搜档网
当前位置:搜档网 › 大数据平台架构设计说明书

大数据平台架构设计说明书

大数据平台架构设计说明书
大数据平台架构设计说明书

大数据平台

总体架构规格说明书

V1.0版

●目录

●目录 (2)

I.简介 (4)

1.目的 (4)

2.词汇表 (4)

3.引用 (4)

II.整体介绍 (5)

1.系统环境 (5)

2.软件介绍 (5)

3.用途 (6)

4.简介 (6)

5.核心技术 (7)

●大规模并行处理MPP (7)

●行列混合存储 (8)

●数据库内压缩 (8)

●内存计算 (9)

6.M ASTER N ODE (9)

7.D ATA N ODE (9)

III.MASTER NODE (10)

1.简介 (10)

2.C ONTROL 模块 (10)

3.SQL模块 (10)

4.A CTIVE-P ASSIVE SOLUTION (16)

IV.DATA NODE (19)

1.简介 (19)

2.重要模块 (19)

3.数据存储 (20)

4.数据导入 (21)

V.分布式机制 (23)

1.概括 (23)

2.数据备份和同步 (24)

3.时间同步机制 (27)

4.分布式LEASE机制查询过程备忘 (27)

VI.内存管理机制 (29)

VII.V3.0版的初步设计思路 (30)

I.简介

1.目的

本文详细描述了DreamData数据库系统。介绍了系统的目标、功能、系统接口、系统行为、系统约束以及系统如何响应。本文面向系统参与者以及系统开发人员。

2.词汇表

3.引用

II.整体介绍

1.系统环境

图 1 –系统环境

2.软件介绍

DreamData是在从分布式数据库的基础上发展而来,同时加入一些NoSQL的基因的新一代大数据实时分析分布式数据库,并且支持内存计算。

DreamData最大的特色就是大而快,它能极快地导入和处理海量的数据,并在这个基础上能极快地进行用户所需数据统计和分析。相对传统数据库Oracle而言,DreamData的单机性能要高出50倍以上,并且随着节点数量的增加,整体性能会同步提升。

3.用途

●实时决策能力;

●提高业务效率;

●快速智能发现新观点和商业机会;

●提供业务产出;

●提升IT效率;软件架构

4.简介

图 2 –系统架构图

5.核心技术

DreamData采用了大量最新的技术成果,最核心的技术包括:大规模并行处理MPP、行列混合存储、数据库内压缩和内存计算。这些技术之间并不是孤立存在,而是相互关联,形成一个高效的系统。

大规模并行处理MPP

DreamData被设计为能在可用内核的数量,和跨越主机分配使用的并行执行上很好地进行扩展。如图3所示。

图3. 并行处理原理示意

一张大表拆分成多个Tablet,被复制分布存储在不同的节点上以便并行处理;通过内存本地化处理把大数据量和计算量分散到不同处理器;同时任何节点宕机将不影响数据完整和业务连续性,提供了系统的高可用性。

MPP系统不共享资源,处理单元可获得全部计算资源,处理效率高;处理单元之间互不影响,当通信占比较小时MPP优于传统的SMP数据库架构,更适合数据分析与决策的场景。

●行列混合存储

DreamData主要面向大数据的实时处理,为了提高数据处理效率,尤其是常用的聚合、扫描和快速搜索功能,系统采用行列混合存储的方式,按行分区保留数据的关联性,按列组织提高数据压缩效率和快速聚合能力。

从概念上来说,一张数据库表是一个二维的数据结构,以行和列形式组织单元。而计算机内存则是以线性顺序组织。对于存储至线性存储器中的表,如图3中所示,列式数据组织方式意味着更高的压缩效率和快速聚合能力。

图4. 列式数据组织的优势

●数据库内压缩

采用经典的高效无损压缩算法技术,进一步提高性能,并极大地节省了数据存储空间。用户可获得10倍以上的空间节省,并且同时获得相应有效I/O性能提升。系统无需解压即可访问数据,轻量级压缩算法减少压缩/解压时间。

●内存计算

硬件上得益于近年来性能的提升,CPU普遍采用多核架构(每块CPU 8Core),X86服务器硬件成本较低,可采用多服务器或多刀片大规模并行扩展。同时加上DreamData软件技术上的创新,包括行列混合存储技术、高效压缩、数据分片、快速索引、增量插入等方法手段,允许系统实现内存计算:

◆将数据保存在内存中相比从磁盘上访问能够极大地提高应用的性能;

◆采用列式存储可以将更多的数据装进内存;

◆数据装进内存里的同时也会同步写入硬盘,即使宕机也不会丢失数据。

6.Master Node

现在主要包括Control模块和SQL模块这两个部分,在这个基础上加入专门用于解析数据挖掘,并支持R语言的Data Mining模块,为了可用性,安全性,以及性能,一个集群中可以有多个Master Node,在SQL和Data Mining这两个功能层面上,每个Master Node之间会采用负载均衡的方式来进行调度,但在Control 功能方面将会只有一个Master Node处于Active状态,其他的Master Node处于 Passive模式。

7.Data Node

Data Node是实际对数据进行存储,并且能够对数据进行初步处理和过滤,以仅可能少的数据返回给Master Node端,Data Node存储数据的单位是Tablet,并且一个Data Node会有多个Tablet,并且他们是扁平的,在底层存储数据的时候用到了行列混合存储以及深度压缩和浅度压缩技术。还有Data Node提供多线程技术的设置,通过来进行加速。

III.Master Node

1.简介

Master Node主要包括Control和SQL这两个模块,并且在多个Master Node之间支持Active和Passive的备份方法。

2.Control 模块

用于管理这个集群基础的元数据,包括表结构和DataNode信息,还有负责集群中异常事件的处理和Data Node 注册信息,比如,某个Date Node 突然离线或者宕机了,Control Server会通过Lease机制来。

表分布策略

当Control模块收到建表的SQL命令后,会根据命令中的TabletGroup分片请求个数,从保持连接的Data Node中,根据一定策略选出最合适的符合分片请求个数的多个Data Node,如果挑选出的合格Data Node个数小于要求的分片个数,则报错返回,反之则在相应的Data Node上建立此分片。如果副本数量要求大于1,则会以之前主分片为模板,在间隔步长为1的Data Node上建立相应的副本。当分片数为1时,副本则被安排在其他选出的Data Node上。

3.SQL 模块

本质是一个经过我们云人团队修改的PostgreSQL,版本号,它主要用于在这个集群的前段接收来自命令行YSQL的SQL指令,并且也接受通过JDBC/ODBC等方式调用的SQL指令。

当SQL模块接收到查询语句后,首先将其传递到查询分析模块,进行词法、语法和语义分析。若是命令则将其分配到功能性命令处理模块;对于复杂命令则要为其构建查询树,然后交给查询重写模块。查询重写模块接收到查询树后,按照规则和视图进行查询树的重写,生成新的查询树。生成路径模

块依据新的查询树,考虑访问方式等问题,生成最优访问路径。最后最优路径生成可执行计划,并将其传递到查询执行模块执行。

在查询执行阶段,将根据执行计划进行数据提取、处理、存储等一系列活动,以完成整个查询执行过程。查询执行器分为策略选择(Portal)、辅助处理(ProcessUtility)、执行器(Executor)和特定功能子模块。查询执行器会首先在策略选择模块根据输入执行计划选择对应的处理方式(辅助处理、执行器)。选择执行策略后,会将执行控制流程交给相应的处理模块。执行器输入包含了一个查询计划树,用于实现针对于数据表中元组的增删查改等操作。而辅助处理模块则处理其他各种情况。执行过程中会涉及表达式计算、投影运算和元组操作等功能,并且整个查询执行中会被重复调用,把他们单独划分为特定功能子模块。

?查询执行策略

执行流程进入查询执行阶段后,会为每种执行计划选择相应的处理过程,执行相应的处理,最后根据要求返回结果。SQL语句会被查询编译器转换成两种基本类型的数据结构(执行计划树和非执行计划树),并在执行过程中为其选择合适的执行部件(执行器或者辅助处理)。DML语句会被查询编译器转换成执行计划树,因为DML语句的执行过程十分相近,并且都可以使用统一的数据结构加以表示和处理,所以被作为一种特殊的方式,单独进行优化和处理。其他类型的语句被归为非计划树操作,使用另一处理流程进行处理。然而,有些复杂的SQL语句不能简单的归类为一种基本处理类型,会将其解析成两种基本类型数据结构的序列,并将其顺序执行来完成请求操作。

?执行器

查询计划树会由执行器统一进行处理。其输入时包含查询计划树的数据结构QueryDesc,输出则是相关执行信息和结果数据。如果希望执行某个计划树,则仅需构造包含此计划树的QueryDesc,并依此调用ExecutorStart、ExecutorRun、ExecutorEnd三个过程即能完成相应的处理过程。

执行器对于查询计划树的处理,最终被转换为针对计划树上每一个节点的处理。每种节点表示一种物理代数的操作。节点的处理呗设计为需求驱动的模式,父节点使用孩子节点提供的数据作为输入,并向上层节点返回处理结果。实际执行时,从根节点开始处理,每个节点的执行过程会根据需求自动调用孩子节点的执行过程来获取输入数据,从而层层递归执行,实现整个计划树的遍历执行过程。

计划节点

查询执行的主要内容是对各个节点进行处理,由于使用了节点表示、递归调用、统一接口等设计,计划节点的功能相对独立、代码总体流程相似。

计划节点分为,控制节点、扫描节点、物化节点、连接节点。

控制节点:用于处理特殊情况的节点,用于实现特殊流程。

扫描节点:用于扫描表等对象以获取元组。

物化节点:这类节点种类比较复杂,主要特点是,能够缓存执行结果到辅助存储中。物化节点会在第一次执行时生成其中的所有结果元组,然后将结果元组缓存起来,等待上层节点取用;二非物化节点则是每次被执行时生成一个结果元组并返回给上层。例如:Sort节点能够获取下层节点返回的所有元组并更具制定属性进行排序,并将结果缓存起来,等上层节点从Sort节点取元组。

连接节点:此类节点对应于关系代数中的连接操作,可以实现多种连接方式,每种节点实现一种连接算法。例如:hash join。

?元组操作

使用元组(HeapTuple)存储所有信息,包括各种系统信息、数据。执行器在执行过程中需要进行投影和属性选择判断,此时需要快速获取元组数据。另外物化节点缓存元组时,要求元组体积更小,以节省空间,因此定义了MinimalTuple去掉事务相关信息。

?表达式计算

处理SQL语句中的函数调用、计算式和条件表达式时需要用到表达式计算。表达式的表示方式与查询计划树的计划节点类似,用各种表达式计划节点来完成相应操作。表达式状态公共根类为ExprState,定义了类型type、辅助表达式节点指针expr以及用于实现该节点操作的函数指针evalfunc。

?投影操作

投影操作本身也是通过表达式计算来实现。投影操作时一种属性过滤过程,该操作队元组的属性进行精简,把那些在上层计划节点中不需要用到的属性从元组中去掉,从而构造一个精简版本的元组。投影操作中那些被保留下来的属性保存在查询计划的目标属性中,也被称为投影属性。

本节描述了对于各种SQL语句的一般执行流程。对于用户输入的SQL语句,优化器将为可优化的语句生成计划树,最终策略选择器会通过判断选择执行器来处理,而数据描述语句则在执行过程中由策略选择器使其统一进入辅助处理器执行。

作为查询执行部分的入口,策略选择器提供对外的调用接口:ProtalStart、ProtalRun、ProtalEnd,对内提供了执行流程和部件的选择。外层通过调用Protal的接口,将计划器输出的执行计划传输给Protal,Protal通过对于链表中操作的类型和链表长度等信息来决定选择怎样的执行过程,对于简单的查询语句则直接调用执行器,对于需要缓存输出到直到执行完成的语句则需要为其增加缓存结构和输出过程,对于更为复杂的过程提供了更为通用的复杂处理流程。无论哪种执行过程,可优化语句最终都会生成查询计划树并由执行器来处理,而其他数据描述语句的功能由辅助处理器来完成。

对于种类繁多的数据描述语句,每种都有一个Stmt类型的数据结构保存其语法分析的信息。通过对Stmt类型的判断,辅助处理会为其调用相应的语法解析和执行处理过程。

可优化语句提供了Plan类型的子类对象构成的计划树,每个计划节点数据结构共同继承于Plan节点,计划树的每种节点对应了四类操作中的一种。

Plan只是一个查询计划,初始化过程中为这个计划中的每个节点生成状态节点并构造状态树,保存执行的相关信息。最总通过执行器执行每种节点的执行函数来实现各种节点的功能操作,在执行中利用状态树中信息处理相关数据。各个节点的执行过程中普遍包含了投影和选择操作,以及对下层节点的处理过程调用。

执行器通过迭代的调用每个节点处理过程,从下层计划节点对应的执行流程中获取数据,并经过各种节点的处理流程,得到最终的输出结果。对于修改元组的相关操作则是在获取到元组后通过调用相关存储操作接口实现的。

4.Active-Passive solution

图 3 – Active-Passive overview

Master node可以被配置为主备模式。分别在两台不同的主机上安装相同版本的软件(包括操作系统,PGPool-II,Control模块,SQL 模块)。主Master Node 通过控制虚拟IP 对外提供服务。Master Node 通过异步/同步数据流备份的方式在主Master Node和副Master Node之间进行数据复制。

图 4 – Master node 数据复制

Master node数据流的复制分为同步复制和异步复制,大部分操作流程都相同,主要的区别在于同步模式是主Master节点会将每个操作在副Master节点操作成功后才返回结果,而异步模式则在主节点操作成功后就立即返回,随后在副节点上重复这个操作。

异步复制过程主要有如下几步:

当master节点启动后,发现自己处于副节点模式,会启动一个wal进程,其向主节点的接收wal日志信息,如果有新的操作发生,则在本节点上执行相应的操作。

当主节点接收到副节点需要wal日志信息的请求,则会开始检测主节点上的wal日志信息,根据副节点发过来的cursor信息,把新的操作日志发送过去。

因为Master Node并不能自动进行主备切换,所以这里引入了PGPool-II。PGPool-II在这里扮演一个看门口狗的角色,当PGPool-II发现本机的Master node不能提供服务,或者副节点上的PGPool-II发

现主节点PGPool-II已经宕机,会触发副节点上的Master Node切换到主模式。并且虚拟IP的所有权会

从原来的主节点转让给原来的副节点。此时原来的副节点顺利切换成主节点并继续提供一致的服务,原来的主节点则可以进行检测修复等操作。对于用户而言,完全察觉不出任何的区别上。

IV.Data Node

1.简介

是实际对数据进行存储,并且能够对数据进行初步处理和过滤,以仅可能少的数据返回给SQL Server端,DataNode存储数据的单位是Tablet,并且一个DataNode会有多个Tablet,并且他们是扁平的。还有DataNode可以使用多线程技术来进行加速。

图 5 – Data Node Architecture

2.重要模块

?DB

也就是数据库,其包含多个Table,DB这个概念还是偏管理的,资源隔离和用户管理,理论上来说,其实Table和DataNode都是属于某个DB的资源,也就是说,某些DataNode只能用于某个DB,并不能像现在那样全集群所有DB共享;

?Table

在DreamData中,现在主要是通过Hash算法将一个Table分为多个Tablet Group,每个Tablet

Group包含一定的Hash Slot个数,这个Hash Slot和这个Table的Distributed Column相关,任何行到底属于具体HashSlot,都通过计算这个行的Distributed Column列的Hash值获得的,一般选择比较常用和重复几率较低的列,比如主键。还有具体每个Table的Hash Slot个数虽然现在大多采用一个固定的算法,但是如果HashSlot多的话,可能压缩率会低一点,但是对于带filter的场景,在性能方面会更好。

?Tablet Group

不仅像上面说的那样,Tablet Group不仅包含属于一定Hash Slot的数据。并且它可以有多个Tablet 作为备份,但是现在暂时只有做为主备份的Tablet接受查询请求,这样的做法核心还是一致性的问题,这样做法一致性会比较容易做到,具有多个Tablet在Tablet Group中备份的顺序和Order一致;

?Tablet

每个Tablet应该包括其所属Tablet Group的所有的数据,每个Tablet在技术层面,主要包括WAL,Memstore和YFile这三个结构,具体可以看附录;

?Tablet Order

主要用来表示异步备份的顺序的Pipeline,也就是假设有三个Tablet,新的数据先到Tablet 0,之后异步到Tablet 1,之后异步到Tablet 2;

?TableInfo

这个数据结构件包含所有Table相关的元数据,无论DataNode还是Client端都主要通过从ControlServer获取其TableInfo,并且通过处理这个TableInfo获取其Tablet Order。

3.数据存储

分析一下用于存储和分析数据的DataNode节点,每个DataNode会运行和存储多个Tablet,当数据写入的时候,数据会首先写到这个Tablet的WAL日志上,接着会写入至一个位于内存的数据结构Memstore中,WAL全称为“Write-Ahead Log”,主要用于暂存那些最新的数据更新请求,以避免当Tablet中的Memstore被意外关闭时所造成的数据丢失。接着,当Memstore存储的数据达到一定的阀值

大数据处理平台构架设计说明书

大数据处理平台及可视化架构设计说明书 版本:1.0 变更记录

目录 1 1. 文档介绍 (3) 1.1文档目的 (3) 1.2文档范围 (3) 1.3读者对象 (3) 1.4参考文献 (3) 1.5术语与缩写解释 (3) 2系统概述 (4) 3设计约束 (5) 4设计策略 (6) 5系统总体结构 (7) 5.1大数据集成分析平台系统架构设计 (7) 5.2可视化平台系统架构设计 (11) 6其它 (14) 6.1数据库设计 (14) 6.2系统管理 (14) 6.3日志管理 (14)

1 1. 文档介绍 1.1 文档目的 设计大数据集成分析平台,主要功能是多种数据库及文件数据;访问;采集;解析,清洗,ETL,同时可以编写模型支持后台统计分析算法。 设计数据可视化平台,应用于大数据的可视化和互动操作。 为此,根据“先进实用、稳定可靠”的原则设计本大数据处理平台及可视化平台。 1.2 文档范围 大数据的处理,包括ETL、分析、可视化、使用。 1.3 读者对象 管理人员、开发人员 1.4 参考文献 1.5 术语与缩写解释

2 系统概述 大数据集成分析平台,分为9个层次,主要功能是对多种数据库及网页等数据进行访采集、解析,清洗,整合、ETL,同时编写模型支持后台统计分析算法,提供可信的数据。 设计数据可视化平台 ,分为3个层次,在大数据集成分析平台的基础上实现大实现数据的可视化和互动操作。

3 设计约束 1.系统必须遵循国家软件开发的标准。 2.系统用java开发,采用开源的中间件。 3.系统必须稳定可靠,性能高,满足每天千万次的访问。 4.保证数据的成功抽取、转换、分析,实现高可信和高可用。

大数据平台建设方案

大数据平台建设方案 (项目需求与技术方案) 一、项目背景 “十三五”期间,随着我国现代信息技术的蓬勃发展,信息化建设模式发生根本性转变,一场以云计算、大数据、物联网、移动应用等技术为核心的“新 IT”浪潮风起云涌,信息化应用进入一个“新常态”。***(某政府部门)为积极应对“互联网+”和大数据时代的机遇和挑战,适应全省经济社会发展与改革要求,大数据平台应运而生。 大数据平台整合省社会经济发展资源,打造集数据采集、数据处理、监测管理、预测预警、应急指挥、可视化平台于一体的大数据平台,以信息化提升数据化管理与服务能力,及时准确掌握社会经济发展情况,做到“用数据说话、用数据管理、用数据决策、用数据创新”,牢牢把握社会经济发展主动权和话语权。 二、建设目标 大数据平台是顺应目前信息化技术水平发展、服务政府职能改革的架构平台。它的主要目标是强化经济运行监测分析,实现企业信用社会化监督,建立规范化共建共享投资项目管理体系,推进政务数据共享和业务协同,为决策提供及时、准确、可靠的信息依据,提高政务工作的前瞻性和针对性,加大宏观调控力度,促进经济持续健康发

展。 1、制定统一信息资源管理规范,拓宽数据获取渠道,整合业务信息系统数据、企业单位数据和互联网抓取数据,构建汇聚式一体化数据库,为平台打下坚实稳固的数据基础。 2、梳理各相关系统数据资源的关联性,编制数据资源目录,建立信息资源交换管理标准体系,在业务可行性的基础上,实现数据信息共享,推进信息公开,建立跨部门跨领域经济形势分析制度。 3、在大数据分析监测基础上,为政府把握经济发展趋势、预见经济发展潜在问题、辅助经济决策提供基础支撑。 三、建设原则 大数据平台以信息资源整合为重点,以大数据应用为核心,坚持“统筹规划、分步实施,整合资源、协同共享,突出重点、注重实效,深化应用、创新驱动”的原则,全面提升信息化建设水平,促进全省经济持续健康发展。

深入浅出解析大数据平台架构

目录: 什么是大数据 Hadoop介绍-HDFS、MR、Hbase 大数据平台应用举例-腾讯 公司的大数据平台架构 “就像望远镜让我们能够感受宇宙,显微镜让我们能够观测微生物一样,大数据正在改变我们的生活以及理解世界的方式……”。 大数据的4V特征-来源 公司的“大数据” 随着公司业务的增长,大量和流程、规则相关的非结构化数据也爆发式增长。比如: 1、业务系统现在平均每天存储20万张图片,磁盘空间每天消耗100G; 2、平均每天产生签约视频文件6000个,每个平均250M,磁盘空间每天消耗1T; …… 三国里的“大数据” “草船借箭”和大数据有什么关系呢?对天象的观察是基于一种对风、云、温度、湿度、光照和所处节气的综合分析这些数据来源于多元化的“非结构”类型,并且数据量较大,只不过这些数据输入到的不是电脑,而是人脑并最终通过计算分析得出结论。

Google分布式计算的三驾马车 Google File System用来解决数据存储的问题,采用N多台廉价的电脑,使用冗余(也就是一份文件保存多份在不同的电脑之上)的方式,来取得读写速度与数据安全并存的结果。 Map-Reduce说穿了就是函数式编程,把所有的操作都分成两类,map与reduce,map用来将数据分成多份,分开处理,reduce将处理后的结果进行归并,得到最终的结果。 BigTable是在分布式系统上存储结构化数据的一个解决方案,解决了巨大的Table的管理、负载均衡的问题。 Hadoop体系架构 Hadoop核心设计

HDFS介绍-文件读流程 Client向NameNode发起文件读取的请求。 NameNode返回文件存储的DataNode的信息。 Client读取文件信息。 HDFS介绍-文件写流程

苏宁大数据平台任务调度模块架构设计

苏宁大数据离线任务开发调度平台实践:任务调度模块架构设计 weixin_34262482 2019-02-01 08:00:00 375 收藏2 作为国内最大的电商平台之一,苏宁每天要处理数量巨大的数据。为了更快速高效地处理这 些数据,苏宁调度平台采取了哪些措施呢? 本文是苏宁大数据离线任务开发调度平台实践系列文章之上篇,详解苏宁的任务调度模块。 目录 1.绪言\t1 2.设计目标与主要功能\t2 3.专业术语\t3 4.调度架构设计\t5 5.服务重启和任务状态恢复\t6 5.1 Master Active 组合服务\t7 5.2 Master HA高可用设计\t7 5.3 Recover任务状态恢复设计\t7 6.Web API接口服务\t9 7.后续\t10 1.绪言 在上一篇文章《苏宁大数据离线任务开发调度平台实践》中,从用户交互功能、任务调度、 任务执行、任务运维和对外服务等几方面,宏观层面进行了理论和实践的概述。 产品的用户功能重点需要把握用户实际的任务开发运维需求,合理的规划设计产品功能,在 使用和运维上便于用户操作,降低用户的开发使用成本。简单的说就是主要保证用户任务、 任务流等关键元数据的配置信息的准确性,以及任务状态的查询和干预能力,技术上实现不 存在难点,在此不再详细说明。 任务执行模块侧重于任务被领取后,如何根据任务类型选择不同的执行器(Executer)提交 任务执行,并将任务的执行状态及时准确的返回,由任务调度服务根据返回状态做相应的下 一步处理,除此以外还涉及到任务资源加载、任务配置解析与转换、自身健康状态检查与汇 报、worker进程与任务子进程通信、任务隔离、对外接口服务等,这块将在后面一节再跟

云计算平台设计参考架构

云计算平台设计参考架构 在私有云当中,主要包含以下几个组件:物理基础架构、虚拟化层、服务自动化层、服务门户、安全体系、云API和可集成的其它功能。(如图私有云参考架构) 图3.4 私有云参考架构 a) 物理基础架构 物理架构的定义是组成私有云的各种计算资源,包括存储、计算服务器、网络,无论是云还是传统的数据中心,都必须基于一定的物理架构才能运行。

在私有云参考架构中的物理基础架构其表现形式应当是以资源池模式出现,也就是说,所有的物理基础架构应当是统一被管,且任一设备可以看成是无状态,或者说并不与其它的资源,或者是上层应用存在紧耦合关系,可以被私有云根据最终用户的需求,和预先定制好的策略,对其进行改变。 b) 虚拟化层 虚拟化是实现私有云的前提条件,通过虚拟化的方式,可以让计算资源运行超过以前更多的负载,提升资源利用率。虚拟化让应用和物理设备之间采用松耦合部署,物理资源状态的变更不影响到虚拟化的逻辑计算资源。且可以根据物力基础资源变化而动态调整,提升整体的灵活性。 c) 服务自动化层 服务自动化层实现了对计算资源操作的自动化处理。它可以集中的监控目前整体计算资源的状态,比如性能、可用性、故障、事件汇总等等,并通过预先定义的自动化工作流进行

相关的处理。 服务自动化层是计算资源与云计算服务门户相关联的重要部件,服务自动化层拥有自动化配置和部署功能,可以进行服务模板的制定,并将服务内容和选择方式在云计算服务门户上注册,用户可以通过服务门户上的服务目录来选择相应的计算资源请求,由服务自动化层实现服务交付。 d) 云API 云应用开发接口提供了一组方法,让云服务门户和不同的服务自动化层进行联系,通过云API,可以在一个私有云当中接入多个不同地方的计算资源池,包括不同架构的计算资源,并通过各自的服务自动化体系去进行服务交互。 e) 云服务门户 云服务门户是用户使用私有云计算资源的接口,云服务门户上提供了所有可用服务的目录,并提供了完善的服务申请流程,用户可以执行申请、变更、退回等计算资源使用服务。

大数据平台架构~巨衫

1.技术实现框架 1.1大数据平台架构 1.1.1大数据库是未来提升业务能力的关键要素 以“大数据”为主导的新一波信息化浪潮正席卷全球,成为全球围加速企业技术创新、推动政府职能转变、引领社会管理变革的利器。目前,大数据技术已经从技术研究步入落地实施阶段,数据资源成为未来业务的关键因素。通过采集和分析数据,我们可以获知事物背后的原因,优化生产/生活方式,预知未来的发展动态。 经过多年的信息化建设,省地税已经积累了丰富的数据资源,为下一步的优化业务、提升管理水平,奠定了坚实的基础。 未来的数据和业务应用趋势,大数据才能解决这些问题。 《1.巨杉软件SequoiaDB产品和案例介绍 v2》P12 “银行的大数据资产和应用“,说明税务数据和业务分析,需要用大数据解决。 《1.巨杉软件SequoiaDB产品和案例介绍 v2》P14 “大数据与传统数据处理”,说明处理模式的差异。 1.1.2大数据平台总体框架 大数据平台总体技术框架分为数据源层、数据接口层、平台架构层、分析工具层和业务应用层。如下图所示:

(此图要修改,北明) 数据源层:包括各业务系统、服务系统以及社会其它单位的结构化数据和非结构化数据; 数据接口层:是原始数据进入大数据库的入口,针对不同类型的数据,需要有针对性地开发接口,进行数据的缓冲、预处理等操作; 平台架构层:基于大数据系统存储各类数据,进行处理?; 分析工具层:提供各种数据分析工具,例如:建模工具、报表开发、数据分析、数据挖掘、可视化展现等工具; 业务应用层:根据应用领域和业务需求,建立分析模型,使用分析工具,发现获知事物背后的原因,预知未来的发展趋势,提出优化业务的方法。例如,寻找服务资源的最佳配置方案、发现业务流程中的短板进行优化等。 1.1.3大数据平台产品选型 针对业务需求,我们选择巨杉数据库作为大数据基础平台。

云计算资源池平台架构设计

云计算资源池平台架构设计

目录 第1章云平台总体架构设计 (4) 第2章资源池总体设计 (5) 2.1 X86计算资源池设计 (6) 2.1.1 计算资源池设计 (6) 2.1.2 资源池主机容量规划设计 (8) 2.1.3 高可用保障 (9) 2.1.4 性能状态监控 (12) 2.2 PowerVM计算资源池设计 (14) 2.2.1 IBM Power小型机虚拟化技术介绍 (14) 2.2.2 H3Cloud云平台支持Power小型机虚拟化 (16) 2.2.3 示例 (18) 2.3物理服务器计算资源池设计 (19) 2.4网络资源池设计 (20) 2.4.1 网络虚拟化 (20) 2.4.2 网络功能虚拟化 (34) 2.4.3 安全虚拟化 (36) 2.5存储资源池设计 (37) 2.5.1 分布式存储技术方案 (37) 2.6资源安全设计 (46) 2.6.1安全体系 (46) 2.6.2 架构安全 (47) 2.6.3 云安全 (52) 2.6.4 安全管理 (59)

2.6.5 防病毒 (62)

第1章云平台总体架构设计 基于当前IT基础架构的现状,未来云平台架构必将朝着开放、融合的方向演进,因此,云平台建议采用开放架构的产品。目前,越来越多的云服务提供商开始引入Openstack,并投入大量的人力研发自己的openstack版本,如VMware、华三等,各厂商基于Openstack架构的云平台其逻辑架构都基本相同,具体参考如下: 图2-1:云平台逻辑架构图 从上面的云平台的逻辑架构图中可以看出,云平台大概分为三层,即物理资源池、虚拟抽象层、云服务层。 1、物理资源层 物理层包括运行云所需的云数据中心机房运行环境,以及计算、存储、网络、安全等设备。 2、虚拟抽象层 资源抽象与控制层通过虚拟化技术,负责对底层硬件资源进行抽象,对底层硬件故障进行屏蔽,统一调度计算、存储、网络、安全资源池。 3、云服务层 云服务层是通过云平台Portal提供IAAS服务的逻辑层,用户可以按需申请

软件系统的架构设计方案

软件系统的架构设计方 案 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

软件系统的架构设计方案 架构的定义 定义架构的最短形式是:“架构是一种结构”,这是一种正确的理解,但世界还没太平。若做一个比喻,架构就像一个操作系统,不同的角度有不同的理解,不同的关切者有各自的着重点,多视点的不同理解都是架构需要的,也只有通过多视点来考察才能演化出一个有效的架构。 从静态的角度,架构要回答一个系统在技术上如何组织;从变化的角度,架构要回答如何支持系统不断产生的新功能、新变化以及适时的重构;从服务质量的角度,架构要平衡各种和用户体验有关的指标;从运维的角度,架构要回答如何充分利用计算机或网络资源及其扩展策略;从经济的角度,架构要回答如何在可行的基础上降低实现成本等等 软件系统架构(SoftwareArchitecture)是关于软件系统的结构、行为、属性、组成要素及其之间交互关系的高级抽象。任何软件开发项目,都会经历需求获取、系统分析、系统设计、编码研发、系统运维等常规阶段,软件系统架构设计就位于系统分析和系统设计之间。做好软件系统架构,可以为软件系统提供稳定可靠的体系结构支撑平台,还可以支持最大粒度的软件复用,降低开发运维成本。如何做好软件系统的架构设计呢 软件系统架构设计方法步骤 基于体系架构的软件设计模型把软件过程划分为体系架构需求、设计、文档化、复审、实现和演化6个子过程,现逐一简要概述如下。

体系架构需求:即将用户对软件系统功能、性能、界面、设计约束等方面的期望(即“需求”)进行获取、分析、加工,并将每一个需求项目抽象定义为构件(类的集合)。 体系架构设计:即采用迭代的方法首先选择一个合适的软件体系架构风格(如C/S、B/S、N层、管道过滤器风格、C2风格等)作为架构模型,然后将需求阶段标识的构件映射到模型中,分析构件间的相互作用关系,最后形成量身订做的软件体系架构。 体系架构文档化:即生成用户和研发人员能够阅读的体系架构规格说明书和体系架构设计说明书。 体系架构复审:即及早发现体系架构设计中存在的缺陷和错误,及时予以标记和排除。 体系架构实现:即设计人员开发出系统构件,按照体系架构设计规格说明书进行构件的关联、合成、组装和测试。 体系架构演化:如果用户需求发生了变化,则需相应地修改完善优化、调整软件体系结构,以适应新的变化了的软件需求。 以上6个子过程是软件系统架构设计的通用方法步骤。但由于软件需求、现实情况的变化是难以预测的,这6个子过程往往是螺旋式向前推进。 软件系统架构设计常用模式

大型网络平台架构设计方案

大型网络平台架构设计方案

目录 1网站的性能瓶颈分析 (1) 2系统架构设计 (3) 2.1总体思路 (3) 2.1.1负载均衡 (3) 2.1.2WEB应用开发架构思路 (3) 2.1.3数据存储的设计思路 (3) 2.1.4不同网络用户访问考虑 (4) 2.2总体架构 (5) 2.2.1网站的系统分层架构 (5) 2.2.2网站的物理架构 (6) 2.2.3网站的开发架构 (7) 2.2.4网络拓扑结构 (8) 2.3架构涉及技术的详解 (9) 2.3.1负载均衡 (9) 2.3.2缓存 (15) 2.3.3页面静态化 (19) 2.3.4数据库配置及优化 (20) 2.3.5文件存储 (21) 2.3.6网络问题解决方案 (24) 2.3.7WEB应用开发架构设计思路 (26) 2.4系统软件参数优化 (30) 2.4.1操作系统优化 (30) 2.4.2tomcat服务器优化 (31) 2.4.3apache服务器优化 (33) 2.4.4Nginx服务器的优化 (33) 3WEB服务架构评测 (34) 3.1测试环境 (34) 3.1.1网络环境 (34)

3.1.2服务器配置 (35) 3.1.3软件环境 (35) 3.2测试结果 (40) 3.2.1单个TOMCAT的WEB服务器 (40) 3.2.2Nginx+2个TOMCAT的WEB服务器 (41) 3.2.3Nginx+2个TOMCAT的WEB服务器+缓冲 (42) 3.3测试结果分析 (43) 3.4评测结果 (44) 4配置选型 (45) 4.1网络带宽 (45) 4.2架构和硬件配置选型 (46) 4.2.1硬件配置参考 (46) 4.2.2Web架构和硬件选型 (47) 4.3硬件扩容策略 (48) 4.3.1增加服务器 (48) 4.3.2增加存储 (48) 4.3.3升级服务器 (48) 4.3.4网络扩容 (48) 5附录:一些主流网站的真实数据 (49)

车联网大数据平台架构设计

车联网大数据平台架构设计-软硬件选型 1.软件选型建议 数据传输 处理并发链接的传统方式为:为每个链接创建一个线程并由该线程负责所有的数据处理业务逻辑。这种方式的好处在于代码简单明了,逻辑清晰。而由于操作系统的限制,每台服务器可以处理的线程数是有限的,因为线程对CPU的处理器的竞争将使系统整体性能下降。随着线程数变大,系统处理延时逐渐变大。此外,当某链接中没有数据传输时,线程不会被释放,浪费系统资源。为解决上述问题,可使用基于NIO的技术。 Netty Netty是当下最为流行的Java NIO框架。Netty框架中使用了两组线程:selectors与workers。其中Selectors专门负责client端(列车车载设备)链接的建立并轮询监听哪个链接有数据传输的请求。针对某链接的数据传输请求,相关selector会任意挑选一个闲置的worker线程处理该请求。处理结束后,worker自动将状态置回‘空闲’以便再次被调用。两组线程的最大线程数均需根据服务器CPU处理器核数进行配置。另外,netty内置了大量worker 功能可以协助程序员轻松解决TCP粘包,二进制转消息等复杂问题。 IBM MessageSight MessageSight是IBM的一款软硬一体的商业产品。其极限处理能力可达百万client并发,每秒可进行千万次消息处理。 数据预处理 流式数据处理 对于流式数据的处理不能用传统的方式先持久化存储再读取分析,因为大量的磁盘IO操作将使数据处理时效性大打折扣。流式数据处理工具的基本原理为将数据切割成定长的窗口并对窗口内的数据在内存中快速完成处理。值得注意的是,数据分析的结论也可以被应用于流式数据处理的过程中,即可完成模式预判等功能还可以对数据分析的结论进行验证。 Storm Storm是被应用最为广泛的开源产品中,其允许用户自定义数据处理的工作流(Storm术语为Topology),并部署在Hadoop集群之上使之具备批量、交互式以及实时数据处理的能力。用户可使用任意变成语言定义工作流。 IBM Streams IBM的Streams产品是目前市面上性能最可靠的流式数据处理工具。不同于其他基于Java 的开源项目,Streams是用C++开发的,性能也远远高于其他流式数据处理的工具。另外IBM 还提供了各种数据处理算法插件,包括:曲线拟合、傅立叶变换、GPS距离等。 数据推送 为了实现推送技术,传统的技术是采用‘请求-响应式’轮询策略。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发出请求,然后由服务器返回最新的数据给客户端的浏览器。这种传统的模式带来很明显的缺点,即浏览器需要不断的向服务器发出请求,然而HTTP request 的header是非常长的,里面包含的数据可能只是一个很小的值,这样会占用很多的带宽和服务器资源。

数据中心建设架构设计

数据中心架构建设计方案建议书 1、数据中心网络功能区分区说明 1.1 功能区说明 图1:数据中心网络拓扑图 数据中心网络通过防火墙和交换机等网络安全设备分隔为个功能区:互联网区、应用服务器区、核心数据区、存储数据区、管理区和测试区。可通过在防火墙上设置策略来灵活控制各功能区之间的访问。各功能区拓扑结构应保持基本一致,并可根据需要新增功能区。 在安全级别的设定上,互联网区最低,应用区次之,测试区等,核心数据区和存储数据区最高。 数据中心网络采用冗余设计,实现网络设备、线路的冗余备份以保证较高的可靠性。 1.2 互联网区网络 外联区位于第一道防火墙之外,是数据中心网络的Internet接口,提供与Internet 高速、可靠的连接,保证客户通过Internet访问支付中心。 根据中国南电信、北联通的网络分割现状,数据中心同时申请中国电信、中国联通各1条Internet线路。实现自动为来访用户选择最优的网络线路,保证优质的网络访问服务。当1条线路出现故障时,所有访问自动切换到另1条线路,即实现线路的冗余备份。

但随着移动互联网的迅猛发展,将来一定会有中国移动接入的需求,互联区网络为未来增加中国移动(铁通)链路接入提供了硬件准备,无需增加硬件便可以接入更多互联网接入链路。 外联区网络设备主要有:2台高性能链路负载均衡设备F5 LC1600,此交换机不断能够支持链路负载,通过DNS智能选择最佳线路给接入用户,同时确保其中一条链路发生故障后,另外一条链路能够迅速接管。互联网区使用交换机可以利用现有二层交换机,也可以通过VLAN方式从核心交换机上借用端口。 交换机具有端口镜像功能,并且每台交换机至少保留4个未使用端口,以便未来网络入侵检测器、网络流量分析仪等设备等接入。 建议未来在此处部署应用防火墙产品,以防止黑客在应用层上对应用系统的攻击。 1.3 应用服务器区网络 应用服务器区位于防火墙内,主要用于放置WEB服务器、应用服务器等。所有应用服务器和web服务器可以通过F5 BigIP1600实现服务器负载均衡。 外网防火墙均应采用千兆高性能防火墙。防火墙采用模块式设计,具有端口扩展能力,以满足未来扩展功能区的需要。 在此区部署服务器负载均衡交换机,实现服务器的负载均衡。也可以采用F5虚拟化版本,即无需硬件,只需要使用软件就可以象一台虚拟服务器一样,运行在vmware ESXi上。 1.4 数据库区

大数据平台技术框架选型

大数据平台框架选型分析 一、需求 城市大数据平台,首先是作为一个数据管理平台,核心需求是数据的存和取,然后因为海量数据、多数据类型的信息需要有丰富的数据接入能力和数据标准化处理能力,有了技术能力就需要纵深挖掘附加价值更好的服务,如信息统计、分析挖掘、全文检索等,考虑到面向的客户对象有的是上层的应用集成商,所以要考虑灵活的数据接口服务来支撑。 二、平台产品业务流程 三、选型思路 必要技术组件服务: ETL >非/关系数据仓储>大数据处理引擎>服务协调>分析BI >平台监管 四、选型要求 1.需要满足我们平台的几大核心功能需求,子功能不设局限性。如不满足全部,需要对未满足的其它核心功能的开放使用服务支持 2.国内外资料及社区尽量丰富,包括组件服务的成熟度流行度较高 3.需要对选型平台自身所包含的核心功能有较为深入的理解,易用其API或基于源码开发4.商业服务性价比高,并有空间脱离第三方商业技术服务 5.一些非功能性需求的条件标准清晰,如承载的集群节点、处理数据量及安全机制等 五、选型需要考虑 简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装,集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。自己来了解使用大数据套件的容易程度——仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。 广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAP和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展是否存在一个含有文档、论坛、博客和交流会的大社区 特性:是否支持所有需要的特性Hadoop的发行版本(如果你已经使用了某一个)你想要使用的Hadoop生态系统的所有部分你想要集成的所有接口、技术、产品请注意过多的特性可能会大大增加

常见的大数据平台架构设计思路【最新版】

常见的大数据平台架构设计思路 近年来,随着IT技术与大数据、机器学习、算法方向的不断发展,越来越多的企业都意识到了数据存在的价值,将数据作为自身宝贵的资产进行管理,利用大数据和机器学习能力去挖掘、识别、利用数据资产。如果缺乏有效的数据整体架构设计或者部分能力缺失,会导致业务层难以直接利用大数据大数据,大数据和业务产生了巨大的鸿沟,这道鸿沟的出现导致企业在使用大数据的过程中出现数据不可知、需求难实现、数据难共享等一系列问题,本文介绍了一些数据平台设计思路来帮助业务减少数据开发中的痛点和难点。 本文主要包括以下几个章节: 本文第一部分介绍一下大数据基础组件和相关知识。第二部分会介绍lambda架构和kappa架构。第三部分会介绍lambda和kappa架构模式下的一般大数据架构第四部分介绍裸露的数据架构体系下数据端到端难点以及痛点。第五部分介绍优秀的大数据架构整体设计从第五部分以后都是在介绍通过各种数据平台和组件将这些大数据组件结合起来打造一套高效、易用的数据平台来提高业务系统效能,让业务开发不在畏惧复杂的数据开发组件,无需关注底层实现,

只需要会使用SQL就可以完成一站式开发,完成数据回流,让大数据不再是数据工程师才有的技能。 一、大数据技术栈 大数据整体流程涉及很多模块,每一个模块都比较复杂,下图列出这些模块和组件以及他们的功能特性,后续会有专题去详细介绍相关模块领域知识,例如数据采集、数据传输、实时计算、离线计算、大数据储存等相关模块。 二、lambda架构和kappa架构 目前基本上所有的大数据架构都是基于lambda和kappa 架构,不同公司在这两个架构模式上设计出符合该公司的数据体系架构。lambda 架构使开发人员能够构建大规模分布式数据处理系统。它具有很好的灵活性和可扩展性,也对硬件故障和人为失误有很好的容错性,关于lambda架构可以在网上搜到很多相关文章。而kappa架构解决了lambda架构存在的两套数据加工体系,从而带来的各种成本问题,这也是目前流批一体化研究方向,很多企业已经开始使用这种更为先进的架构。 Lambda架构

智慧社区平台系统架构设计说明书

智慧社区 架构设计说明书 (内部资料请勿外传) 编写:牟宝林日期:检查:日期:审核:日期:批准:日期: XXXX科技有限公司 版权所有不得复制

目录 1、引言 ......................................................... 错误!未定义书签。 背景......................................................... 错误!未定义书签。 说明......................................................... 错误!未定义书签。 2、范围 ......................................................... 错误!未定义书签。 软件名称..................................................... 错误!未定义书签。 软件功能..................................................... 错误!未定义书签。 需求边界..................................................... 错误!未定义书签。 3、总体设计...................................................... 错误!未定义书签。 架构设计目标和约束........................................... 错误!未定义书签。 运行环境................................................. 错误!未定义书签。 开发环境................................................. 错误!未定义书签。 设计思想..................................................... 错误!未定义书签。 架构体系描述................................................. 错误!未定义书签。 架构体系..................................................... 错误!未定义书签。 数据支撑层............................................... 错误!未定义书签。 应用层................................................... 错误!未定义书签。 终端层................................................... 错误!未定义书签。 重要业务流程................................................. 错误!未定义书签。 核心数据采集输出流程..................................... 错误!未定义书签。 应用数据采集输出流程..................................... 错误!未定义书签。 模块划分..................................................... 错误!未定义书签。 数据支撑层............................................... 错误!未定义书签。 应用层................................................... 错误!未定义书签。 终端层................................................... 错误!未定义书签。 4、部署 ......................................................... 错误!未定义书签。 云服务器部署................................................. 错误!未定义书签。 部署服务器系统要求........................................... 错误!未定义书签。

电子商务平台架构设计

电子商务平台概要设计 XX Software Company Ltd. 2011-3-31

目录 第一章引言 1.1 目的 (4) 1.2 组织接口 (4) 1.3 定义 (4) 1.4 参考资料 (5) 1.5 项目概述 (5) 第二章总体设计 2.1 设计概述 (7) 2.2 性能描述 (8) 2.3 基本设计概念 (8) 2.4 基本处理流程 (9) 2.5 系统的体系结构 (9) 第三章功能描述 3.1 用户购物管理子系统 (11) 3.2 订单处理子系统 (15) 3.4 系统管理子系统 (16) 第四章接口设计 4.1 用户接口 (17) 4.2 外部接口 (17) 4.3 内部接口 (17) 4.4 通信接口 (17) 第五章运行设计 5.1 系统初始化 (18) 5.2 运行控制 (18) 5.3 系统结束 (18) 第六章系统出错处理 6.1 出错信息 (19) 6.2 补救措施 (19) 第七章系统维护设计

7.1 检测点设计 (20) 7.2 检测专用模块的设计 (20)

第一章引言 1.1 目的 概要设计说明又称系统设计说明。它是用来说明对程序系统的设计考虑,包括程序系统的基本处理流程、程序系统的组织结构、模块划分、功能分配、接口设计、运行设计、数据结构设计和出错处理设计等,为详细设计提供基础。 1.2 组织接口 1.软件技术教育平台 2.本系统的英文名称:web shop 3.本系统的简称:wshop 4.版本号:1.0 5.主要设计人员:贾玉、贾莉、王永锋、等开发小组。 6.任务与分工: 1.3 定义 本文档所涉及的专门术语定义和缩略语、缩写词的含义如下表:

软件系统的架构设计方案

软件系统的架构设计方案 架构的定义 定义架构的最短形式是:“架构是一种结构”,这是一种正确的理解,但世界还没太平。若做一个比喻,架构就像一个操作系统,不同的角度有不同的理解,不同的关切者有各自的着重点,多视点的不同理解都是架构需要的,也只有通过多视点来考察才能演化出一个有效的架构。 从静态的角度,架构要回答一个系统在技术上如何组织;从变化的角度,架构要回答如何支持系统不断产生的新功能、新变化以及适时的重构;从服务质量的角度,架构要平衡各种和用户体验有关的指标;从运维的角度,架构要回答如何充分利用计算机或网络资源及其扩展策略;从经济的角度,架构要回答如何在可行的基础上降低实现成本等等 软件系统架构(Software Architecture)是关于软件系统的结构、行为、属性、组成要素及其之间交互关系的高级抽象。任何软件开发项目,都会经历需求获取、系统分析、系统设计、编码研发、系统运维等常规阶段,软件系统架构设计就位于系统分析和系统设计之间。做好软件系统架构,可以为软件系统提供稳定可靠的体系结构支撑平台,还可以支持最大粒度的软件复用,降低开发运维成本。如何做好软件系统的架构设计呢? 软件系统架构设计方法步骤 基于体系架构的软件设计模型把软件过程划分为体系架构需求、设计、文档化、复审、实现和演化6个子过程,现逐一简要概述如下。 体系架构需求:即将用户对软件系统功能、性能、界面、设计约束等方面的期望(即“需求”)进行获取、分析、加工,并将每一个需求项目抽象定义为构件(类的集合)。

体系架构设计:即采用迭代的方法首先选择一个合适的软件体系架构风格(如C/S、B/S、N层、管道过滤器风格、C2风格等)作为架构模型,然后将需求阶段标识的构件映射到模型中,分析构件间的相互作用关系,最后形成量身订做的软件体系架构。 体系架构文档化:即生成用户和研发人员能够阅读的体系架构规格说明书和体系架构设计说明书。 体系架构复审:即及早发现体系架构设计中存在的缺陷和错误,及时予以标记和排除。 体系架构实现:即设计人员开发出系统构件,按照体系架构设计规格说明书进行构件的关联、合成、组装和测试。 体系架构演化:如果用户需求发生了变化,则需相应地修改完善优化、调整软件体系结构,以适应新的变化了的软件需求。 以上6个子过程是软件系统架构设计的通用方法步骤。但由于软件需求、现实情况的变化是难以预测的,这6个子过程往往是螺旋式向前推进。 软件系统架构设计常用模式 目前软件领域广泛使用的软件系统架构模式,主要有层次化架构设计、企业集成架构设计、嵌入式架构设计和面向服务的架构设计模式。 层次化架构设计模式:分层设计是一种最为常见的架构设计方案,能有效地使系统结构清晰、设计简化。MVC模式是当今最为流行的多层设计模式。该模式把一个应用的输入、处理、输出流程进行分离并抽象为控制器(Controller)、模型(Model)、视图(View)三个模块,实现了业务逻辑层、数据库访问层和用户界面层

北京市政务大数据平台顶层设计框架及应用方案

北京市政务大数据平台顶层设计框架及应用方案 本文摘自穆勇在中关村大数据产业联盟上所做的演讲。 演讲全文: 今天很荣幸有这样一个机会,和大家交流探讨大数据在政务领域的应用问题,我看到群里有很多十分熟悉的朋友,所以交流起来也会比较轻松。有什么问题欢迎大家提出,如果我讲的不对的地方,请不客气批评。 一、大数据在政务领域应用的概述 说起大数据技术的应用,首先是在互联网行业起步并逐步拓展到电信、金融、工业等多个领域,产生了巨大的社会价值和产业空间,现正拓展到政务领域。 (一)大数据技术在互联网行业的成功应用,那些地方是值得我们关注的 第一,应该是思维观念和运作方式的变化,所谓的互联网思维,其核心理念包括: 体外互动:邮件、电话、信件互动---服务导引 服务外包:购买服务---简单服务 让渡社会:众包---自助服务 边界开放:数据开放---创造服务 第二,是其技术演进,针对数据处理的技术 首先是传统数据分析处理阶段,该阶段是面向结构化数据,非结构化处理效率低;硬件成本高;平台兼容性差。其次是基于云计算的大数据处理阶段,该阶段总体有了很大的改进和提升,主要体现在:具备结构化/非结构化混合分析的能力;基

于消费级硬件,不依赖高性能、高可靠性硬件,从而保障系统性能和可靠性;平台兼容性好、扩展性高;进而业界又提出去IOE的思路。 第三,是数据挖掘分析技术 画像技术以及各类数据融合、分析、挖掘、预测等。 这些都是政务领域需要学习与借鉴的。为此,我认为:大数据在政务领域应用即包括用新的思维、模式与技术来解决电子政务需求,也包括了政务大数据新的应用。对于第一个方面比较容易理解,对于第二个方面需要对政务大数据给出定义。有些人认为政府没有大数据,只有传统的小数据或中数据。这个问题我们将在下一节专门中进行讨论。 政务领域是大数据应用崭新的领域,它将极大的改变政府的管理模式,有利于节约政府投资、提高政府决策能力、提升公共服务和社会管理能力,开展大数据在政务领域的应用是大势所趋,势在必行。同时,政务大数据本身也不同于其他领域或行业的数据,其复杂程度和需求的多样化比互联网行业大的多,也难的多。 (二)政务大数据的定义及特点 按照政府管理的数据来源和种类,可以分为下三类: 第一类业务数据:业务办理过程中采集和产生的数据。 第二类民意社情数据:对社会企业个人对象进行统计调查获得的数据。 第三类环境数据:通过物理设备采集获得的气象、环境、影像等数据。 在以前的电子政务建设阶段,政务信息资源开发利用更多的是集中在前两种类型和结构化数据上,而对第三类数据,特别是实时的、非结构化、半结构化数据的开发利用相对较少。随着政府业务在互联网、移动互联网、物联网等领域广泛和深入的应用,第三类数据的数据量和价值都在迅速增长,相关数据处理技术也逐步成熟。便于区别不妨把包含第三类数据的政务信息资源叫做是政务大数据。

高并发平台架构规划方案.

编号∶______ 版本∶______ 高并发平台架构规划方案 V1.0 起草人:田朝山 起草时间:2013年01月08日 审核人: 审核时间: 修改情况记录:

1概述 1.1简述 本文档针对okgohome项目的特点,根据项目各个阶段的发展情况,在系统不调整或微调整的情况下逐步提升整体吞吐量以适应项目的快速发展。其中包括各个阶段项目架构部署规划。 1.2设计目标 A.快速的响应能力 在各种情况下,能够快速响应用户请求;具备可靠地容灾能力,部分系统问题不影响整体系统的正常运行。将停止服务时间降低到最低甚至是不间断服务。 B.可伸缩性的系统体系 随着访问的增加,系统具备良好的伸缩能力。其中包括硬件与软件两部分: 1)硬件:Web服务器集群,缓存服务器集群,文件服务器集群,数据库服务器等集群。各个群集之间负载均衡,任何一个集群由于资源不足出现瓶颈的时候,只要根据需要添加一个服务器节点,做简单的配置就能达到扩展的目的。 2)软件:整个软件应用系统纵向分割,按照模块划分,各个模块即相互独立,又可以无缝结合。如果需要扩展一个模块,只要做独立开发,无需该原有系统的代码,只要做简单的配置就能结合在已经,并对该模块管理。 C.安全可靠的系统 为保证网站的正常运行,用户数据的高度安全,系统考虑了多种安全策略(网络安全、系统安全、各子系统安全、子系统模块安全、回话期间安全等)。系统具有7×24小时的运行能力,并且具有系统灾难的快速恢复能力,及数据安全的保证。 D.易管理的体系架构 整个系统、服务的状态处于一个实时的监控之下。其中包括:配置管理、故

障性能检测、代码发布等: 1)配置管理:可以通过统一的管理系统,对整个运行环境进行界面配置管理。同类集群可以批量操作。 2)性能监测:通过统一的监控系统对不同类型的服务器或集群分别监测,根据监测报表实时决策优化方案。 3)代码发布: 如果扩展模块开发完,只要通过发布系统发布到指定的服务器,或某一类服务器。 1.3设计原则 1)高可用性:将停止服务时间降低到最低甚至是不间断服务; 2)可扩展性:随着访问的增加,系统具备良好的伸缩能力; 3)可视性:系统、服务的状态处于一个实时的监控之下; 4)高性能高可靠性:经过优化的体系结构及合理的备份策略; 5)安全性:结构上的安全及主机的安全策略; 6)易维护性:通过简单的操作就能维护庞大的集群系统; 7)低成本:前期尽量在有限的硬件资源下,利用软件提高性能。 1.4读者对象 该文档的主要读者对象:项目经理、架构师、服务器维护人员等。

大数据平台构思方案计划

大数据平台构思方案 (项目需求与技术方案) 一、项目背景 “十三五”期间,随着我国现代信息技术的蓬勃发展,信息化建设模式发生根本性转变,一场以云计算、大数据、物联网、移动应用等技术为核心的“新 IT”浪潮风起云涌,信息化应用进入一个“新常态”。***(某政府部门)为积极应对“互联网+”和大数据时代的机遇和挑战,适应全省经济社会发展与改革要求,大数据平台应运而生。 大数据平台整合省社会经济发展资源,打造集数据采集、数据处理、监测管理、预测预警、应急指挥、可视化平台于一体的大数据平台,以信息化提升数据化管理与服务能力,及时准确掌握社会经济发展情况,做到“用数据说话、用数据管理、用数据决策、用数据创新”,牢牢把握社会经济发展主动权和话语权。 二、建设目标 大数据平台是顺应目前信息化技术水平发展、服务政府职能改革的架构平台。它的主要目标是强化经济运行监测分析,实现企业信用社会化监督,建立规范化共建共享投资项目管理体系,推进政务数据共享和业务协同,为决策提供及时、准确、可靠的信息依据,提高政务工作的前瞻性和针对性,加大宏观调控力度,促进经济持续健康发

展。 1、制定统一信息资源管理规范,拓宽数据获取渠道,整合业务信息系统数据、企业单位数据和互联网抓取数据,构建汇聚式一体化数据库,为平台打下坚实稳固的数据基础。 2、梳理各相关系统数据资源的关联性,编制数据资源目录,建立信息资源交换管理标准体系,在业务可行性的基础上,实现数据信息共享,推进信息公开,建立跨部门跨领域经济形势分析制度。 3、在大数据分析监测基础上,为政府把握经济发展趋势、预见经济发展潜在问题、辅助经济决策提供基础支撑。 三、建设原则 大数据平台以信息资源整合为重点,以大数据应用为核心,坚持“统筹规划、分步实施,整合资源、协同共享,突出重点、注重实效,深化应用、创新驱动”的原则,全面提升信息化建设水平,促进全省经济持续健康发展。

相关主题