搜档网
当前位置:搜档网 › 第6章 气体动理论习题解答

第6章 气体动理论习题解答

第6章 气体动理论习题解答
第6章 气体动理论习题解答

第6章习题解答

6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ]

A. /pV m .

B. /p V k T . C . /pV RT . D. /pV mT .

6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等.

6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ]

A .压强相等,温度相等.

B .温度相等,压强不相等.

C .压强相等,温度不相等.

D .压强不相等,温度不相等.

6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ]

A. k ε相等,而ε不相等.

B. ε相等,而k ε不相等.

C .

ε和k ε都相等.

D.

ε和k ε都不相等.

6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ]

A. 2x =v

B. 2

x =

v C . 23x kT m =v . D. 2

x kT m =v .

6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则

2

1

21

()d 2

m Nf υυ

?v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.

C . 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之和. D. 速率为2

v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之差.

6-7在A 、B 、C 三个容器中装有同种理想气体,其分子数密度n 相同,方均根速率之比为

1:2:4=,则其压强之比::A B C p p p 为[ C ]

A. 1:2:4

B. 4:2:1 C . 1:4:16 D. 1:4:8

6-8 题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()

2

O p v 和()

2

H p

v 分别表示氧气和氢气的最概然速

率,则[ B ]

A .图中a表示氧气分子的速率分布曲线,()()

22

O H

/4p p =v v . B .图中a表示氧气分子的速率分布曲线,()()

2

2

O H 1

/4p p =v v . 题6-8图 C .图中b表示氧气分子的速率分布曲线,()()

2

2

O H

1/4

p

p =

v v . D .图中b表示氧气分子的速率分布曲线,()()

2

2

O H

/4p

p =v v .

6-9 题6-9图是在一定的温度下,理想气体分子速率分布函数曲线。当气体的温度降低时,有[ C ]。

A .p v 变小,而()p f v 不变.

B .p v 和()p f v 都变小.

C .p v 变小,而()p f v 变大.

D .p v 不变,而()p f v 变大.

6-10 有两瓶不同的气体,一瓶是氢气,一瓶是氦气,它们的压强、温度相同,但体积不同,则单位体积内的分子数 相等 ;单位体积内的气体的质量 不相等 ;两种气体分子的平均平动动能 相等 。

6-11一容器内盛有密度为ρ的单原子分子理想气体,若压强为p ,则该气体分子的方均根速率为

32p ;单位体积内气体的内能为 32

p

。 6-12题6-12图是氢气和氧气在相同温度下的麦克斯韦速率

题6-9图

)

(v f (p v f O

p

1

2000m s -?,氧气分子的最可几速率为

1500m s -?,氧气分子的方均根速率为1612.4m s -?。

6-13 质量相等的氧气和氦气分别盛在两个容积相等的容器内。在温度相同的情况下,氧气和氦气的压强之比为 1:1,氧气和氦气的内能之比为5:24,氧分子和氦分子的平均速

6-14 速率分布函数()f v 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,

N 为系统总分子数).

(1)()d f v v (2)()d nf v v (3)()d Nf v v (4)

()d f ?

v

v v (5)0

()d f ∞

?v v (6)2

1

()d Nf ?v v v v

解:()f v :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.

(1) ()d f v v :表示分布在速率v 附近,速率区间d v 内的分子数占总分子数的百分比. (2) ()d nf v v :表示分布在速率v 附近、速率区间d v 内的分子数密度. (3) ()d Nf v v :表示分布在速率v 附近、速率区间d v 内的分子数. (4)0()d f ?v

v v :表示分布在12~v v 区间内的分子数占总分子数的百分比.

(5)0

()d f ∞

?

v v :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.

(6)

2

1

()d Nf ?

v v v v :表示分布在12~v v 区间内的分子数.

6-15 题6-15图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?

题6-15图

答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高. 6-16 试说明下列各物理量的物理意义。

(1)

kT 21 (2)kT 23 (3)kT i

2

(4)

mol 2M i RT M (5)RT i 2 (6)RT 2

3

解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量k 2

1

T . (2)在平衡态下,分子平均平动动能为

kT 2

3

. (3)在平衡态下,自由度为i 的分子平均总能量为

kT i

2

. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为

RT i

M M 2

mol .

(5) 1摩尔自由度为i 的分子组成的系统内能为

RT i

2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 2

3

,或者说热力学体系内,1摩尔分

子的平均平动动能的总和为RT 2

3

.

6-17 有两种不同的理想气体,同压、同温而体积不等,试问下述各量是否相同?

(1)分子数密度;(2)气体质量密度;(3)单位体积内气体分子总平动动能;(4)单位体积内气体分子的总动能.

解:(1)由kT

p

n nkT p =

=,知分子数密度相同; (2)由RT p M V M mol ==ρ知气体质量密度不同; (3)由kT n 23

知单位体积内气体分子总平动动能相同;

(4)由kT i

n 2

知单位体积内气体分子的总动能不一定相同.

6-18 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?

(1)分子的平均平动动能;(2)分子的平动动能;(3)内能.

解:(1)相等,分子的平均平动动能都为

kT 23

. (2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23

(3)不相等,因为氢分子的内能RT 25υ,氦分子的内能RT 2

3

υ.

6-19 一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 k ε= 6.21×10-21 J .试求:

(1) 氧气分子的平均平动动能和方均根速率.

(2) 氧气的温度.

解:(1)温度相同,氧气分子的平均平动动能与氢气分子的平均平动动能相同,即 氢气分子的平均平动动能:216.2110J k ε-=?

氧气分子的方均根速率:

214.8310m s --=

==?? (2)由氧气分子的平均平动动能k ε= 6.21×10-21

J 和3

2

k kT ε=

,得:300K T = 6-20 1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少? 解:理想气体分子的能量

2

i

E v RT = 平动动能 3=t 5.373930031.823

=??=

t E J 转动动能 2=r 249330031.82

2

=??=r E J

内能5=i 5.623230031.82

5

=??=i E J

6-21 试计算理想气体分子热运动速率v 的大小介于/100p p -v v 与/100p p +v v 之间的分子数占总分子数的百分比. 解:令P

u =

v

v ,则麦克斯韦速率分布函数可表示为

2

2d e d u N u N -= 因为 1=u ,02.0=?u 由

2

2e u N u N -?=? 得

11e 0.02 1.66%N N -?=??= 6-22 1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等

温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比; (2)分子平均自由程之比。

解:设初态压强为1p 、温度为1T ,体积为1V ,经过等容升压,压强为2p 、温度为2T ,体积为2V ;且122p p =、12V V =,经过等温膨胀过程,末态压强为3p 、温度为3T 、体积为3V ,且312V V =、32T T =、31p p =。 (1)由

22p p T T =

11 、 3322V p V p = 和

= 得

=

===(2) 对于理想气体,nkT p =,即 kT

p n = 所以有 p

d kT 22πλ=

2122

3111

2T p T p p T T p λλ====末初 6-23 一真空管的真空度约为1.38×10-3

Pa(即1.0×10-5

),试求在27℃时单位体积中的分子数及分子的平均自由程(设分子的有效直径d =3×10-10

m).

解:由气体状态方程nkT p =得

17

23

31033.3300

1038.11038.1?=???==-kT p n 3m - 由平均自由程公式 n

d 2

21πλ=

5.710

33.310

921

1720

=????=

-πλ m

6-24 在标准状态下氦气的导热系数κ = 5.79×10-2 W ·m -1·K -1,分子平均自由程=λ 2.60×10-7 m ,试求氦分子的平均速率.

解: λυρκmol

V M C 31=

λυ031V C V

=

得 λ

κ

λκλκυR V R V C V V 00022

333=

== = 1.20×103 m/s

大学物理第七章气体动理论

第七章 气体动理论 一.选择题 1[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为: (A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同. 解答:1. ∵nkT p =,由题意,T ,p 相同∴n 相同; 2. ∵kT n V kT N V E k 2 323==,而n ,T 均相同∴V E k 相同 3. 由RT M m pV =得RT pM V M ==ρ,∵不同种类气体M 不同∴ρ不同 2[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分 子的平均速率为 (A) ?2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0 ()d f v v ∞ ? . 解答:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总和,因此 ? 2 1 d )(v v v v v f / ? 2 1 d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。 3[ B ]一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大. 解答:n d Z 22π= ,n d 2 21πλ= ,在温度不变的条件下,当体积增大时,n 减小,所以 Z 减小而λ增大。 4[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了

第七章气体动理论(答案)

一、选择题 [ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量?的关系为: (A) n 不同,(E K /V )不同,??不同. (B) n 不同,(E K /V )不同,??相同. (C) n 相同,(E K /V )相同, ??不同. (D) n 相同,(E K /V )相同,??相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同; ② ∵kT n V kT N V E k 2 3 23==,而n ,T 均相同,∴V E k 相同; ③ RT M M pV mol =→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。 [ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气的 最概然速率,则 (A) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. (B) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (C) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (D) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. 【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线; ②23 ,3210(/)mol O M kg mol -=?, 23 ,210(/)mol H M kg mol -=?, 得 ()() 2 2 O v v p p H 14 = [ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2

06气体动理论习题解答课件

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m ==ρ(式中m 是气体分子

第七章气体动理论习题

1.两瓶装有不同种类的理想气体,若气体的平动动能相等,两种气体的分子数密度不同,则两瓶气体的( ) (A)压强相等,温度相等; (B)压强相等,温度不等; (C)压强不等,温度相等; (D)压强不等,温度不等; 2.在一封闭容器中,理想气体分子的平均速率提高为原来的2倍,则( ) (A)温度和压强都提高为原来的2倍; (B)温度为原来的2倍,压强为原来的4倍; (C)温度为原来的4倍,压强为原来的2倍; (D)温度和压强都提高为原来的4倍。

3.一打足气的自行车内胎,当温度为7.0℃时,轮胎中空气的压强为 4.0×105Pa,温度变为37.0℃时,轮胎内的压强为。(设胎内容积不变) 4.已知n为气体的分子数密度f(v)为麦克斯韦速率分布函数,则nf(v)dv的物理意义 。 。

5.一容器内贮有氧气,压强为1.0×105Pa ,温度为27℃,求(1)气体分子数密度; (2)氧气的密度; (3)分子的平均平动动能; (4)分子间的平均距离。 6.氧气瓶的容积为3.2×10-2m3,其中氧气的压强为1.30×107Pa,氧气厂规定压强降低到 1.00×106Pa时,就应重新充气,以免经常洗瓶。若平均每天用去0.40m3,压强为1.01×105Pa的氧气,问一瓶氧气能用几天?(设温度不变)

1.1mol刚性双原子分子理想气体,当温度为T时,其内能为( )

3.2g氢气(刚性双原子)与2g氦气分别装在两个容积相等的封闭容器中内,温度相同,则氢气分子与氦气分子的平均平动动能之比压强之比;内能之比。 4.现有两条气体分子速率分布曲线(1)和(2),如图所示。若两条曲线分别表示同一种气体处于不同温度下的速率分布,则曲线表示气体的温度较高。若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线表示的是氧气。

第七章 气体动理论答案

一.选择题 1、(基础训练1)[ C ]温度、压强相同的氦气与氧气,它们分子的平均动能ε与平均平动动能w 有如下关系: (A) ε与w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε与w 都不相等. 【解】:分子的平均动能kT i 2 = ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气与氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 2 3 = ,仅与温度有关,所以温度、压强相同的氦气与氧气,它们分子的平均平动动能w 相等。 2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同, 而方均根速率之比为( )()()2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:M RT v 32 = ,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同, 则其压强之比等于温度之比,即:1:4:16。 3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ? 2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0()d f v v ∞ ? . 【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总与,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总与,因此?2 1 d )(v v v v v f /?2 1 d )(v v v v f 表 示速率分布在v 1~v 2区间内的分子的平均速率。 4、(基础训练10)[ B ]一固定容器内,储有一定量的理想气体,温度为T ,分子的平均碰撞次数为 1Z ,若温度升高为2T ,则分子的平均碰撞次数2Z 为 (A) 21Z . (B) 12Z . (C) 1Z . (D) 12 1Z . 【解】:分子平均碰撞频率n v d Z 2 2π,因就是固定容器内一定量的理想气体,分子数密 度n 不变,而平均速率: v = 温度升高为2T ,则平均速率变为v 2,所以2Z =12Z 5、(自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A)0、500. (B) 400. (C) 900. (D) 2100.

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

大学物理马文蔚第五版 气体动理论

第9章气体动理论 学习指导 一、基本要求 1.理解平衡状态和状态参量,掌握理想气体状态方程并能熟练运用。 2.理解理想气体压强和温度的统计意义,掌握理想气体的压强公式和温度公式。3.理解能量按自由度均分定理,掌握理想气体内能和内能变化的计算公式。4.理解麦克斯韦速率分布律,能熟练计算气体分子热运动的三种速率。 5.了解玻尔兹曼分布律和重力场中粒子按高度的分布。 6.理解分子的平均碰撞次数和平均自由程的概念,会进行有关计算。 7.了解气体的迁移现象;了解实际气体的范氏方程。 二、知识框架

三、重点和难点 1.重点 (1)掌握理想气体状态方程及其应用。 (2)掌握平衡态下理想气体压强公式和温度公式及其计算。 (3)理解能量按自由度均分原理和三种速率有关计算及其应用,平均碰撞次数、平均自由程计算。 2.难点 (1)用统计平均的观点进行压强公式的推导和应用。 (2)掌握能量按自由度均分定理,区别分子平均平动动能、分子平均转动动能、分子平均动能和气体内能;掌握麦克斯韦速率分布律的统计应用和运算。 四、基本概念及规律 1. 理想气体状态方程 m pV RT M = 及 p n k T = 2. 理想气体压强公式 22211212()33323 k p nm n m n ρε====v v v 3. 理想气体的温度公式及温度的统计意义 3 2 k kT ε= 气体的温度是气体分子平均平动动能的量度。 4.能量按自由度均分定理 平衡状态下气体分子每个自由度的平均动能都等于kT 21,如果气体分子有i 个自由度,则每个分子的总平均动能就是kT i 2。 5.理想气体的内能及内能变化 RT i M m E 2 = T R i M m E ??=?2 6.麦克斯韦速率分布律 理想气体在平衡状态下,分子速率在v v v d ~+区间内的分子数N d 占总分子数N 的比率,服从麦克斯韦速率分布律v v f N N d )(d = 式中)(v f 为速率分布函数 2 32 22()42m kT m f e kT ππ- ?? = ? ?? v v v )(v f 满足归一条件 1d )(0 =? ∞ v v f 7.气体分子热运动的三种速率 (1) 最概然速率 p = =v (2) 平均速率

第7章 气体动理论习题解答

第7章 气体动理论 7.1基本要求 1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。 2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。 3.理解自由度和内能的概念,掌握能量按自由度均分定理。掌握理想气体的内能公式并能熟练应用。 4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。 5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。 7.2基本概念 1 平衡态 系统在不受外界的影响下,宏观性质不随时间变化的状态。 2 物态参量 描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度 宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。 4 自由度 确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。 5 内能 理想气体的内能就是气体内所有分子的动能之和,即2 i E RT ν= 6 最概然速率 速率分布函数取极大值时所对应的速率,用p υ表示,p υ= =≈其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。 7 平均速率 各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率 各个分子速率的平方平均值的算术平方根,用rms υ表示,

rms υ= =≈ 9 平均碰撞频率和平均自由程 平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为: Z υ λ= = 或 λ= 7.3基本规律 1 理想气体的物态方程 pV RT ν=或' m pV RT M = pV NkT =或p nkT = 2 理想气体的压强公式 2 3 k p n = 3 理想气体的温度公式 2132 2 k m kT ευ== 4 能量按自由度均分定理 在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12 kT 5 麦克斯韦气体分子速率分布律 (1)速率分布函数 ()dN f Nd υυ = 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。 (2)麦克斯韦速率分布律 2 3/22 2()4()2m kT m f e kT υ υπυπ-= 这一分布函数表明,在气体的种类及温度确定之后,各个速率区间内的分子数占总分子数的百分比是确定的。 麦克斯韦速率分布曲线的特点是:对于同一种气体,温度越高,速率分布曲线越平坦;而在相同温度下的不同气体,分子质量越大的,分布曲线宽度越窄,高度越大,整个曲线比质量

第七章 气体分子动理论

第七章气体动理论 研究对象:由大量分子(原子)组成的系统。分子视为刚性小球,分子间作弹性碰撞。 研究方法:由于分子的数量极其庞大,彼此之间的相互作用又非常频繁,而且还具有偶然性,所以只能用统计的方法进行处理。研究微观量(m,v,p,f)集体表现出来的宏观特征。 §7-1 物质的微观模型统计规律性 1. 分子的数密度和线度:单位体积内的分子数叫分子数密度。气体(n氮=2.47*1019/cm3)、液体(n水=3.3*1022/cm3)、固体(n =7.3*1022/cm3)。不同种类的分子大小不等,小分子约为10-铜 10m的数量级。实验表明:标准状态下,气体分子间距为分子直 径的10倍。 2.分子力:当rr0时,分子力主要表现为吸引力,并 且随r的增加而逐渐减小(当r约为10-9m)时,可以忽略)。 3.分子热运动的无序性及统计规律性 (1)系统由大量分子(原子)组成的。由于分子的数量极其庞大,彼此之间的相互作用又非常频繁(标准状态下, 气体分子平均每秒钟要经历109次碰撞),在总体上表现 为热运动中所具有的无序性。 (2)物质内的分子在分子力的作用下欲使分子聚集在一起,形成有序的排列;而分子的热运动则要使分子尽量分 开;这样一来,分子的聚合将决定于环境的温度和压 强,从而导至物质形成气、液、固、等离子态等不同的 集合体。 (3)个别分子的运动具有偶然性,大量分子的整体表现具有规律性。称其为统计规律性。 §7-2 理想气体的压强公式 1.理想气体的微观模型 (1)气体分子看成是质点 (2)除碰撞外,分子间作用力可以忽略不计 (3)分子间以及分子与器壁间的碰撞可以看成是完全弹性碰撞 2.理想气体的压强公式 (1)定义:压强为单位面积上,大量气体分子无规则运动撞

气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

2013第七章气体动理论答案(同名8777)

1 一.选择题 1. (基础训练2)[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为: (A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同. 【解】: ∵nkT p =,由题意,T ,p 相同∴n 相同; ∵kT n V kT N V E k 2 3 23 ==,而n ,T 均相同∴V E k 相同 由RT M m pV =得m pM V RT ρ== ,∵不同种类气体M 不同∴ρ不同 2. (基础训练6)[ C ]设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速 率关系为 (A) p v v v ==2 /12) ( (B) 2 /12)(v v v <=p (C) 2 /12) (v v v <

>p 【解】:最概然速率:p v = = 算术平均速率: 0 ()v vf v dv ∞ ==? 20 ()v f v dv ∞ = =? 3. (基础训练7)[ B ]设图7-3所示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气 的最概然速率,则 (A) 图中a表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =4. (B) 图中a表示氧气分子的速率分布曲线;

大学物理气体动理论习题

大学物理气体动理论习题Newly compiled on November 23, 2020

第十一章气体动理论 一、基本要求 1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。 2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。 3.理解自由度和内能的概念,掌握能量按自由度均分定理。掌握理想气体的内能公式并能熟练应用。 4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。 5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。 二、基本概念 1 平衡态 系统在不受外界的影响下,宏观性质不随时间变化的状态。 2 物态参量 描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度 宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。 4 自由度 确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。 5 内能 理想气体的内能就是气体内所有分子的动能之和,即 6 最概然速率 速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。 7 平均速率 各个分子速率的统计平均值,用表示, 8 方均根速率 各个分子速率的平方平均值的算术平方根,用表示, 9 平均碰撞频率和平均自由程

平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或 三、基本规律 1 理想气体的物态方程 pV RT ν=或'm pV RT M = pV NkT =或p nkT = 2 理想气体的压强公式 3 理想气体的温度公式 4 能量按自由度均分定理 在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为1 2kT 5 麦克斯韦气体分子速率分布律 (1)速率分布函数 ()dN f Nd υυ = 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。 (2)麦克斯韦速率分布律 2 3/222()4()2m kT m f e kT υ υπυπ-= 这一分布函数表明,在气体的种类及温度确定之后,各个速率区间内的分子数占总分子数的百分比是确定的。 麦克斯韦速率分布曲线的特点是:对于同一种气体,温度越高,速率分布曲线越平坦;而在相同温度下的不同气体,分子质量越大的,分布曲线宽度越窄,高度越大,整个曲线比质量小的显得陡。 第十一章 气体动理论习题 一、选择题 1、用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ] (A )0()Nf v dv ∞ ?; (B )20 1 ()2 mv f v dv ∞? ; (C ) 20 1 ()2 mv Nf v dv ∞? ; (D ) 1 ()2 mvf v dv ∞? 。 2、下列对最概然速率p v 的表述中,不正确的是 [ ]

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

第七章气体动理论答案.doc

第七章气体动理论 一. 选择题 1、(基础训练1) [ C ]温度、压强相同的氦气和氧气,它们分子的平均动能S 和平均 平动动能W 有如下关系: (A) g 和▽都相等. (B) g 相等,而灰不相等. (C) W 相等,而g 不相等. (D) 5和W 都不相等. ? 【解】:分子的平均动能f = 与分子的自由度及理想气体的温度有关,由于氦气为单 2 原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和 氧气,它们分子的平均动能不相等;分子的平均平动动能w = 仅与温度有关,所 2 以温度、压强相同的氦气和氧气,它们分子的平均平动动能W 相等。 2、(基础训练3) [ C ]三个容器/I 、反C 屮装有同种理想气体,其分子数密度A2相同, 而方均 根速率之比为记)1 ’2 :它)1 ’2 :(荀’2=1 :2:4,则其压强之比:心:p c 为: (C) 1 : 4 : 16. (D) 4 : 2 : 1. —,同种理想气体,摩尔质量相同,因方均 M 根速率之比为1:2:4,则温度之比应为:1: 4: 16,又因为理想气体压强p = 分子 数密度n 相同,则其压强之比等于温度之比,即:h 4: 16。 3、(基础训练8) [ C ]设某种气体的分子速率分布函数为/(V),则速率分布在v^v 2 区间内的分子 的平均速率为 (A) \V2 vf(v)dv . (B) vpv/(v)dv. Ju { J V, (C) £vf(v)dv/£f(v)dv . (D) ⑻dz?/J:/(v)dv . 【解】:因为速率分布函数表示速率分布在v 附近单位速率间隔内的分子数占总分子数 的百分率,所以p/Vl/(P)dp 表示速率分布在区间内的分子的速率总和,而 p/V/(v)dv 表示速率分布在区间內的分子数总和,因此 Jv } Jy, Jy, 示速率分布在仏?122区.间内的分子的平均速率。 4、(基础训练10) [ B ] 一固定容器内,储有一定量的理想气体,温度为r,分子的平 均碰撞次 数为若温度升高为27,则分子的平均碰撞次数€为 【解】:分子平均碰撞频率Z 因是固定容器lAl —定量的理想气体,分子数密 度。不变,而平均速率:^器,温度升高为2r ,则平均速率麟▲,所以心厄 (A) 1 : 2 : 4. (B) 1:4:8. 【解】:气体分子的方均根速率:v^= (A) 2Z,. ⑻ V2Z^. ⑹ Z, ?

气体动理论答案

图7-3 第七章气体动理论 选择题 1. (基础训练2) : C ]两瓶不同种类的理想气体,它们的温度 和压强都相同,但体积不同,则单位体积内的气体分子数 n ,单位体 (A) n 不同,(E K /V)不同, (B) n 不同,(E K /V)不同, (C) n 相同,(E K /V)相同, (D) n 相同,(E K /V)相同, 【解】:T p nkT ,由题意, E “討 3 T 电亠 n-kT V V 2 不同. 相同. 不同. 相同. T , p 相同二n 相同; ,而n ,T 均相同???导相同 2. (基础训练6) : C ]设V 代表气体分子运动的平均速率,v p 代 表气 体分子运动的最概然速率,(V 2)1/2 代表气体分子运动的方均根速 率.处于平衡状态下理想气体,三种速率关系为 (A) (V 2) 1/2 v V p (B) V V p £)1/2 (C) v p v (J)1/2 (D)v p v (V 2) 1/2 3. (基础训练7) : B ]设图7-3所示的两条曲线分别表示在相 同温度下氧气和氢气分子的速率分布曲线;令 v P O 和v P H 分别表示氧气和氢气的最概然速 率,则 (A)图中a 表示氧气分子的速率分布曲线; 积内的气体分子的总平动动能 为: (E K /V),单位体积内气体的质量 的关系 由pv 晋RT 得 pM RT , T 不同种类气体 M 不同二 不同 算术平均速率:v 方均根速率:'、v 2 【解】:最概然速 vf(v)dv v 2f(v)dv

v p O2/ v p H2 = 4. (B)图中a表示氧气分子的速率分布曲线;v p °? / v p H=1/4. (C)图中b表示氧气分子的速率分布曲线;v p °? / v p H=1/4. (D)图中b表示氧气分子的速率分布曲线;V p°2/v p H=4. 【解】理想气体分子的最概然速率v p J2RT,同一温度下摩尔质量 p V M 越大的v p越小,又由氧气的摩尔质量M 32 10 3(kg/mol),氢气的摩 尔质量M 2 10 3(kg/mol),可得V p ° / V p H= 1/4。故应该选(B)。 °2 H 2 4.(基础训练8) : C ]设某种气体的分子速率分布函数为f(v), 则速率分布在v 1~v 2区间内的分子的平均速率为 v2 v2 (A) vf (v)dv . (B) v vf (v)d v . v 1 v l v2 v2 v2 (C) v vf(v)dv/y f (v)dv . (D) v vf (v)dv / 0 f (v)dv . 【解】因为速率分布函数f(v)表示速率分布在v附近单位速率间隔内 的分子数占总分子数的百分率,所以2 Nvf (v)dv表示速率分布在v v 1 1~v 2区间内的分子的速率总和,而2 Nf (v)d v表示速率分布在v 1~v 2 区间内的分子数总和,因此2vf (v) dv / "2 f (v)dv表示速率分布在v 1~v v〔 v〔 2区间内的分子的平均速率。 5.(基础训练9) : B ] 一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z和平均自由程一的变化情况是: (A) Z减小而—不变. (B) Z减小而—增大. (C) Z增大而一减小. (D) Z不变而—增大. 【解】:根据分子的平均碰撞频率Z 2 d2vn和平均自由程^1 2- —kT2,在温度不变的条件下,当体积增大时,分子数 .2 d n ■ 2 d P 密度n -减小,从而压强p nkT减小,平均自由程—增大,平均碰V 撞频率Z减小。 6.(自测提高3)[ B ]若室内生起炉子后温度从15C升高到27C, 而室

第七章 气体动理论答案

一.选择题 1、(基础训练1)[C]温度、压强相同得氦气与氧气,它们分子得平均动能与平均平动 动能有如下关系: (A) 与都相等. (B) 相等,而不相等. (C) 相等,而不相等. (D) 与都不相等. 【解】:分子得平均动能,与分子得自由度及理想气体得温度有关,由于氦气为单原子分子,自 由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同得氦气与氧气,它们分子得平 均动能不相等;分子得平均平动动能,仅与温度有关,所以温度、压强相同得氦气与氧气,它们分 子得平均平动动能相等。 2、(基础训练3)[C]三个容器A、B、C中装有同种理想气体,其分子数密度n相同, 而方均根速率之比为=1∶2∶4,则其压强之比∶∶为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子得方均根速率:,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶ 4,则温度之比应为:1:4:16,又因为理想气体压强,分子数密度n相同,则其压强之比等于温度 之比,即:1:4:16。 3、(基础训练8)[C]设某种气体得分子速率分布函数为f(v),则速率分布在v1~v2区间 内得分子得平均速率为 (A) . (B) . (C) / . (D) / . 【解】:因为速率分布函数f(v)表示速率分布在附近单位速率间隔内得分子数占总分子数得 百分率,所以表示速率分布在v1~v2区间内得分子得速率总与,而表示速率分布在v1~v2区间 内得分子数总与,因此/表示速率分布在v1~v2区间内得分子得平均速率。 4、(基础训练10)[B]一固定容器内,储有一定量得理想气体,温度为T,分子得平均碰 撞次数为 ,若温度升高为2T,则分子得平均碰撞次数为 (A) 2. (B) . (C) . (D) . 【解】:分子平均碰撞频率,因就是固定容器内一定量得理想气体,分子数密度n不变,而平均 速率: ,温度升高为2T,则平均速率变为,所以= 5、(自测提高3)[B]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此 时室内得分子数减少了:(A)0、5. (B) 4. (C) 9. (D) 21. 【解】:根据=,== 6、(自测提高7)[C]一容器内盛有1 mol氢气与1 mol氦气,经混合后,温度为127℃, 该混合气体分子得平均速率为 (A) . (B) . (C) . (D) . 【解】:根据算术平均速率:,其中,,,,再根据平均速率得定义,混合气体分子得平均速率为: 二.填空题 1、(基础训练11)A、B、C三个容器中皆装有理想气体,它们得分子数密度之比为n A∶n B∶ n C=4∶2∶1,而分子得平均平动动能之比为∶∶=1∶2∶4,则它们得压强之比∶∶= _1:1:1_. 【解】:根据理想气体得压强公式:,得∶∶=1:1:1。 2、(基础训练15)用总分子数N、气体分子速率v与速率分布函数f(v)表示下列各量:(1) 速

第6章气体动理论习题解答.doc

第6章习题解答 6-1若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,A为玻耳兹曼常 量,/?力摩尔气体常量,则该理想气体的分子数力[B ] A.pV / m. B. pV / kT . C. pV / RT. D. pV / mT . 6-2两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[A ] A.两种气体分子的平均平动动能相等. B.两种气体分子的平均动能相等. C.两种气体分子的平均速率相等. D.两种气体的内能相等. 6-3两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则 [B ] A.压强相等,温度相等. B.温度相等,压强不相等. C.压强相等,温度不相等. D.压强不相等,温度不相等. 6-4温度,压强相同的氦气和氧气,它们的分子平均动能f和平均平动动能巧有如下关系 [A ] A.巧相等,而f不相等. B. f相等,而巧不相等. C. f和巧都相等. D. f和巧都不相等. 6-5 一定量的理想气体贮于某一容器中,温度为7\气体分子的质量为m.根据理想气体的分子模型和统计假设,在%方14分子速度的分量平方的平均值为[D ] C. v2x = 3kT/m. D. v2x =kT/m. 6-6若/GO为气体分子速率分布函数,TV为气体分子总数,m为分子质量,则 A.速率处在速率间隔%?%之间的分子平动动能之和. B.速率处在速率间隔%?u2间的分子平均平动动能.

c.速率为%的各分子的总平动动能与速率%为的各分子的总平动动能之和. D.速率为%的各分子的总平动动能与速率q 力的各分子的总平动动能之差. 6-7在A 、B 、C 三个容器巾装有同种理想气体,其分子数密度7?相同, :y/v^ :yfv^ = 1:2:4,则其压强之比 A ::厂0为[C ] A. 1:2:4 B. 4:2:1 C. 1:4:16 D. 1:4:8 6-8题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子 的速率分布曲线;令和分别表示M 气和氢气的最概然速 率,则[B ] A. 图中a 表示氧气分子的速率分布曲线, B. 图中a 表示筑"气分子的速率分布曲线,(P ) /(v p )=丄. C. 图中b 表示氧3分子的速率分布曲线,(v p ) /(v )=丄. v /巧o 2 v /M H 2 4 D. 图中b 表示气分子的速率分布曲线,(?=4. 6-9题6-9阁是在一定的温度下,理想气体分子速率分布函数曲线 有 [C ]。 A. 、变小,而/(?)不变. B. 久和/(久)都变小? C. 、变小,而/(>,,)变大. D. 、不变,而变大. 6-10有两瓶不同的气体,一瓶是氢气,一瓶是氦气,它们的ffi 强、温度相同,但体积不同, 则 单位体积A 的分子数相等;单位体积内的气体的质不相等;两种气体分子的平 均平动动能_相等。 6-11 一容器盛有密度为p 的单原子分子理想气体,若压强为/?,则该气体分子的方均根 速率为竽;单位体积内气体的内能为竽。 6-12题6-12图是氢气和氧气在相同温度下的麦克斯韦速率 方均根速率之比为 题6-8图 题6-12图 v(m/s)

气体动理论和热力学-答案

理工科专业 《大学物理B 》 气体动理论 热力学基础 答: 112 3 V p 0 p O V V 12V 1 p 12p 1A B 图1 4、 给定的理想气体(比热容比γ为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T =____________,压强p =__________. 答: 1 ) 1 (T -γ , )1 (p γ

图2 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. ( C )4、一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定: ① 该理想气体系统在此过程中吸了热. ② 在此过程中外界对该理想气体系统作了正功. ③ 该理想气体系统的内能增加了. ④ 在此过程中理想气体系统既从外界吸了热,又对外作了正功. 以上正确的断言是: (A) ① 、③ . (B) ②、③. (C) ③. (D) ③、④. ( D )5、有人设计一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外作功1000 J ,这样的设计是 (A) 可以的,符合热力学第一定律. (B) 可以的,符合热力学第二定律. (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量. (D) 不行的,这个热机的效率超过理论值. 三、判断题(每小题1分,请在括号里打上√或×) ( × )1、气体的平衡态和力学中的平衡态相同。 ( √ )2、一系列的平衡态组成的过程是准静态过程。 ( × )3、功变热的不可逆性是指功可以变为热,但热不可以变为功。 ( × )4、热传导的不可逆性是指热量可以从高温物体传到低温物体,但不可以从低温物体传到高温物体。 ( × )5、不可逆循环的热机效率1 2 1Q Q bukeni - <η。 四、简答题(每小题5分) 1、气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统。(1分)是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,(1分)再由实验确认的方法。(1分) 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高。(1分)理想气体的微观模型是把分子看成弹性的自由运动的质点。(1分) 2、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点,如图2所示。 解:(1)由热力学第一定律有 W E Q +?= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=?W Q E (1分) 经绝热b a →过程

相关主题