育教学工作中;不热爱教育事业的教师则会不思进取,对教育教学敷衍了事,最后可能不得不离开教育岗位。当前很多家长强迫自己的孩子去学音乐或练体操,孩子以一种“不乐意”的情绪被迫去学,缺乏主动积极的意志活动的参与,结果是可想而知的。 其次,意志对情感也具有调节作用。良好的意志品质可以控制不良情绪的影响,保持积极乐观的心境。我们说“理智战胜情感”,也是指在理智认识的基础上靠意志的力量去克服和抑制不合理智的情感。《三国演义》中诸葛亮不念师友之情,挥泪斩马谡;一个得悉亲人遭遇不幸的演员强忍悲痛,按时登台表演,都是意志对情感直接控制的例子。反之,意志薄弱的人常常受情感左右,或者是一次失败就情绪低落,一蹶不振,或者是难以控制不良情绪,导致背离理智的冲动行为。

ANSYS非线性分析:4-非线性分析方法

第四章非线性有限元方程的解法 结构分析问题转化为代数方程组,线性静力问题化为线性代数方程组,非线性静力问题化为非线性方程组。线性代数方程组的解法有高斯消去法、三角分解法、 非线性问题多种多样,但计算方法大同小异,无论材料非线性问题还是几何非线性问题,经过离散后,都归结为解一个非线性方程组。本章以截面非线性分析为例,说明如何求解非线性方程问题。 对于应力-应变关系为线性关系的问题,截面(单元)刚度是常量。当混凝土、钢筋材料的应 Dδ。力-应变关系为非线性时,截面(单元)刚度矩阵不是常数,而与截面应变平面值有关,记为() δδ-=。求解非线性问题的方法可分为3类:此时,截面平衡方程是非线性方程组:[]{}{} ()0 D P 增量法(显式求解)、迭代法(隐式求解法或全量迭代法)、混合法(增量迭代法)。 §4.1 非线性方程组求解的增量法 基本思路:分段线性化,将荷载分成很多小步,逐步施加。 增量法也称为显式求解法。增量法将荷载分成若干增量,每次施加一个荷载增量;假设每一个荷载增量段内(截面或结构)刚度矩阵是常量(线性的);在不同荷载增量段内(截面或结构)刚度可以变化,与当时应力-应变关系(或位移状态)相对应。增量法实质上是用一系列线性解去逼近非线性问题,即用分段线性折线替代非线性曲线。 增量法把荷载划分成许多荷载增量,增量的值可以相等,也可以不等。

具体操作方法:压弯构件截面平衡方程的增量矩阵表达式, 1 100000 1220031 1A A A S S I A S d d d d C 2C S J J I S J d d d d A A n n si si i i i s n n si i si i i i y N E M y y εφεφεεεεφ εφφφφ====?? ??++?????? ?????? ++=??????????????++?????????????????? ∑∑∑∑ 或 []{}{}()d d t D P δδ= 或 011122122d d d d t t y y t t N d d M d d εφ??????=?????? ?????? 式中,{}[]T 0d d d δε φ=——截面增量应变平面;{}[]T d d d P N M =——截面力增量; []()t D δ—刚度矩阵,弹性结构=常量,非线性问题是变量,随截面应变平面的变化而变化。 用截面平衡方程的增量形式[]{}{}()d d t D P δδ=说明增量法的过程。因为非线性问题截面刚度 []()t D δ是应变平面{}d δ的函数。反过来,当前的截面应变平面{}δ又是过去许多{}d δ的总和。当 前的[]()t D δ称为切线刚度,用来计算下一步的{}d δ。然后修改{}δ,再修改[]()t D δ,并准备作下一步计算。这样,就用一系列直线段近似的描述了截面力与应变平面的关系曲线。因此,非线性分析以线性分析理论为基础。 4.1.1 直接增量法(尤拉折线法) 用多段折线模拟曲线。 设荷载为m 级增量, ∑=?=m i i P P 1 第i 级荷载增量产生位移增量: i δ?

认知加工心理学

认知加工心理学

————————————————————————————————作者:————————————————————————————————日期: ?

信息加工认知心理学兴起的历史背景 作者:佚名文章来源:转载点击数:316 更新时间:2007-6-21 信息加工认知心理学集中于认知过程的研究,与认知理论有着密切的联系,自然也和其他心理学思想一样源远流长。古希腊学者柏拉图和亚里士多德等人对认识的起源及其性质的探讨,并针对记忆和思维等问题阐发的不同观点,是认知问题研究的哲学渊源。近代哲学心理学思想上的经验论与唯理论之争,对现代认知心理学家产生了间接的影响。 但是,信息加工认知心理学作为一种新的研究方向却是近三十余年的事情:一般认为,1967年美国心理学家奈塞所著的《认知心理学》一书的问世,标志着信息加工认知心理学正式作为一个学派而立足于西方心理学界,成为当代西方心理学的两大主流(另一个是人本主义心理学)之一。信息加工认知心理学的兴起,既有心理学的内部原因,也有相邻学科影响和促进的外部原因。 信息加工认知心理学的产生与以往各心理学派别有着广泛的联系。具体如下: 1.信息加工认知心理学与早期实验心理学信息加工认知心理学与冯特时代的德国早期实验心理学的关系是比较密切的。 信息加工认知心理学继承和发展了早期实验心理学的研究课题。冯特借鉴了自然科学的研究方法,于1879年在德国莱比锡大学建立了世界上第一个心理学实验室,并对感知觉、反应、注意等问题进行了卓越的实验研究。现代认知心理学继承和发展了早期实验心理学这一研究传统,例如,反应时的实验便是现代认知心理学研究的主要课题之一。因此,有些心理学家认为现代认知心理学是实验心理学在推翻行为主义的统治后向早期实验心理学的回归。这种看法是有一定道理的。 信息加工认知心理学批判性地改造了内省的方法。早期实验心理学把依赖于主体的直接经验作为心理学的研究对象,提倡实验加内省的方法。为此,曾受到其它心理学派猛烈的抨击。但信息加工认知心理学家却不以为然,在批判和改造内省法的基础上,又提出了“口述报告法”或“出声 思考法”,即要求被试通过原始性的口头陈述来报告思考时内部信息加工,特别是短时记忆中的内容。信息加工认知心理学家内克森、西蒙等人对口述报告的记录采用了多种分析技术,在认知研究方面取得了一定的成就。 2.信息加工认知心理学与格式塔学派由于格式塔心理学派强调意识的整体性,通过许多实验,对知觉问题进行了大量的研究,所以对信息加工认知心理学也产生了一定的影响。 信息加工认知心理学强调了研究的整体性和心理的内部机制。 3.信息加工认知心理学与行为主义学派信息加工认知心理学是反对行为主义的一场革命,行为主义的衰落、心理主义的回归的确是促进信息加工认知心理学兴起的内部原因。但我们也应该看到,信息加工认知心理学从研究对象上是对行为主义的否定,从方法上是对行为主义的深化。尤其是对那些放弃了极端观点的新行为主义,信息加工认知心理学史是继承多于批判。 从研究方法来看,信息加工认知心理学继承和发展了行为主义研究方法的客观化原则,尽可能地使心理过程的探讨保持操作性,以期体现出客观性。正因为这样,信息加工认知心理学在刺激(S)→中间变量(O)→反应(R)的模式的基础上提出了输入、内部信息加工→输出这样一个与计算机的操作相类似的认知模式。可以说,在研究方法上,信息加工认知心理学是对行为主义的深化。 从理论观点来看,新行为主义者托尔曼所倡导的目标-对象手段的整体行为观和带有认知综合特征的目的行为主义对信息加工认知心理学的兴起产生了一定的影响。信息加工认知心理学家罗

相关主题