搜档网
当前位置:搜档网 › DS18B20中文手册

DS18B20中文手册

DS18B20中文手册
DS18B20中文手册

达拉斯DS18B20

半导体可编程分辨率的

单总线?数字温度计特征引脚排列

l独特的单线接口仅需一个端口引脚

进行通讯

l每个器件有唯一的64位的序列号存

储在内部存储器中

l简单的多点分布式测温应用

l无需外部器件

l可通过数据线供电。供电范围为3.0V

到5.5V。

l测温范围为-55~+125℃(-67~+

257℉)

l在-10~+85℃范围内精确度为±5

l温度计分辨率可以被使用者选择为

9~12位

l最多在750ms内将温度转换为12位

数字

l用户可定义的非易失性温度报警设

l报警搜索命令识别并标志超过程序

限定温度(温度报警条件)的器件

l与DS1822兼容的软件

l应用包括温度控制、工业系统、消费

品、温度计或任何热感测系统

引脚说明

GND -地

DQ -数据I/O

VDD -可选电源电压

NC -无连接

说明

DS18B20数字温度计提供9-12位摄氏温度测量而且有一个由高低电平触发的可编程的不因电源消失而改变的报警功能。DS18B20通过一个单线接口发送或接受信息,因此在中央处理器和DS18B20之间仅需一条连接线(加上地线)。它的测温范围为-55~+125℃,并且在-10~+85℃精度为±5℃。除此之外,DS18B20能直接从单线通讯线上汲取能量,除去了对外部电源的需求。

每个DS18B20都有一个独特的64位序列号,从而允许多只DS18B20同时连在一根单线总线上;因此,很简单就可以用一个微控制器去控制很多覆盖在一大片区域的DS18B20。这一特性在HVAC环境控制、探测建筑物、仪器或机器的温度以及过程监测和控制等方面非常有用。

详细的引脚说明表1

8引脚SOIC封装* TO-9封装符号说明

5 1 GND 接地。

4 2 DQ 数据输入/输出引脚。对于单线操作:

漏极开路。当工作在寄生电源模式时

用来提供电源(建“寄生电源”节)。

3 3 VDD 可选的VDD引脚。工作与寄生电源模

式时VDD必须接地。

*所有上表未提及的引脚都无连接。

概览

图1是表示DS18B20的方框图,表1已经给出了引脚说明。64位只读存储器储存器件的唯一片序列号。高速暂存器含有两个字节的温度寄存器,这两个寄存器用来存储温度传感器输出的数据。除此之外,高速暂存器提供一个直接的温度报警值寄存器(TH和TL),和一个字节的的配置寄存器。配置寄存器允许用户将温度的精度设定为9,10,11或12位。TH,TL和配置寄存器是非易失性的可擦除程序寄存器(EEPROM),所以存储的数据在器件掉电时不会消失。

DS18B20通过达拉斯公司独有的单总线协议依靠一个单线端口通讯。当全部器件经由一个3态端口或者漏极开路端口(DQ引脚在DS18B20上的情况下)与总线连接的时候,控制线需要连接一个弱上拉电阻。在这个总线系统中,微控制器(主器件)依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址。由于每个装置有一个独特的片序列码,总线可以连接的器件数目事实上是无限的。单总线协议,包括指令的详细解释和“时序”见单总线系统节。

DS18B20的另一个功能是可以在没有外部电源供电的情况下工作。当总线处于高电平状态,DQ与上拉电阻连接通过单总线对器件供电。同时处于高电平状态的总线信号对内部电容(Cpp)充电,在总线处于低电平状态时,该电容提供能量给器件。这种提供能量的形式被称为“寄生电源”。作为替代选择,DS18B20同样可

以通过VDD引脚连接外部电源供电。

DS18B20方框图图1

测温操作

DS18B20的核心功能是它的直接读数字的温度传感器。温度传感器的精度为用户可编程的9,10,11或12位,分别以0.5℃,0.25℃,0.125℃和0.0625℃增量递增。在上电状态下默认的精度为12位。DS18B20启动后保持低功耗等待状态;当需要执行温度测量和AD转换时,总线控制器必须发出[44h]命令。在那之后,产生的温度数据以两个字节的形式被存储到高速暂存器的温度寄存器中,DS18B20继续保持等待状态。当DS18B20由外部电源供电时,总线控制器在温度转换指令之后发起“读时序”(见单总线系统节),DS18B20正在温度转换中返回0,转换结束返回1。如果DS18B20由寄生电源供电,除非在进入温度转换时总线被一个强上拉拉高,否则将不会由返回值。寄生电源的总线要求在DS18B20供电节详细解释。

温度寄存器格式图2

温度/数据关系表2

温度℃数据输出(二进制)数据输出(十六进制) +125 0000 0111 1101 0000 07D0h

+85 0000 0101 0101 0000 0550h

+25.0625 0000 0001 1001 0001 0191h

+10.125 0000 0000 1010 0010 00A2h

+0.5 0000 0000 0000 1000 0008h

0 0000 0000 0000 0000 0000h

-0.5 1111 1111 1111 1000 FFF8h

-10.125 1111 1111 0101 1110 FF5Eh

-25.0625 1111 1110 0110 1111 FE6Eh

-55 1111 1100 1001 0000 FC90h

*上电复位时温度寄存器默认值为+85℃

报警操作信号

DS18B20完成一次温度转换后,就拿温度值与和存储在TH和TL中一个字节的用户自定义的报警预置值进行比较。标志位(S)指出温度值的正负:正数S=0,负数S=1。TH和TL寄存器是非易失性的,所以它们在掉电时仍然保存数据。在存储器节将解释TH和TL是怎么存入高速暂存器的第2和第3个字节的。

TH和TL寄存器格式图3

当TH和TL为8位寄存器时,4位温度寄存器中的11个位用来和TH、TL进行比较。如果测得的温度高于TH或低于TL,报警条件成立,DS18B20内部就会置位一个报警标识。每进行一次测温就对这个标识进行一次更新;因此,如果报警条件不成立了,在下一次温度转换后报警标识将被移去。

总线控制器通过发出报警搜索命令[ECh]检测总线上所有的DS18B20报警标识。任何置位报警标识的DS18B20将响应这条命令,所以总线控制器能精确定位每一个满足报警条件的DS18B20。如果报警条件成立,而TH或TL的设置已经改变,另一个温度转换将重新确认报警条件。

DS18B20供电

DS18B20可以通过从VDD引脚接入一个外部电源供电,或者可以工作于寄生电源模式,该模式允许DS18B20工作于无外部电源需求状态。寄生电源在进行远距离测温时是非常有用的。寄生电源的控制回路见图1,当总线为高电平时,寄生电源由单总线通过VDD引脚。这个电路会在总线处于高电平时偷能量,部分汲取的

能量存储在寄生电源储能电容(Cpp)内,在总线处于低电平时释放能量以提供给器件能量。当DS18B20处于寄生电源模式时,VDD引脚必须接地。

寄生电源模式下,单总线和Cpp在大部分操作中能提供充分的满足规定时序和电压的电流(见直流电特性和交流电特性节)给DS18B20。然而,当DS18B20正在执行温度转换或从高速暂存器向EPPROM传送数据时,工作电流可能高达1.5mA。这个电流可能会引起连接单总线的弱上拉电阻的不可接受的压降,这需要更大的电流,而此时Cpp无法提供。为了保证DS18B20由充足的供电,当进行温度转换或拷贝数据到EEPROM操作时,必须给单总线提供一个强上拉。用漏极开路把I/O 直接拉到电源上就可以实现,见图4。在发出温度转换指令[44h]或拷贝暂存器指令[48h]之后,必须在至多10us之内把单总线转换到强上拉,并且在温度转换时序(tconv)或拷贝数据时序(ter=10 ms)必须一直保持为强上拉状态。当强上拉状态保持时,不允许有其它的动作。

对DS18B20供电的另一种传统办法是从VDD引脚接入一个外部电源,见图5。这样做的好处是单总线上不需要强上拉。而且总线不用在温度转换期间总保持高电平。

温度高于100℃时,不推荐使用寄生电源,因为DS18B20在这种温度下表现出的漏电流比较大,通讯可能无法进行。在类似这种温度的情况下,强烈推荐使用DS18B20的VDD引脚。

对于总线控制器不直到总线上的DS18B20是用寄生电源还是用外部电源的情况,DS18B20预备了一种信号指示电源的使用意图。总线控制器发出一个Skip ROM 指令[CCh],然后发出读电源指令[B4h],这条指令发出后,控制器发出读时序,寄生电源会将总线拉低,而外部电源会将总线保持为高。如果总线被拉低,总线控制器就会知道需要在温度转换期间对单总线提供强上拉。

DS18B20温度转换期间的强上拉供电图4

外部电源给DS18B20供电图5

64位(激)光刻只读存储器

每只DS18B20都有一个唯一存储在ROM中的64位编码。最前面8位是单线系列编码:28h。接着的48位是一个唯一的序列号。最后8位是以上56位的CRC编码。CRC的详细解释见CRC发生器节。64位ROM和ROM操作控制区允许DS18B20作为单总线器件并按照详述于单总线系统节的单总线协议工作。

64位(激)光刻只读存储器图6

8位CRC 48位序列号 8位系列码

存储器

DS18B20的存储器结构示于图7。存储器有一个暂存SRAM和一个存储高低报警触发值TH和TL的非易失性电可擦除EEPROM组成。注意当报警功能不使用时,TH 和TL寄存器可以被当作普通寄存器使用。所有的存储器指令被详述于DS18B20功能指令节。

位0和位1为测得温度信息的LSB和MSB。这两个字节是只读的。第2和第3字节是TH和TL的拷贝。位4包含配置寄存器数据,其被详述于配置寄存器节。位5,6和7被器件保留,禁止写入;这些数据在读回时全部表现为逻辑1。

高速暂存器的位8是只读的,包含以上八个字节的CRC码,CRC的执行方式如CRC 发生器节所述。

数据通过写暂存器指令[4Eh]写入高速暂存器的2,3和4位;数据必须以位2为最低有效位开始传送。为了完整的验证数据,高速暂存器能够在数据写入后被读取(使用读暂存器指令[BEh])。在读暂存器时,数据以位0为最低有效位从单总线移出。总线控制器传递从暂存器到EEPROMTH,TL和配置数据必须发出拷贝暂存器指令[48h]。

EEPROM寄存器中的数据在器件掉电时仍然保存;上电时,数据被载入暂存器。数据也可以通过召回EEPROM命令从暂存器载入EEPROM。总线控制器在发出这条命令后发出读时序,DS18B20返回0表示正在召回中,返回1表示操作结束。

DS18B20存储器图图7

*上电状态依赖于EEPROM中的值

配置寄存器

存储器的第4位为配置寄存器,其组织见图8。用户可以通过按表3所示设置R0和R1位来设定DS18B20的精度。上电默认设置:R0=1,R1=1(12位精度)。注意:精度和转换时间之间有直接的关系。暂存器的位7和位0-4被器件保留,禁止写入;在读回数据时,它们全部表现为逻辑1。

配置寄存器图8

温度计精确度配置表3

CRC发生器

CRC字节作为DS18B2064位ROM的一部分存储在存储器中。CRC码由ROM的前56位计算得到,被包含在ROM的重要字节当中。CRC由存储在存储器中的数据计算得到,因此当存储器中的数据发生改变时,CRC的值也随之改变。

CRC能够在总线控制器读取DS18B20时进行数据校验。为校验数据是否被正确读取,总线控制器必须用接受到的数据计算出一个CRC值,和存储在DS18B20的64位ROM中的值(读ROM时)或DS18B20内部计算出的8位CRC值(读存储器时)进行比较。如果计算得到的CRC值和读取出来的CRC值相吻合,数据被无错传输。CRC值的比较以及是否进行下一步操作完全由总线控制器决定。当在DS18B20中存储的或由其计算到CRC值和总线控制器计算的值不相符时,DS18B20内部并没有一个能阻止命令序列进行的电路。

CRC的计算等式如下:

CRC = X8 + X5 + X4 + 1

单总线CRC可以由一个由移位寄存器和XOR门构成的多项式发生器来产生,见图9。这个回路包括一个移位寄存器和几个XOR门,移位寄存器的各位都被初始化为0。从ROM中的最低有效位或暂存器中的位0开始,一次一位移入寄存器。在传输了56位ROM中的数据或移入了暂存器的位7后,移位寄存器中就存储了CRC 值。下一步,CRC的值必须被循环移入。此时,如果计算得到的CRC是正确的,移位寄存器将复0。

CRC发生器图9

单总线系统

单总线系统包括一个总线控制器和一个或多个从机。DS18B20总是充当从机。当只有一只从机挂在总线上时,系统被称为“单点”系统;如果由多只从机挂在总线上,系统被称为“多点”。

所有的数据和指令的传递都是从最低有效位开始通过单总线。

关于单总线系统分三个题目讨论:硬件结构、执行序列和单总线信号(信号类型和时序)。

硬件结构

单总线系统只有一条定义的信号线。每一个总线上的器件必须是漏极开路或三态输出。这样的系统允许每一个挂在总线上的区间都能在适当的时间驱动它。DS18B20的单总线端口(DQ引脚)是漏极开路式的,内部等效电路见图10

单总线需要一个约5KΩ的外部上拉电阻;单总线的空闲状态是高电平。无论任何理由需要暂停某一执行过程时,如果还想恢复执行的画,总线必须停留在空闲状态。在恢复期间,如果单总线处于非活动(高电平)状态,位与位间的恢复时间可以无限长。如果总线停留在低电平超过480us,总线上的所有器件都将被复位。

硬件结构图10

执行序列

通过单线总线端口访问DS18B20的协议如下:

步骤1. 初始化

步骤2. ROM操作指令

步骤3. DS18B20功能指令

每一次DS18B20的操作都必须满足以上步骤,若是缺少步骤或是顺序混乱,器件将不会返回值。例如这样的顺序:发起ROM搜索指令[F0h]和报警搜索指令[ECh]之后,总线控制器必须返回步骤1。

初始化

通过单总线的所有执行操作处理都从一个初始化序列开始。初始化序列包括一个由总线控制器发出的复位脉冲和其后由从机发出的存在脉冲。存在脉冲让总线控制器知道DS18B20在总线上且已准备好操作,详见单总线信号节。

ROM指令

一旦总线控制器探测到一个存在脉冲,它就发出一条ROM指令。如果总线上挂有多只DS18B20,这些指令将基于器件独有的64位ROM片序列码使得总线控制器选出特定要进行操作的器件。这些指令同样也可以使总线控制器识别有多少只,什么型号的器件挂在总线上,同样,它们也可以识别哪些器件已经符合报警条件。ROM指令有5条,都是8位长度。总线控制器在发起一条DS18B20功能指令之前必须先发出一条ROM指令。ROM指令操作流程图见图11。

Search ROM [F0h] (搜索ROM指令)

当系统上电初始化的时候,总线控制器必须通过识别总线上所有ROM片序列码去得到从机的数目和型号。总线控制器通过搜索ROM指令多次循环搜索ROM编码,以确认所有从机器件。如果总线上只有一只从机,那么可以用较为简单的读取ROM指令(见下文)代替搜索ROM指令,关于iButton Book of Standards见https://www.sodocs.net/doc/972370474.html,/ibuttons/standard.pdf。在每次搜索ROM指令之后,总线控制器必须返回步骤1。

READ ROM [33h] (读取ROM指令)

只有在总线上存在单只DS18B20的时候才能使用这条命令。该命令允许总线控制器在不使用搜索ROM指令的情况下读取从机的64位片序列码。如果总线上有不止一只从机,当所有从机试图同时传送信号时就会发生数据冲突。

MATH ROM [55h] (匹配ROM指令)

匹配ROM指令,后跟64位ROM编码序列,让总线控制器在多点总线上定位一只特定的DS18B20。只有和64位ROM片序列码完全匹配的DS18B20才能响应随后的存储器操作指令;所有和64位ROM片序列码不匹配的从机都将等待复位脉冲。

SKIP ROM [CCh] (忽略ROM指令)

这条指令允许总线控制器不用提供64位ROM编码就使用功能指令。例如,总线控制器可以先发出一条忽略ROM指令,然后发出温度转换指令[44h],从而完成温度转换操作。注意:当只有一只从机在总线上时,无论如何,忽略ROM指令之后只能跟着发出一条读取暂存器指令[BEh]。在单点总线情况下使用该命令,器件无需发回64位ROM编码,从而节省了时间。如果总线上有不止一只从机,若发出忽略ROM指令,由于多只从机同时传送信号,总线上就会发生数据冲突。

ALARM SEARCH [ECH] (报警搜索指令)

这条命令的流程和搜索ROM指令相同,然而,只有满足报警条件的从机才对该命令作出响应。只有在最近一次测温后遇到符合报警条件的情况,DS18B20才会响应这条命令。在每次报警搜索指令周期之后,总线控制器必须返回步骤1。关于报警操作流程见报警信号操作节。

DS18B20功能指令

在总线控制器发给欲连接的DS18B20一条ROM命令后,跟着可以发送一条DS18B20功能指令。这些命令允许总线控制器读写DS18B20的暂存器,发起温度转换和识别电源模式。DS18B20的功能指令详见下文,同时被概括于表4,并用流程图示于图12。

CONVERT T [44h] (温度转换指令)

这条命令用以启动一次温度转换。温度转换指令被执行,产生的温度转换结果数据以2个字节的形式被存储在高速暂存器中,而后DS18B20保持等待状态。如果寄生电源模式下发出该命令后,在温度转换期间(tconv),必须在10us(最多),内给单总线一个强上拉,见DS18B20供电节。如果DS18B20以外部电源供电,总线控制器在发出该命令后跟着发出读时序,DS18B20如处于转换中,将在总线上返回0,若温度转换完成,则返回1。寄生电源模式下,总线被强上拉拉高前这样的通讯技术不会被使用。

WRITE SCRATCHPAD [4Eh] (写暂存器指令)

这条命令向DS18B20的暂存器写入数据,开始位置在TH寄存器(暂存器的第2个字节),接下来写入TL寄存器(暂存器的第3个字节),最后写入配置寄存器(暂存器的第4个字节)。数据以最低有效位开始传送。上述三个字节的写入必须发生在总线控制器发出复位命令前,否则会中止写入。

READ SCRATCHPAD [BEh] (读暂存器指令)

这条命令读取暂存器的内容。读取将从字节0开始,一只进行下去,知道第9字节(字节8,CRC)读完,如果不想读完所有字节,控制器可以在任何时间发出复位命令来中止读取。

COPY SCRATCHPAD [48h] (拷贝暂存器指令)

这条命令把TH,TL和配置寄存器(第2、3、4字节)的内容拷贝到EEPROM中。如果使用寄生电源总线控制器必须在发出这条命令的10us内启动强上拉并最少保持10ms,见DS18B20供电节所述。

RECALL E2 [B8H] (召回EEPROM指令)

这条命令把报警触发器的值(TH和TL)以及配置数据从EEPROM拷回暂存器。总线控制器在发出该命令后读时序,DS18B20会输出拷回标识:0标识正在拷回,1标识拷回结束。这种拷回操作在DS18B20上电时自动执行,这样器件一上电暂存器里马上就存在有效的数据了。

READ POWER SUPPLY [B4h] (读电源模式指令)

总线控制器在这条命令发给DS18B20后发出读时序,若是寄生电源模式,DS18B20将拉低总线,若是外部电源模式,DS18B20将会把总线拉高。关于这条指令的用法信息详述于DS18B20供电节。

DS18B20 功能指令表表4

备注:

1.对于寄生电源模式下的DS18B20,在温度转换和拷贝数据到EEPROM期间,必

须给单总线一个强上拉。总线上在这段时间内不能有其它活动。

2.总线控制器在任何时刻都可以通过发出复位信号中止数据传输。

3.TH,TL和配置寄存器这3个字节的写入必须在复位信号发起之前。

ROM指令流程图图11

DS18B20功能指令流程图图12

单总线信号

DS18B20需要严格的单总线协议以确保数据的完整性。协议包括集中单总线信号类型:复位脉冲、存在脉冲、写0、写1、读0和读1。所有这些信号,除存在脉冲外,都是由总线控制器发出的。

复位序列:复位和存在脉冲

和DS18B20间的任何通讯都需要以初始化序列开始,初始化序列见图13。一个复位脉冲跟着一个存在脉冲表明DS18B20已经准备好发送和接收数据。

在初始化序列期间,总线控制器拉低总线并保持480us以发出(TX)一个复位脉冲,然后释放总线,进入接收状态(RX)。单总线由5K上拉电阻拉到高电平。当DS18B20探测到I/O引脚上的上升沿后,等待15-60us,然后发出一个由60-240us 低电平信号构成的存在脉冲。

初始化时序图13

读/写时序

DS18B20的数据读写是通过时序处理位来确认信息交换的。

写时序

由两种写时序:写1时序和写0时序。总线控制器通过写1时序写逻辑1到DS18B20,写0时序写逻辑0到DS18B20。所有写时序必须最少持续60us,包括两个写周期之间至少1us的恢复时间。当总线控制器把数据线从逻辑高电平拉到低电平的时候,写时序开始(见图14)。

总线控制器要生产一个写时序,必须把数据线拉到低电平然后释放,在写时序开始后的15us释放总线。当总线被释放的时候,5K的上拉电阻将拉高总线。总控制器要生成一个写0时序,必须把数据线拉到低电平并持续保持(至少60us)。

总线控制器初始化写时序后,DS18B20在一个15us到60us的窗口内对I/O线采样。如果线上是高电平,就是写1。如果线上是低电平,就是写0。

读/写时序图图14

读时序

总线控制器发起读时序时,DS18B20仅被用来传输数据给控制器。因此,总线控制器在发出读暂存器指令[BEh]或读电源模式指令[B4H]后必须立刻开始读时序,DS18B20可以提供请求信息。除此之外,总线控制器在发出发送温度转换指令[44h]或召回EEPROM指令[B8h]之后读时序,详见DS18B20功能指令节。

所有读时序必须最少60us,包括两个读周期间至少1us的恢复时间。当总线控制器把数据线从高电平拉到低电平时,读时序开始,数据线必须至少保持1us,然后总线被释放(见图14)。在总线控制器发出读时序后,DS18B20通过拉高或拉低总线上来传输1或0。当传输逻辑0结束后,总线将被释放,通过上拉电阻回到上升沿状态。从DS18B20输出的数据在读时序的下降沿出现后15us内有效。

因此,总线控制器在读时序开始后必须停止把I/O脚驱动为低电平15us,以读取I/O脚状态。

图15标识TINIT,TRC和TSAMPLE之和必须小于15us。图16指出,系统时间可以用下面办法达到最大:TINIT和TRC保持时间尽可能校;把控制器采样时间放

到15us周期的最后。

控制器读1的详细时序图15

推荐控制器读1时序图16

相关程序应用注意事项

下面是适用于DS18B20的一些程序应用注意事项。这些注意事项可以从达拉斯公司的网页https://www.sodocs.net/doc/972370474.html,/,上的达拉斯半导体“Application Note Book”获得,亦可通过我们的传真服务((214) 450–0441)获得。

注意事项27:“理解并多次循环冗余检测达拉斯半导体公司的接触式存储器产品”

注意事项55:“扩大接触式存储器的接触范围”

注意事项74:“通过串行接口读取和写入接触式存储器”

注意事项104:“出示最低限温度”

注意事项 106:“复杂的微型接口”

注意事项 108:“从长远看—微型接口”

与AN74契合的单总线测试程序可以在达拉斯的网页或匿名登陆的FTP上下载。

DS18B20操作举例 1

在这个例子里,总线上挂有多只寄生电源模式下的DS18B20,控制器对其中的一只操作启动温度转换,然后读取它的高速暂存器并重新计算CRC以确认数据。

控制器状态数据(LSB在前)内容

TX 复位控制器发出复位脉冲

RX 存在DS18B20返回存在脉冲

TX 55h 发匹配ROM指令

TX 64位ROM编码发DS18B20地址

TX 44h 发温度转换指令

TX DQ引脚高电平DQ引脚保持至少500ms高电平,以完成温度转换TX 复位复位脉冲

RX 存在存在脉冲

TX 55h 发匹配ROM指令

TX 64位ROM编码发DS18B20地址

TX BEh 发读暂存器指令

RX 9个数据字节读整个暂存器加上CRC:控制器重新计算从暂存

器读到的8个数据字节的CRC,把计算的CRC和

读取的CRC进行比较,如果相同,控制器向下进

行,如果不同,就重复读操作。

DS18B20操作举例 2

总线上仅由一个寄生电源模式下的DS18B20,控制器执行写存储器操作。

控制器状态数据(LSB在前)内容

TX 复位复位脉冲

RX 存在存在脉冲

TX CCh 忽略ROM指令

TX 4Eh 写暂存器指令

TX 3个数据字节写3个数据到TH,TL和配置寄存器

TX 复位复位脉冲

RX 存在存在脉冲

TX CCh 忽略ROM指令

TX BEh 读暂存器指令

RX 9个数据字节读整个暂存器加上CRC:控制器重新计算从暂存

器读到的8个数据字节的CRC,把计算的CRC和

读取的CRC进行比较,如果相同,控制器向下进

行,如果不同,就重复读操作。

TX 复位复位脉冲

RX 存在存在脉冲

TX CCh 忽略ROM指令

TX 48h 拷贝暂存器指令

TX DQ数据线强上拉控制器在执行拷贝操作时给DQ线一个强上拉并

至少保持10ms

极限使用条件

各引脚对地电压:-0.5V到+0.6V

工作温度: -55℃到+125℃

储存温度: -55℃到+125℃

焊接温度:参见J-STD-020A的规格

*以上指出器件在进行正常操作时的所需要的环境条件,可能还有部分没有说明但是在操作规格中已经暗示的器件可正常运行环境。长期工作于极限条件下可能会影响器件的可靠性。

直流电特性(-55°C to +125°C; V DD=3.0V to 5.5V)

备注:

1.所有的电压参考点都是接地点。

2.上拉电压是这么得来的:假设上拉器件是完美的,因此上拉的高电平应该与

VPU相等。为了达到DS18B20的VIH规格,实际晶体管上拉供电必须包括电压跌落极限;因此,VPU_ACTUAL=VPU_IDEAL+VTRANSISTOR。

3.典型曲线图见图17。

4.逻辑0电压在吸收电流为1mA时得到。

5.在寄生电源模式低压状态下,为保证出现一个脉冲,VLMAX在VCC低至0.5V

时得到。

6.逻辑1电压在源电流为1mA时得到。

7.待机电流最大定义到70℃。125℃时典型待机电流为3uA。

8.为了将IDDS减到最少,DQ的范围如下:GND≤DQ≤GND + 0.3V or V DD –0.3V

≤DQ≤V DD。

9.动态电流涉及温度转换和写EEPROM存储器。

10.DQ数据线为高(“hi-Z”状态)。

11.误差数据在125℃,VDD=5.5V条件下测试1000小时得到。

交流电特性: NV 存储器(-55°C to +100°C; V DD=3.0V to 5.5V)

交流电特性:(-55°C to +100°C; V DD=3.0V to 5.5V)

备注:

1.关于时序见图18。

2.在寄生电源模式下,若Trstl>960us,可能会发生复位动作。

DS18B20中文资料--最全版

18B20温度传感器应用解析 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: ?? 全数字温度转换及输出。 ?? 先进的单总线数据通信。 ?? 最高12位分辨率,精度可达土0.5摄氏度。 ?? 12位分辨率时的最大工作周期为750毫秒。 ?? 可选择寄生工作方式。 ?? 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) ?? 内置EEPROM,限温报警功能。 ?? 64位光刻ROM,内置产品序列号,方便多机挂接。 ?? 多样封装形式,适应不同硬件系统。 DS18B20芯片封装结构: DS18B20引脚功能: ·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚 DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是: ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。 RAM及EEPROM结构图: 图2 我们在每一次读温度之前都必须进行复杂的且精准时序的处理,因为DS18B20的硬件简单结果就会导致软件的巨大开消,也是尽力减少有形资产转化为无形资产的投入,是一种较好的节约之道。 控制器对18B20操作流程: 1,复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。 2,存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

18B20应用手册

DoYoung 电子技术—创造独立资源! 18B20温度传感器应用解析 DoYoung 原创 V2.0 2007.3.16 DS18B20 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感 器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我 们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工 作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: .. 全数字温度转换及输出。 .. 先进的单总线数据通信。 .. 最高12位分辨率,精度可达土0.5摄氏度。 .. 12位分辨率时的最大工作周期为750毫秒。 .. 可选择寄生工作方式。 .. 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) .. 内置EEPROM,限温报警功能。 .. 64位光刻ROM,内置产品序列号,方便多机挂接。 .. 多样封装形式,适应不同硬件系统。

DS18B20芯片封装结构: 图1 DS18B20引脚功能:·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是:ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。 RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。

DS18B20数据手册-中文版

概述 DS18B20数字温度传感器提供9-Bit 到12-Bit的摄氏温度测量精度和一个用户可编程的非易失性且具有过温和低温触发报警的报警功能。DS18B20采用的1-Wire通信即仅采用一个数据线(以及地)与微控制器进行通信。该传感器的温度检测范围为-55℃至+125℃,并且在温度范围超过-10℃至85℃之外时还具有+-0.5℃的精度。此外,DS18B20可以直接由数据线供电而不需要外部电源供电。 每片DS18B20都有一个独一无二的64位序列号,所以一个1-Wire总线上可连接多个DS18B20设备。因此,在一个分布式的大环境里用一个微控制器控制多个DS18B20是非常简单的。这些特征使得其在HV AC环境控制,在建筑、设备及机械的温度监控系统,以及温度过程控制系统中有着很大的优势。 特性 ·独特的1-Wire总线接口仅需要一个管脚来通信。 ·每个设备的内部ROM上都烧写了一个独一无二的64位序列号。 ·多路采集能力使得分布式温度采集应用更加简单。 ·无需外围元件。 ·能够采用数据线供电;供电范围为3.0V至5.5V。 ·温度可测量范围为:-55℃至+125℃(-67℉至+257℉)。 ·温度范围超过-10℃至85℃之外时具有+-0.5℃的精度。 ·内部温度采集精度可以由用户自定义为9-Bits至12-Bits。 DS18B20 分辨率可编程 1-Wire数字温度传感器 ·温度转换时间在转换精度为12-Bits时达到最大值750ms。 ·用户自定义非易失性的的温度报警设置。·定义了温度报警搜索命令和当温度超过用户自定义的设定值时。 ·可选择的8-Pin SO (150 mils), 8-PinμSOP,及3-Pin TO-92封装。 ·与DS1822程序兼容。 ·应用于温度控制系统,工业系统,民用产品,温度传感器,或者任何温度检测系统中。 管脚定义图

DS18B20中文全套资料

温度传感器DS18B20资料 2008-08-28 16:06 美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C 范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 (3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 (4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内 (5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ (6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,

DS18B20中文资料

Skyle 整理----skyle@https://www.sodocs.net/doc/972370474.html,-----有不对之处请来信指正 数字温度传感器DS1820(DS18B20)的应用 一 单线数字温度计DSl820介绍 DSl820数字温度计提供9位(二进制)温度读数指示器件的温度信息经过单线接口送 入DSl820或从DSl820送出因此从主机CPU 到DSl820仅需一条线(和地线)DSl820的电源可以由数据线本身提供而不需要外部电源因为每一个DSl820在出厂时已经给定了唯一的序号因此任意多个DSl820可以存放在同一条单线总线上这允许在许多不同的地方放置温度敏感器件DSl820的测量范围从-55到 +125增量值为 0.5可在l s(典型值)内把温度变换成数字 每一个DSl820包括一个唯一的64位长的序号该序号值存放在DSl820内部的ROM(只读存贮器)中开始8位是产品类型编码(DSl820编码均为10H)接着的48位是每个器件唯一的序号最后8位是前面56位的CRC(循环冗余校验)码DSl820中还有用于贮 存测得的温度值的两个8位存贮器RAM 编号为0号和1号1号存贮器存放温度值的符号如果温度为负()则1号存贮器8位全为1否则全为00号存贮器用于存 放温度值的补码LSB(最低位)的1表示0.5 将存贮器中的二进制数求补再转换成十进制数并除以2就得到 被测温度值(-550 125)DSl820的引脚如图226l 所示每只D51820都可以设置成两种供电方式即数据 总线供电方式和外部供电方式采取数据总线供电方式可以节省一根导线但完成温度测量的时间较长采取外部供电方式则多用一根导线但测量速度较快 温度计算 1 Ds1820用9位存贮温值度最高位为符号位下图为18b20的温度存储方式负温度 S=1正温度S=0 如 00AAH 为+85,0032H 为25FF92H 为55 2Ds18b20用12位存贮温值度最高位为符号位下图为18b20的温度存储方式负温度S=1正温度S=0如 0550H 为 +85 0191H 为25.0625,FC90H 为-55 w w w .t a i -y a n . c o m /b b s

DS18B20中文手册

达拉斯DS18B20 半导体可编程分辨率的 单总线?数字温度计特征引脚排列 l独特的单线接口仅需一个端口引脚 进行通讯 l每个器件有唯一的64位的序列号存 储在内部存储器中 l简单的多点分布式测温应用 l无需外部器件 l可通过数据线供电。供电范围为3.0V 到5.5V。 l测温范围为-55~+125℃(-67~+ 257℉) l在-10~+85℃范围内精确度为±5 ℃ l温度计分辨率可以被使用者选择为 9~12位 l最多在750ms内将温度转换为12位 数字 l用户可定义的非易失性温度报警设 置 l报警搜索命令识别并标志超过程序 限定温度(温度报警条件)的器件 l与DS1822兼容的软件 l应用包括温度控制、工业系统、消费 品、温度计或任何热感测系统 引脚说明 GND -地 DQ -数据I/O VDD -可选电源电压 NC -无连接

说明 DS18B20数字温度计提供9-12位摄氏温度测量而且有一个由高低电平触发的可编程的不因电源消失而改变的报警功能。DS18B20通过一个单线接口发送或接受信息,因此在中央处理器和DS18B20之间仅需一条连接线(加上地线)。它的测温范围为-55~+125℃,并且在-10~+85℃精度为±5℃。除此之外,DS18B20能直接从单线通讯线上汲取能量,除去了对外部电源的需求。 每个DS18B20都有一个独特的64位序列号,从而允许多只DS18B20同时连在一根单线总线上;因此,很简单就可以用一个微控制器去控制很多覆盖在一大片区域的DS18B20。这一特性在HVAC环境控制、探测建筑物、仪器或机器的温度以及过程监测和控制等方面非常有用。 详细的引脚说明表1 8引脚SOIC封装* TO-9封装符号说明 5 1 GND 接地。 4 2 DQ 数据输入/输出引脚。对于单线操作: 漏极开路。当工作在寄生电源模式时 用来提供电源(建“寄生电源”节)。 3 3 VDD 可选的VDD引脚。工作与寄生电源模 式时VDD必须接地。 *所有上表未提及的引脚都无连接。 概览 图1是表示DS18B20的方框图,表1已经给出了引脚说明。64位只读存储器储存器件的唯一片序列号。高速暂存器含有两个字节的温度寄存器,这两个寄存器用来存储温度传感器输出的数据。除此之外,高速暂存器提供一个直接的温度报警值寄存器(TH和TL),和一个字节的的配置寄存器。配置寄存器允许用户将温度的精度设定为9,10,11或12位。TH,TL和配置寄存器是非易失性的可擦除程序寄存器(EEPROM),所以存储的数据在器件掉电时不会消失。 DS18B20通过达拉斯公司独有的单总线协议依靠一个单线端口通讯。当全部器件经由一个3态端口或者漏极开路端口(DQ引脚在DS18B20上的情况下)与总线连接的时候,控制线需要连接一个弱上拉电阻。在这个总线系统中,微控制器(主器件)依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址。由于每个装置有一个独特的片序列码,总线可以连接的器件数目事实上是无限的。单总线协议,包括指令的详细解释和“时序”见单总线系统节。 DS18B20的另一个功能是可以在没有外部电源供电的情况下工作。当总线处于高电平状态,DQ与上拉电阻连接通过单总线对器件供电。同时处于高电平状态的总线信号对内部电容(Cpp)充电,在总线处于低电平状态时,该电容提供能量给器件。这种提供能量的形式被称为“寄生电源”。作为替代选择,DS18B20同样可

DS18B20数据手册_引脚图_参数

General Description The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central micro-processor. In addition, the DS18B20 can derive power directly from the data line (“parasite power”), eliminating the need for an external power supply. Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18B20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring and control systems. Applications ●Thermostatic Controls ●Industrial Systems ●Consumer Products ●Thermometers ●Thermally Sensitive Systems Benefits and Features ●Unique 1-Wire ? Interface Requires Only One Port Pin for Communication ●Reduce Component Count with Integrated Temperature Sensor and EEPROM ? Measures Temperatures from -55°C to +125°C (-67°F to +257°F) ? ±0.5°C Accuracy from -10°C to +85°C ? Programmable Resolution from 9 Bits to 12 Bits ? No External Components Required ●Parasitic Power Mode Requires Only 2 Pins for Operation (DQ and GND) ●Simplifies Distributed Temperature-Sensing Applications with Multidrop Capability ? Each Device Has a Unique 64-Bit Serial Code Stored in On-Board ROM ●Flexible User-Definable Nonvolatile (NV) Alarm Settings with Alarm Search Command Identifies Devices with T emperatures Outside Programmed Limits ●Available in 8-Pin SO (150 mils), 8-Pin μSOP , and 3-Pin TO-92 Packages 19-7487; Rev 4; 1/15 1-Wire is a registered trademark of Maxim Integrated Products, Inc. 1-Wire Digital Thermometer

DS18B20中文资料

DS18B20一线总线数字式传感器 DS18B20、DS1822 “一线总线”数字化温度传感器是DALLAS最新单线数字温度传感器,同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为± 2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822与 DS18B20软件兼容,是DS1 8B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPRO M,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20的内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下:

DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该D S18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS1 8B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

数字温度传感器DS18B20中文资料

数字温度传感器DS18B20中文资料

18B20温度传感器应用解析 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLA S(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B 20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: ?? 全数字温度转换及输出。 ?? 先进的单总线数据通信。 ?? 最高12位分辨率,精度可达土0.5摄氏度。 ?? 12位分辨率时的最大工作周期为750毫秒。 ?? 可选择寄生工作方式。 ?? 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) ?? 内置EEPROM,限温报警功能。 ?? 64位光刻ROM,内置产品序列号,方便多机挂接。 ?? 多样封装形式,适应不同硬件系统。 DS18B20芯片封装结构: DS18B20引脚功能: ·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚

DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是: ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。 RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,D S18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。RAM及EEPROM结构图: 图2 我们在每一次读温度之前都必须进行复杂的且精准时序的处理,因为DS18B20的硬件简单结果就会导致软件的巨大开消,也是尽力减少有

数字温度传感器DS18B20介绍

数字温度传感器DS18B20介绍 1、DS18B20的主要特性 1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 1.3、DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 1.4、DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内 1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ 1.6、可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、 0.125℃和0.0625℃,可实现高精度测温 1.7、在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快 1.8、测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力 1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。 2、DS18B20的外形和内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1: DS18B20引脚定义: (1)DQ为数字信号输入/输出端; (2)GND为电源地; (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 图2: DS18B20内部结构图

3、DS18B20工作原理 DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 图3: DS18B20测温原理框图 DS18B20有4个主要的数据部件: (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 (2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 表1: DS18B20温度值格式表 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM 中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

相关主题